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Warshall’s algorithm

See Floyd-Warshall algorithm on Wikipedia

The Floyd-Warshall algorithm is a graph analysis algorithm for finding shortest
paths in a weigthed, directed graph

Warshall algorithm finds the transitive closure of a directed graph

1



Regular Expressions [2]

Warshall’s algorithm

We have a graph with n nodes 1, 2, . . . , n

We define Eij = 1 iff there is an edge i→ j

Eij = 0 if there is no edge from i to j

We define E1
ij = Eij and

Ek+1
ij = Ek

ij ∨ Ek
ikE

k
kj

Then Ek
ij = 1 iff there exists a path i → i1 · · · → il → j with i1, . . . , il all

< k
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Warshall’s algorithm

This is best implemented with a fixed array of n× n booleans

For k = 1 to n

Eij := Eij ∨ EikEkj
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Floyd’s algorithm

Now Eij is a positive number (the cost or the distance of going from i to j;
it is ∞ if there is no edge from i to j).

For k = 1 to n

Eij := min(Eij, Eik + Ekj)
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Regular expression

Now Eij is a regular expression, and we compute all possible paths from i to
j. We initialize by Eij := Eij if i 6= j and Eii := ε+ Eii.

For k = 1 to n

Eij := Eij + EikE
∗
kkEkj
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Regular expression

For the automata with accepting state 2 and defined by

1.0 = 2, 1.1 = 1, 2.0 = 2.1 = 2

We have E11 = ε+ 1, E12 = 0, E21 = ∅, E22 = ε+ 0 + 1
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Regular expression

Then the first step is

E11 = ε+ 1 + (ε+ 1)(ε+ 1)∗(ε+ 1) = 1∗

E12 = 0 + (ε+ 1)(ε+ 1)∗0 = 1∗0

E21 = ∅+ ∅(ε+ 1)∗(ε+ 1) = ∅

E22 = ε+ 0 + 1 + ∅(ε+ 1)∗0 = ε+ 0 + 1
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Regular expression

The second step is

E11 = 1∗ + 1∗0(ε+ 0 + 1)∗∅ = 1∗

E12 = 1∗0 + 1∗0(ε+ 0 + 1)∗(ε+ 0 + 1) = 1∗0(0 + 1)∗

E21 = ∅+ (ε+ 0 + 1)(ε+ 0 + 1)∗∅ = ∅

E22 = ε+ 0 + 1 + (ε+ 0 + 1)(ε+ 0 + 1)∗(ε+ 0 + 1) = (0 + 1)∗
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Regular expression

In this way, we have seen two proofs of one direction of Kleene’s Theorem:
any regular language is recognized by a regular expression

The two proofs are

by solving an equation system and using Arden’s Lemma

by using Warshall’s algorithm
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Algebraic Laws for Regular Expressions

E + (F +G) = (E + F ) +G, E + F = F + E, E + E = E, E + 0 = E

E(FG) = (EF )G, E0 = 0E = 0, Eε = εE = E

E(F +G) = EF + EG, (F +G)E = FE +GE

ε+ EE∗ = E∗ = ε+ E∗E
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Algebraic Laws for Regular Expressions

We have also

E∗ = E∗E∗ = (E∗)∗

E∗ = (EE)∗ + E(EE)∗
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Algebraic Laws for Regular Expressions

How can one prove equalities between regular expressions?

In usual algebra, we can “simplify” an algebraic expression by rewriting

(x+ y)(x+ z) → xx+ yx+ xz + yz

For regular expressions, there is no such way to prove equalities. There is not
even a complete finite set of equations.
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Algebraic Laws for Regular Expressions

Example: L∗ ⊆ L∗L∗ since ε ∈ L∗

Conversely if x ∈ L∗L∗ then x = x1x2 with x1 ∈ L∗ and x2 ∈ L∗

x ∈ L∗ is clear if x1 = ε or x2 = ε. Otherwise

So x1 = u1 . . . un with ui ∈ L

and x2 = v1 . . . vm with vj ∈ L

Then x = x1x2 = u1 . . . unv1 . . . vm is in L∗
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Algebraic Laws for Regular Expressions

Two laws that are useful to simplify regular expressions

Shifting rule

E(FE)∗ = (EF )∗E

Denesting rule

(E∗F )∗E∗ = (E + F )∗
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Variation of the denesting rule

One has also

(E∗F )∗ = ε+ (E + F )∗F

and this represents the words empty or finishing with F
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Algebraic Laws for Regular Expressions

Example:

a∗b(c+ da∗b)∗ = a∗b(c∗da∗b)∗c∗

by denesting

a∗b(c∗da∗b)∗c∗ = (a∗bc∗d)∗a∗bc∗

by shifting

(a∗bc∗d)∗a∗bc∗ = (a+ bc∗d)∗bc∗

by denesting. Hence

a∗b(c+ da∗b)∗ = (a+ bc∗d)∗bc∗
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Algebraic Laws for Regular Expressions

Examples: 10?0? = 1 + 10 + 100

(1 + 01 + 001)∗(ε+ 0 + 00) = ((ε+ 0)(ε+ 0)1)∗(ε+ 0)(ε+ 0)

is the same as

(ε+ 0)(ε+ 0)(1(ε+ 0)(ε+ 0))∗ = (ε+ 0 + 00)(1 + 10 + 100)∗

Set of all words with no substring of more than two adjacent 0’s
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Proving by induction

Let Σ be {a, b}

Lemma: For all n we have a(ba)n = (ab)na

Proof: by induction on n

Theorem: a(ba)∗ = (ab)∗a

Similarly we can prove (a+ b)∗ = (a∗b)∗a∗
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Complement of a(n ordinary) regular expression

For building the “complement” of a regular expression, or the “intersection”
of two regular expressions, we can use NFA/DFA

For instance to build E such that L(E) = {0, 1}∗ − {0} we first build a DFA
for the expression 0, then the complement DFA. We can compute E from this
complement DFA. We get for instance

ε+ 1(0 + 1)∗ + 0(0 + 1)+
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Abstract States

Two notations for the derivative L/a or a \ L

Last time I have used

L/a = {x ∈ Σ∗ | ax ∈ L}

I shall use now the following notation (cf. exercice 4.2.3)

a \ L = {x ∈ Σ∗ | ax ∈ L}

and more generally if z in Σ∗

z \ L = {x ∈ Σ∗ | zx ∈ L}
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Abstract States

Example: L = {an | 3 divides n} we have

ε \ L = L, a \ L = {a3n+2 | n ≥ 0}

aa \ L = {a3n+1 | n ≥ 0}, aaa \ L = L

Although Σ∗ is infinite, the number of distinct sets of the form u \ L is finite
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Another example

Σ = {0, 1}

L = {0n1n | n > 0}

ε \ L = L, 0 \ L = {0n1n+1 | n ≥ 0}

00 \ L = {0n1n+2 | n ≥ 0}, 000 \ L = {0n1n+3 | n ≥ 0}

1 \ L = ∅, 11 \ L = ∅

In this case there are infinitely many distinct sets of the form u \ L
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Abstract States

The sets u \ L are called the abstract states of the language L

Myhill-Nerode theorem: A language is regular iff its set of abstract states
is finite

This is a characterisation of regular sets, and a powerful way to show that a
language is not regular
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Proof of the Myhill-Nerode theorem

Assume L is such that its set of abstract states u \ L is finite.

We define Q to be the set of all u \ L. By hypothesis Q is a finite set

We define q0 to be L = ε \ L

We define δ(M,a) = a \M for a ∈ Σ and M ⊆ Σ∗ an arbitrary language

In particular δ(u \ L, a) = ua \ L

Remark: We have a\ (u\L) = ua\L and more generally v \ (u\L) = uv \L
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Proof of the Myhill-Nerode theorem

Define F ⊆ Q to be the set of abstract states u \ L such that ε is in the set
u \ L. Thus u \ L ∈ F iff u ∈ L

Lemma: We have L.u = u \ L

Proof: By induction on u. This holds for u = ε and if it holds for v and
u = av then

L.(av) = (a \ L).v = v \ (a \ L) = av \ L

If A = (Q,Σ, δ, q0, F ) we have u ∈ L(A) iff u \ L ∈ F iff u ∈ L. Thus
L = L(A) and L is regular
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Proof of the Myhill-Nerode theorem

This proves one direction: if the set of abstract sets is finite then L is regular

Conversely assume that L is regular then L = L(A) for some DFA A =
(Q,Σ, δ, q0, F )

We have

u \ L(A) = L(Q,Σ, δ, q0.u, F )

Indeed v is in u \ L(A) iff uv is in L(A) iff q0.(uv) = (q0.u).v is in F

Since Q is finite since there are only finitely many possibilities for u \ L
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Proof of the Myhill-Nerode theorem

Hence we have shown that L is regular iff there are only finitely many abstract
states u \ L

This is a powerful way to prove that a language is not regular

For instance L = {0n1n | n > 0} is not regular since there are infinitely many
abstract states 0k \ L
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Proof of the Myhill-Nerode theorem

You should compare this with the use of the “pumping Lemma” (section 4.1)
that I will present next time
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Proof of the Myhill-Nerode theorem

This can be used also to show that a language is regular and indicate how to
build a DFA for this language

L = {an | 3 divides n}

We have three abstract states q0 = L, q1 = a \ L, q2 = aa \ L hence a DFA
with 3 states
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A corollary of Myhill-Nerode’s Theorem

Corollary: If L is regular then each u \ L is regular

Proof: Since we have

v \ (u \ L) = uv \ L

each abstract state of u \ L is an abstract state of L. If L is regular it has
finitely many abstract states by Myhill-Nerode’s Theorem. So u \ L has finitely
many abstract states and is regular by Myhill-Nerode’s Theorem.
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A corollary of Myhill-Nerode’s Theorem

Another direct proof of

Corollary: If L is regular then each u \ L is regular

Proof: L is regular so we have some DFA A = (Q,Σ, δ, q0, F ) such that
L = L(A). Define

u \A = (Q,Σ, δ, q0.u, F )

We have seen that L(u \A) = u \ L(A).
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Symbolic Computation of u \ L

a \ ∅ = ∅

a \ ε = ∅

a \ a = ε

a \ b = ∅ if b 6= a

a \ (E1 + E2) = a \ E1 + a \ E2

a \ (E1E2) = (a \ E1)E2 if ε /∈ L(E1)

a \ (E1E2) = (a \ E1)E2 + a \ E2 if ε ∈ L(E1)

a \ E∗ = (a \ E)E∗

32



Regular Expressions [33]

Symbolic Computation of u \ L

If we introduce the notation δ(E) = ε if ε in L(E) and δ(E) = ∅ if ε is not in
L(E)

a \ ∅ = ∅ a \ ε = ∅ a \ a = ε

a \ b = ∅ if b 6= a

a \ (E1 + E2) = a \ E1 + a \ E2

a \ (E1E2) = (a \ E1)E2 + δ(E1)(a \ E2)

a \ E∗ = (a \ E)E∗
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The Derivatives

Let E be (0 + 1)∗01(0 + 1)∗

0 \ E = E + 1(0 + 1)∗

1 \ E = E

01 \ E = (0 + 1)∗

00 \ E = 0 \ E

We have three languages E,E + 1(0 + 1)∗, (0 + 1)∗

We can build then a DFA for E
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The Derivatives

Other example: let E be (01)∗0

0 \ E = (0 \ (01)∗)0 + 0 \ 0 = 1(01)∗0 + ε = (10)∗

1 \ E = (1 \ (01)∗)0 + 1 \ 0 = ∅

00 \ E = 0 \ 1(01)∗0 + 0 \ ε = ∅

01 \ E = 1 \ 1(01)∗0 + 1 \ ε = E

We have three languages E, (10)∗, ∅

We can build then a DFA for E
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Closure properties

Regular languages have remarkable closure properties

closure by union

closure by intersection

closure by complement

closure by difference

closure by reversal

closure by morphism and inverse morphism
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Reversal

The reversal of a string a1 . . . an is the string an . . . a1.

We write xR the reversal of x

Thus εR = ε and 0010R = 0100

Lemma: (xy)R = yRxR
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Reversal

If L is a language let LR be the set of all xR for x ∈ L

Theorem: If L is regular then so if LR

Proof 1: We have L = L(E) for a regular expression E. We define ER by
induction

(E1E2)R = ER
2 E

R
1 (E1 + E2)R = ER

1 + ER
2 (E∗)R = (ER)∗

aR = a ∅R = ∅ εR = ε

We then prove L(ER) = L(E)R by structural induction on E
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Reversal

Proof 2: We have L = L(A) for a NFA A, we define then a ε-NFA A′ such
that LR = L(A′)

We have A = (Q,Σ, δ, q0, F )

We take q1 /∈ Q and define A′ = (Q ∪ {q1},Σ, δ′, q1, {q0}) which is an ε-NFA
with

r ∈ δ′(s, a) iff s ∈ δ(r, a) for r, s ∈ Q

r ∈ δ′(q1, ε) iff r ∈ F

Example: The reverse of the language defined by (0 + 1)0∗ can be defined
by 0∗(0 + 1)
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Monoid

Let Σ be an alphabet

Σ∗ is a monoid

It has a binary operation (x, y) 7−→ xy which is associative x(yz) = (xy)z

It has a neutral element ε: we have xε = εx = x

It is not commutative in general ab 6= ba

40



Regular Expressions [41]

Definition of Homomorphisms

Let Σ and Θ be two alphabets.

Definition: an homomorphism h : Σ∗ → Θ∗

is an application such that, for all x, y ∈ Σ∗

h(xy) = h(x)h(y) h(ε) = ε

It follows that if h(a1 . . . an) = h(a1) . . . h(an)

Notice that h(a) ∈ Θ∗ if a ∈ Σ
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Closure under Homomorphisms

Let h : Σ∗ → Θ∗ be an homomorphism

Theorem: If L ⊆ Σ∗ is regular then h(L) is regular

We define h(E) if E is a regular expression

h(ε) = ε, h(∅) = ∅, h(a) = h(a)

h(E1 + E2) = h(E1) + h(E2)

h(E1E2) = h(E1)h(E2)

h(E∗) = h(E)∗
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Closure under Homomorphisms

Lemma: If E is a regular expression then L(h(E)) = h(L(E))

Proof: By structural induction on E. There are 6 cases.

This implies that given a DFA A such that L(A) = L ⊆ Σ∗ one can build a
DFA A′ such that L(A′) = h(L)

This DFA exists because we have a regular expression (hence a ε-NFA hence
a DFA by the subset construction)

Not obvious how to build directly this DFA
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Closure under Homomorphisms

Theorem: If L ⊆ Θ∗ is regular then h−1(L) is regular

Proof: Let A = (Q,Θ, δ, q0, F ) DFA for L we define A′ = (Q,Σ, δ′, q0, F )
with

δ′(q, a) = q.h(a)

A′ is a DFA of alphabet Σ, we prove then that L(A′) = h−1(L)

Lemma: We have for all x δ̂′(q, x) = q.h(x)

The proof uses the fact that q.(uv) = (q.u).v
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Closure under Homomorphisms

Notice that the proof would be difficult to do directly at the level of regular
expressions. For instance if

If h(a) = ε, h(b) = b, h(c) = ε what is h−1({ε})?

If h(a) = abb, h(b) = c, h(c) = c we have h(ab) ∈ {ab}{bc} but we have
h−1({ab}) = h−1({bc}) = ∅
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Closure under Homomorphisms

Can we prove this using Myhill-Nerode’s Theorem?

We have to compute u \ h−1(L)

v is in this set iff h(uv) = h(u)h(v) is in L

Hence u \ h−1(L) is the same as h−1(h(u) \ L)

Hence if L is regular there are only a finite number of possible values for
u \ h−1(L) and hence h−1(L) is regular
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Closure under Union

We have a direct construction via ε-NFA or variation on the product of DFA

It is interesting to notice that we have also a proof via Myhill-Nerode’s
Theorem

u \ (L1 ∪ L2) = (u \ L1) ∪ (u \ L2)

If L1, L2 are regular, we have only a finite number of possible values for
u \ (L1 ∪ L2), hence L1 ∪ L2 is regular
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Closure under Intersection, Difference, Complement

The same argument works for showing that regular languages are closed under
intersection, complement and differences

u \ (L1 ∩ L2) = (u \ L1) ∩ (u \ L2)

u \ L′ = (u \ L)′

Application: we have another way to compute 0′ We have also direct
constructions on DFAs

48



Regular Expressions [49]

Closure under Prefix

If L ⊆ Σ∗ is a language we write Pre(L) the set

{u ∈ Σ∗ | ∃v. uv ∈ L}

This is the set of prefixes of words that are in L

We present two proofs that Pre(L) is regular if L is regular

One proof using Myhill-Nerode’s Theorem, and one proof using a DFA for L
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Closure under Prefix

If (Q,Σ, δ, q0, F ) is a DFA for L we define a DFA for Pre(L) by taking

A′ = (Q,Σ, δ, q0, F ′)

where F ′ = {q ∈ Q | ∃z. δ̂(q, z) ∈ F}

We then show that x in L(A′) iff δ̂(q0, x) ∈ F ′ iff there exists z such that
(q0.x).z = q0.(xz) in F iff xz in Pre(L(A)) = Pre(L)
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Closure under Prefix

We have also a proof by using regular expression: given a regular expression
E we define p(E) such that L(p(E)) = Pre(L(E))

p(a) = ε+ a p(ε) = ε p(∅) = ∅

p(E1E2) = p(E1) + E1p(E2)

p(E1 + E2) = p(E1) + p(E2)

p(E∗) = E∗p(E) ‘
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Minimal automaton

If L is regular, we have seen that there is a DFA which recognizes L which
has for set of states the set S of abstract states of L

S is the set of all u \ L

u \ L goes to (ua) \ L

This is the minimal automaton which recognizes L
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Minimal automaton

Let A = (Q,Σ, δ, q0, F ) be another DFA which recognizes L

We show that Q has more elements than S

Indeed we know that u \ L is (Q,Σ, δ, q0.u, F )

Thus S has less elements than there are accessible states in Q
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Minimal automaton

For example, for L = L((0 + 1)∗01(0 + 1)∗) we have computed three abstract
states

L, 0 \ L, 01 \ L = Σ∗

Hence any automaton which recognizes L has at least three states
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Minimal automaton

Let Q′ be the set of states accessible from q0

If q0.u = q0.v I claim that we have u \ L = v \ L

Indeed this is the set recognized by (Q,Σ, δ, q0.u, F ) = (Q,Σ, δ, q0.v, F )

This means that we have a surjective map ψ : Q′ → S, q0.u 7−→ u \ L

Furthermore ψ(q.a) = a \ ψ(q)

This shows that connection between any automaton recognizing L and the
minimal automaton of abstract states
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Minimal automaton

Next time, I will present an algorithm for computing the minimal automaton
for L given a DFA for L
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Accessible states

A = (Q,Σ, δ, q0, F ) is a DFA

A state q ∈ Q is accessible iff there exists x ∈ Σ∗ such that q = q0.x

Let Q0 be the set of accessible states, Q0 = {q0.x | x ∈ Σ∗}

Theorem: We have q.a ∈ Q0 if q ∈ Q0 and q0 ∈ Q0. Hence we can consider
the automaton A0 = (Q0,Σ, δ, q0, F ∩Q0). We have L(A) = L(A0)

In particular L(A) = ∅ if F ∩Q0 = ∅.
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Accessible states

Actually we have L(A) = ∅ iff F ∩Q0 = ∅ since if q.x ∈ F then q.x ∈ F ∩Q0

Implementation in a functional language: we consider automata on a finite
collection of characters given by a list cs

An automaton is given by a parameter type a with a transition function and
an initial state
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Accessible states

import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]

closure cs delta qs =
let qs’ = qs >>= (\ q -> map (delta q) cs)
in if isSup qs qs’ then qs

else closure cs delta (union qs qs’)
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Accessible states

accessible :: Eq a => [Char] -> (a -> Char -> a) -> a -> [a]

accessible cs delta q = closure cs delta [q]

-- test emptyness on an automaton

notEmpty :: Eq a => ([Char],a-> Char -> a,a,a->Bool) -> Bool

notEmpty (cs,delta,q0,final) = or (map final (accessible cs delta q0))
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Accessible states

data Q = A | B | C | D | E
deriving (Eq,Show)

delta A ’0’ = A delta A ’1’ = B
delta B ’0’ = A delta B ’1’ = B
delta C _ = D
delta D ’0’ = E delta D ’1’ = C
delta E ’0’ = D delta E ’1’ = C

as = accessible "01" delta A

test = notEmpty ("01",delta,A,(==) C)

61



Regular Expressions [62]

Accessible states

Optimisation

import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

Closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]
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Accessible states

closure cs delta qs = clos ([],qs)
where
clos (qs1,qs2) =
if qs2 == [] then qs1
else let qs = union qs1 qs2

qs’ = qs2 >>= (\ q -> map (delta q) cs)
qs’’ = filter (\ q -> not (isIn qs q)) qs’

in clos (qs,qs’’)
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