
CFG [1]

Main Points of the Course

What has been covered: chapters 1 to 5 + 7

Plus abstract states/Myhill-Nerode

1

CFG [2]

Mathematical Definitions

You should know what are, mathematically, DFA, NFA ε-NFA, CFG

For instance, a NFA is (Q,Σ, q0, δ, F) where Q is a finite state (set of states),
Σ a finite set (alphabet), q0 ∈ Q,

δ : Q× Σ → Pow(Q)

and F ⊆ Q

Another view of NFA is labelled transition system

2

CFG [3]

Mathematical Definitions

You should know also what is a regular expression

Given a regular expression E, what is the language L(E) represented by E

3

CFG [4]

Constructions on FA

The 3 main constructions

1. product of two DFAs (or NFAs), to compute union, intersection of regular
languages

2. subset construction NFA → DFA

3. minimization DFA → DFA (does not work for NFA!!)

4

CFG [5]

Constructions on FA

Some other constructions we have seen

Complement of a language: complement of an automaton (this works only for
DFA)

Reverse of a language: reverse of an automaton (work for DFA and NFA; we
may get a NFA even if we start with a DFA)

Be careful: given E1, E2 we can compute E such that L(E) = L(E1)∩L(E2)
but E1 ∩ E2 is not a regular expression (only in a generalised sense)

Similarly given E1 we can compute E such that L(E) is L(E) the complement
of L(E1) but E is not a regular expression

5

CFG [6]

From FA to regular expressions

FA → regular expression

We have 3 methods to compute a regular expression E such that L(E) = L(A)

1. method similar to Warshall’s algorithm: section 3.2.1

2. eliminating states: section 3.2.2

3. writing a system of equations, and method of successive elimination

6

CFG [7]

From FA to CFG

It is direct to associate a CFG to a ε-NFA

S0 → S1 | + S1 | − S1 S1 → dS1 | dS4 | ·S2

S2 → dS3 S3 → ε | dS3 S4 → ·S3

d → 0 | 1 | 2| 3 | 4 | 5 | 6 | 7 | 8 | 9

7

CFG [8]

From regular expressions to FA

regular expression → ε-NFA

ε-NFA → NFA

NFA → DFA (subset construction)

8

CFG [9]

From regular expressions to FA

Other more direct approach with abstract states

Example: 0(10)∗

9

CFG [10]

Regular expressions

Basic equalities on regular expressions, like

E(F + G) = EF + EG (ac)∗a = a(ca)∗

For instance, nice solution to (ab + a)∗a = a(ba + a)∗

(ab + a)∗a = (a(b + ε))∗a = a((b + ε)a)∗ = a(ba + a)∗

In practice: try to see what are the possible “first” elements in each languages
when trying to decide if two languages are equal. (Good exercise: program in
Haskell an equality test)

10

CFG [11]

Minimization

Table-filling algorithm well-described in section 4.4.3

Does not work for NFA

You should know that it is uniquely defined: if L(A1) = L(A2) and A1, A2

are minimal then A1 and A2 are identical (up to renaming of states), and the
states are the abstract states

11

CFG [12]

Non Regular Languages

Intuitively: a language is non regular when unbounded amount of memory is
needed for a machine to recognize it

Typical example

S → aSb | ε

One proves by an argument by contradiction, using the pigeon-hole principle
(see page 66) that a finite-state machine cannot recognize L(G)

Section 4.1

Another approach: L(G) has infinitely many abstract states

12

CFG [13]

Regular and Context-Free Languages

For regular languages: you should now how to decide

L(A) 6= ∅ w ∈ L(A) L(A1) ⊆ L(A2)

For context-free languages, you should know how to decide

L(G) 6= ∅

There is no algorithm for L(G1) ⊆ L(G2)

No algorithm to compute if G is ambiguous (see section 9.5)

13

CFG [14]

Regular and Context-Free Languages

How to decide

L(G) 6= ∅

if G is the grammar

S → aB | BC A → aA | c | aDb

B → DB | C C → b | B

we compute the generating symbols

You should know also how to compute the accessible or reachable symbols

14

CFG [15]

Induction on length of derivations

Consider the following grammar G

S → a | b | SSS

Show that L(G) is the set of all words in {a, b}∗ of odd length.

L = L(G) is inductively defined by the clauses

• a, b ∈ L

• if w1, w2, w3 ∈ L then w1w2w3 ∈ L

15

CFG [16]

Contex-Free Languages

Let M be the set of words of odd length.

We prove L = M by proving L ⊆ M and M ⊆ L

L ⊆ M can be proved by induction on the length of S ⇒∗ w:

• S ⇒ a, S ⇒ b are of length 1, hence a, b ∈ M

• if S ⇒ SSS ⇒∗ w1w2w3. By induction |wi| is odd and so is |w1w2w3|

16

CFG [17]

Context-Free Languages

We have also to prove M ⊆ L

We prove w ∈ M implies w ∈ L by induction on |w|

If |w| = 1 then w = a or b

If |w| > 1 then w = c1c2w
′ with ci = a or b. We know w′ ∈ L by induction

hypothesis. Also, a, b ∈ L. Hence w ∈ L

17

CFG [18]

Contex-Free Languages

Consider the following grammar G

S → A1B A → 0A | ε B → 1B | ε

Show that G is not ambiguous

There is no general method to solve this kind of problem (section 9.5)

First we try to understand what is L(G)

Here L(G) = L(0∗11∗)

18

CFG [19]

Context-Free Languages

We show that if w ∈ L(G) then w has a unique leftmost derivation by
induction on |w|

19

CFG [20]

Context-Free Languages

We do a case analysis if w starts with the symbol 0 or not

If w = 0w′ then the leftmost derivation has to start

S ⇒lm A1B ⇒lm 0A1B

with a leftmost derivation of
A1B ⇒∗

lm w′

We know by induction hypothesis that w′ has a unique leftmost derivation

S ⇒lm A1B ⇒∗
lm w′

20

CFG [21]

Context-Free Languages

If w = 1w′ then w′ = 1n the leftmost derivation has to start

S ⇒lm A1B ⇒lm 1B

with a leftmost derivation of
B ⇒∗

lm w′

We show by induction on n that there is a unique leftmost derivation

B ⇒∗
lm 1n

21

CFG [22]

Variation on Automata: Pushdown Automata

Not seen in the course

NFA + stack = context-free language

A stack is needed for recognizing a language such as

S → ε | aSb

22

CFG [23]

Variation on Automata: Pushdown Automata

DFA + stack is less powerful

inclusion L(A1) ⊆ L(A2) decidable for this fragment (proved in 1998!!)

There is no algorithms for testing L(G1) ⊆ L(G2) and so no algorithm for
L(A1) ⊆ L(A2), if Ai NFA with stacks

23

CFG [24]

Variation on Automata: Turing Machines

DFA + tape

The machine can write also on the tape

All recursive languages

Strict hierarchy between languages:

regular ⊂ context-free ⊂ recursive

With two stacks we get the same languages as recursive languages. See
section 8.2

24

