CFG [1]

Main Points of the Course

What has been covered: chapters1to 5 + 7

Plus abstract states/Myhill-Nerode

CFG 2]

Mathematical Definitions

You should know what are, mathematically, DFA, NFA ¢-NFA, CFG

For instance, a NFA is (Q, X, qo, 9, F') where @ is a finite state (set of states),
Y a finite set (alphabet), ¢o € Q,

0:Q x X — Pow(Q)

and F' C ()

Another view of NFA is labelled transition system

CFG [3]

Mathematical Definitions

You should know also what is a regular expression

Given a regular expression F, what is the language L(F) represented by E

CFG [4]

Constructions on FA

The 3 main constructions

1. product of two DFAs (or NFAs), to compute union, intersection of regular
languages

2. subset construction NFA — DFA

3. minimization DFA — DFA (does not work for NFA!!)

CFG [5]

Constructions on FA

Some other constructions we have seen

Complement of a language: complement of an automaton (this works only for
DFA)

Reverse of a language: reverse of an automaton (work for DFA and NFA; we
may get a NFA even if we start with a DFA)

Be careful: given F, E5 we can compute E such that L(E) = L(F1) N L(FE>)
but 4 N E5 is not a regular expression (only in a generalised sense)

Similarly given E1 we can compute E such that L(FE) is L(E) the complement
of L(E7) but E is not a regular expression

CFG [6]

From FA to regular expressions

FA — regular expression

We have 3 methods to compute a regular expression E such that L(F) = L(A)

1. method similar to Warshall's algorithm: section 3.2.1
2. eliminating states: section 3.2.2

3. writing a system of equations, and method of successive elimination

CFG

[7]

From FA to CFG

It is direct to associate a CFG to a e-NFA

SQ—>Sl| —|—Sl‘ — 5 S1—>dsl|d54|52
SQ—>dS3 S3—>€ | ng S4->°Sg
d—0[1]2/3]4]5|6|7|8]9

CFG [8]

From regular expressions to FA

regular expression — e-NFA

e-NFA — NFA

NFA — DFA (subset construction)

CFG [9]

From regular expressions to FA

Other more direct approach with abstract states

Example: 0(10)*

CFG [10]

Regular expressions

Basic equalities on regular expressions, like

E(F+G)=FF+FEG (ac)*a = a(ca)”

For instance, nice solution to (ab+ a)*a = a(ba + a)*

(ab+a)*a = (a(b+€))"a=a((b+¢€)a)* = a(ba+ a)*

In practice: try to see what are the possible “first” elements in each languages
when trying to decide if two languages are equal. (Good exercise: program in
Haskell an equality test)

10

CFG [11]

Minimization

Table-filling algorithm well-described in section 4.4.3
Does not work for NFA

You should know that it is uniquely defined: if L(A;) = L(Asz) and Ay, As
are minimal then A; and A, are identical (up to renaming of states), and the
states are the abstract states

11

CFG [12]

Non Regular Languages

Intuitively: a language is non regular when unbounded amount of memory is
needed for a machine to recognize it

Typical example

S — aSh | e

One proves by an argument by contradiction, using the pigeon-hole principle
(see page 66) that a finite-state machine cannot recognize L(G)

Section 4.1

Another approach: L(G) has infinitely many abstract states

12

CFG

[13]

Regular and Context-Free Languages

For regular languages: you should now how to decide

L(A)£0 weL(A) L(A) C L(A)

For context-free languages, you should know how to decide

L(G) # 0

There is no algorithm for L(G1) C L(G>)

No algorithm to compute if G is ambiguous (see section 9.5)

13

CFG

[14]

Regular and Context-Free Languages

How to decide

L(G) # 1
if G is the grammar
S—aB | BC A—aA|c]|aDb
B— DB |C C—b|B

we compute the generating symbols

You should know also how to compute the accessible or reachable symbols

14

CFG

[15]

Induction on length of derivations

Consider the following grammar GG
S— a|b|SSS

Show that L(G) is the set of all words in {a,b}* of odd length.

L = L(G) is inductively defined by the clauses

e a,bc L

o if w1, ws, w3 € L then wiwows € L

15

CFG

[16]

Contex-Free Languages

Let M be the set of words of odd length.
We prove L = M by proving L C M and M C L

L C M can be proved by induction on the length of S =" w:

e S=a, S=bareoflength 1, hence a,b € M

o if S = 555 =" wywows. By induction |w;| is odd and so is |wiwsws

16

CFG [17]

Context-Free Languages

We have also to prove M C L
We prove w € M implies w € L by induction on |w|

If lw|=1thenw =aorb

If |w| > 1 then w = cycow’” with ¢; = a or b. We know w’ € L by induction
hypothesis. Also, a,b € L. Hence w € L

17

CFG

[18]

Contex-Free Languages

Consider the following grammar G
S— Al1B A —0A|e€ B — 1B | €

Show that GG is not ambiguous
There is no general method to solve this kind of problem (section 9.5)
First we try to understand what is L(G)

Here L(G) = L(0*11%)

18

CFG [19]

Context-Free Languages

We show that if w € L(G) then w has a unique leftmost derivation by
induction on |w|

19

CFG

[20]

Context-Free Languages

We do a case analysis if w starts with the symbol 0 or not

If w = 0w’ then the leftmost derivation has to start
S =, A1B =, 0A1B

with a leftmost derivation of
/
AlB =] w
We know by induction hypothesis that w’ has a unique leftmost derivation

S =, AlB :>ka w’

20

CFG [21]

Context-Free Languages

If w = 1w’ then w’ = 1" the leftmost derivation has to start
S =1, A1B =, 1B

with a leftmost derivation of

B =7 w'

We show by induction on n that there is a unique leftmost derivation

B=7 1"

21

CFG

[22]

Variation on Automata: Pushdown Automata

Not seen in the course

NFA + stack = context-free language

A stack is needed for recognizing a language such as

S — e aSb

22

CFG [23]

Variation on Automata: Pushdown Automata

DFA + stack is less powerful
inclusion L(A;) C L(As) decidable for this fragment (proved in 1998!!)

There is no algorithms for testing L(G1) C L(G3) and so no algorithm for
L(A;1) C L(As), if A; NFA with stacks

23

CFG [24]
Variation on Automata: Turing Machines

DFA + tape

The machine can write also on the tape
All recursive languages

Strict hierarchy between languages:
regular C context-free C recursive

With two stacks we get the same languages as recursive languages. See
section 8.2

24

