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Sheaf Cohomology and Univalent Type Theory

Sheaf cohomology

Cohomology groups: invariants attached to mathematical structures

Ex.: Brauer group (1927), commutative group associated to any field

Extension groups: Schreier (1926), group acting on an abelian group

There, 2nd cohomology group (Teichmüller 1940, 3rd cohomology group)

Leray (1940s): sheaf cohomology over topological spaces
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Sheaf cohomology

Grothendieck unified these notions with the concept of site and topos

E.g. the Brauer group is a 2nd cohomology group for the small étale topos
over a field and Milnor’s conjecture gives a description in term of generators and
relations for cohomology groups of this space with coefficient in Z/2Z

This relied on the notion of injective resolutions

Grothendieck alluded in an alternative approach using n-stacks

We try to show that the language of dependent type theory is (surprisingly)
well adapted to describe what is going on
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Topos Theory

It [the category of sheaves] functions as a kind of ”superstructure of
measurement”, called the ”Category of Sheaves” (over the given space), which
henceforth shall be taken to incoorporate all that is most essential about that
space. This is in all respects a lawful procedure, (in terms of ”mathematical
common sense”) because it turns out that one can ”reconstitute” in all respects,
the topological space by means of the associated ”category of sheaves” (or
”arsenal” of measuring instruments)

Consider the set formed by all sheaves over a (given) topological space or,
if you like, the formidable arsenal of all the ”rulers” that can be used in taking
measurements on it.
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Stacks

On the ”non-commutative” side, we have a good foundation work with
Giraud’s thesis, but this is limited to a formalism of 1-stacks, lending itself to
a direct geometric expression of objects of cohomology up to dimension 2 only.
The question of developing a cohomological formalism not commutative in terms
of n-stacks, imperiously suggested by numerous examples, encountered serious
conceptual difficulties.

Considering the disaffection or, to put it better, the general contempt, into
which have fallen the questions of foundations in a certain world, these difficulties
have never been addressed before I started to look at them a little over two years
ago

Grothendieck in “Récoltes et Semailles”
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Sheaf models and Higher Order Logic

Compare with

“The rising sea, Foundations of Algebraic Geometry”

Ravi Vakil

Our general approach will be as follows. I will try to tell you what you need
to know, and no more. (This I promise: if I use the word “topoi”, you can shoot
me.)

A topos is a scary name for a category of sheaves of sets on a Grothendieck
topology.
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Univalent Foundations

Thus a proper language for formalization of mathematics should allow one
to directly build and study groupoids of various levels and structures on them.
A major advantage of this point of view is that unlike ∞-categories, which
can be defined in many substantially different ways the world of ∞-groupoids
is determined by Grothendieck correspondence (see [3]) , which asserts that
∞-groupoids are “the same” as homotopy types.

Combining this correspondence with the previous considerations we come to
the view that not only homotopy theory but the whole of mathematics is the
study of structures on homotopy types.

Voevodsky “An experimental library of formalized mathematics based on
univalent foundations”
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Cohomology and Univalent Foundations

H1 groupoid

H2 2-groupoid
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Sheaf models and Higher Order Logic

A sheaf F on a topological space is a presheaf, i.e. a collection of sets
F (U) with restriction operation F (U)→ F (V ) for V ⊆ U , satisfying a patching
condition

If we have an open covering Ui of U and local elements ai in F (Ui) then
we can patch these elements to a global element provided these elements are
compatible, i.e. ai and aj coincide when restricted to Ui ∩ Uj

E.g. F (U) is the set of continuous sections of a projection map p : E → B
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Möbius strip

Only local and no global sections over the circle
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Helix

Only local and no global sections over the circle
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Sheaf models

Grothendieck realized that the collection of “all” sheaves over a space has
strong similarity with the collection of “all” sets

We can define the product A×B of two sheaves, or the function space BA

We have a special sheaf Ω which plays the role of space of truth values

(A truth value on a space X is defined by an open inclusion U → X)

In general, the law of Excluded Middle may not be valid!

The Axiom of Choice may not be valid as well
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Sheaf models

All this was developped in the 60s

Kripke was then, independently, designing a new semantics for intuitionistic
logic, inspired from previous work on a semantics of modal logic

(Already Beth in the 50s had developped a related semantics)

And Cohen was inventing the notion of forcing to show the independence of
the continuum hypothesis
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Sheaf models and Higher Order Logic

Dana Scott, reformulating the notion of forcing using Boolean valued model,
realized the connection between forcing not only with Kripke models, but also
with the work of Grothendieck’s school

Unexpected connection between algebraic geometry and intuitionism

He also realized that the formalism of higher logic/Church’s simple type theory
is remarkably well adapted to describe what is going on in sheaf models

In particular, though the Axiom of Choice may not be valid, the Axiom of
“Unique” Choice is always satisfied
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Sheaf models and Higher Order Logic

A Formulation of the Simple Theory of Types, JSL, 1940

Church’s system had 8 basic axioms and then

Axiom 9 “unique” choice ψ(x) ∧ (∀y ψ(y)→ y = x)→ ψ(ι(ψ))

Can be rewritten as (∃!xψ(x))→ ψ(ι(ψ))

Axiom 10 function extensionality

Axiom 11 global choice ψ(x)→ ψ(ε(ψ))

Can be rewritten as (∃xψ(x))→ ψ(ε(ψ))
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Sheaf models and Higher Order Logic

The global choice operation ε comes from Hilbert 1922

The definite description operation ι comes from Peano and Russell provides
later an analysis in On Denoting, MIND, 1905

This analysis is still fundamental in set theory, where a function is defined as
a functional relation

Dependent Type Theory provides a new analysis of this operation!
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Sheaf models and Higher Order Logic

In a sheaf model ∃x:Fψ(x) means that we have locally ai in F (Ui) satisfying
ψ(ai)

In general the elements ai may not be compatible and it may not be possible
to patch them together to a global element satisfying ψ

But this is possible if we have unique existence: the elements ai should in this
case be compatible

So unique choice is always valid in sheaf models, while global choice may fail
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Sheaf models

We can define ‖F‖ propositional truncation, image of F → 1

This is a proposition/subsingleton expressing that F is inhabited

We can have ‖F‖ without having any global element of F !

For the helix H we have 1 = ‖H‖ but there is no global element 1→ H

This operation ‖F‖ is a monad, we have F → ‖F‖

If G is a subsingleton then we have ‖F‖ → G if we have F → G
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New notions: Torsor

G-torsor: “twisted” notion of a given group G

A sheaf T with a G-action which is locally isomorphic to G

But it may fail to have a global element

The helix defines a non trivial Z-torsor

The Möbius strip defines a non trivial Z/2Z-torsor

We have ‖T‖ but we may not have any global inhabitant

If T has a global inhabitant, it is isomorphic to G

18



Sheaf Cohomology and Univalent Type Theory

Sheaf models

Recall that Grothendieck intended to use the collection of all sheaves of sets
as a way to “measure” a space

How to distinguish the unit interval and the circle?

For the unit interval all Z/2Z-torsors are trivial

But for the circle we can find a non trivial Z/2Z-torsor, a “twisted” version
of Z/2Z
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Torsors

For a given group G in a topos, we can look at the collection of all G-torsors

This is actually one way to define the first cohomology group of a space for a
given sheaf of groups G

H1(X,G) can be defined as the set of all G-torsors, up to isomorphisms

H1([0, 1],Z) = 0 and H1(S1,Z) = Z

H1(S1,Z/2Z) = Z/2Z

There are, up to isomorphisms, only two Z/2Z-torsors over S1
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Torsors

Any map between two G-torsors is an isomorphism

Locally T (Ui)→ T ′(Ui) has some unique inverse

Hence we can patch these inverses to build a global inverse T ′ → T

So, the collection of G-torsors forms a groupoid BG

There is a special objet TG which is G itself, with the canonical G action

TG is the “trivial” G-torsor
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Torsors

The group Aut(TG) of automorphisms of TG is exactly G

If we have a morphism f : G→ H we can build a functor BG→ BH sending
TG to TH and which induces f via Aut(TG)→ Aut(TH)

If T is a G-torsor and f : G → H how to define the corresponding H-torsor
f(T )?

22



Sheaf Cohomology and Univalent Type Theory

Torsors

Deligne provides a two lines proof of this fact

The key idea is to define f(T ) together with a map α : T → f(T ) such that
α(t · x) = α(t) · f(x)

This pair f(T ), α is determined up to unique isomorphism

Also this pair exists locally

It is then possible to patch together these local data, because they are uniquely
determined

(Technically, the patching is a little more subtle than patching for a sheaf,
this is an example of patching for stacks)
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Torsors

We follow here a paper of Deligne Le symbole modéré, 1991, 5.2, 5.3

Deligne presents the argument as if it is clear that the principle of unique
choice holds, where unique means unique up to unique isomorphism
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Internal language

Can we present these arguments in a purely logical way?

We are going to compare the proofs of

-any morphism of G-torsors α : T → T ′ is an isomorphism

-any group morphism f : G→ H can be lifted to a functor BG→ BH
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Internal language

If α : T → T ′ is a map of G-torsors we prove

ψ := ∃!β:T ′→T (β ◦ α = idT ∧ α ◦ β = idT ′)

We can consider the subsingleton {0 | ψ}

To prove ψ is the same as to provide an element 1→ {0 | ψ}

If we have T → {0 | ψ} then we have ‖T‖ → {0 | ψ}

So, for proving a proposition ψ we can assume T inhabited!
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Internal language

If α : T → T ′ is a map of G-torsors we prove

ψ := ∃!β:T ′→T (β ◦ α = idT ∧ α ◦ β = idT ′)

The proof in the case where T (and then also T ′) is inhabited is trivial

(In this case we have isomorphisms G→ T and G→ T ′)

We can then apply unique choice to get the inverse of the map α
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Internal language

-any map f : G→ H can be lifted to a map BG→ BH

The argument cannot directly be represented as such neither in Simple Type
Theory nor in Set Theory

It uses the fact that f(T ), α is determined up to unique isomorphism

We need a new operation of definite description, which does not exist neither
in Church’s Simple Type Theory nor in Set Theory

But it is definable in dependent type theory!
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Dependent Type Theory

The crucial points will be here that

-we have a universe U or types of “small” types

-if A is a type then and a0, a1 are elements of A then we can form a new
type a0 =A a1 that is the type of “equalities” or possible “identifications” of the
elements a0 and a1

In general, a0 =A a1, itself being a type, may have several different elements

Univalence captures what should be the intended notion of identification

For U , it should be equivalence (natural generalisation of isomorphism)
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Dependent Type Theory

Stratification of types

“Propositions” are identified with subsingleton

proposition
∏
a0:A

∏
a1:A

a0 =A a1

0-type or set
∏
a0:A

∏
a1:A

isProp (a0 =A a1)

1-type of groupoid
∏
a0:A

∏
a1:A

isSet (a0 =A a1)

Contractible type A× isProp A which can be expressed as
∑
a:A

∏
x:A a =A x

All these types are themselves propositions!
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Dependent Type Theory

For any type A we can build an element of the type isProp (isContr A)

That is, we can show that any two elements of isContr A are equal

Quite remarkable that we can prove this fact from purely logical principles!
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Dependent Type Theory

We need ‖A‖ propositional truncation

An element of ‖A‖ intuitively corresponds to local existence

isProp ‖A‖ and we have

isProp ψ ∧ (A→ ψ) → (‖A‖ → ψ)
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Dependent Type Theory

We can define what is a group G in a given universe U

It has to be a set/0-type with a binary operation satisfying the usual laws

We can form the collection of all groups (in a given universe) and prove that
it is a 1-type/groupoid (using univalence)
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Torsors in Dependent Type Theory

If G is a group we can then define the type BG of G-torsors

BG :=
∑
T :U

‖T‖ ×
∑

a:T×G→T

ψ(T, a)

where ψ(T, a) is a proposition/type expresssing that a is a G-action such that
T ×G→ T × T is a bijection

One can prove in type theory that BG is a groupoid
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Torsors in Dependent Type Theory

Deligne’s argument can then be expressed directly in type theory

Given f : G→ H group morphism and T : BG then we can look at

S(T ) :=
∑
T ′:BH

∑
α:T→T ′

∏
t:T

∏
x:G

α(t · x) = α(t) · f(x)

We show that this type is contractible following closely Deligne’s argument

So this type, which looks like a type of structure, is actually a singleton type!
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Torsors in Dependent Type Theory

Indeed, to be contractible is a proposition, so ψ = isContr S(T ) is a proposition

Hence for proving that a given type S(T ), where T is a G-torsor, is contractible
we can as well assume that T has some inhabitant

This is because T → ψ is the same as ‖T‖ → ψ since ψ is a proposition
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Torsors in Dependent Type Theory

We are then in the case where T is the trivial G-torsor, and in this case the
fact that

S(T ) :=
∑
T ′:BH

∑
α:T→T ′

∏
t:T

∏
x:G

α(t · x) = α(t) · f(x)

is contractible, i.e. is inhabited and is a proposition, follows from univalence

In Deligne’s argument, this corresponds to the fact that any two elements
T ′1, α1 and T ′2, α2 are isomorphic, with a unique isomorphism
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Torsors in Dependent Type Theory

So, we were able to represent an argument which uses the axiom of description
where unique means now unique up to unique isomorphism
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Torsors in Dependent Type Theory

Something similar holds for the result stating that for a ring R the groupoid
of locally free modules of rank 1 (the Picard group of R) and the groupoid of
R×-torsors are canonically equivalent

The proof in the Stacks project Lemma 21.6.1 uses an “explicit” construction
with a quotient
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Torsors in Dependent Type Theory

In type theory, this can be seen as a special case of the following result

Mod(R) is the groupoid of R-modules and R1 the free R-module of rank 1
so that R1 = R1 is R×

TR =
∑
M :Mod(R)

∥∥M = R1
∥∥ is the type of locally free modules of rank 1

Lemma: TR → BR× M 7→ (M = R1) is an equivalence
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Torsors in Dependent Type Theory

Lemma: If A is a groupoid and a : A then the canonical map

Ta → B(a = a) x 7→ (x = a)

is an equivalence

The proof of this follows the same kind of reasoning: we have to show that
for any (a = a)-torsor T the fiber T =

∑
(x,p):Ta

(x = a) is contractible

It is enough to show it when T of the trivial torsor a = a and this is proved
directly

This is because to be contractible is a proposition and any torsor is merely
equal to the trivial torsor a = a.
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Torsors in Dependent Type Theory

Once again, Deligne presents such an argument closer to the one of type
theory in the 1977 notes

“Étale cohomology: starting points”

(first chapter of SGA 4 1/2)
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Torsors in Dependent Type Theory

Type theoretically, this story has a nice formulation

The groupoids of the form BG, tG can be characterised as exactly pointed
0-connected 1-types

A 0-connected means ‖A‖ ×
∏
a0:A

∏
a1:A
‖a0 =A a1‖
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Torsors in Dependent Type Theory

Let K1(U) be the type of pointed 0-connected 1-types

Let Grp(U) the collection of groups, the same argument as before shows that
K1(U)→ Grp(U) is fully faithful

And it is essentially surjective since Ω(BG, tG) as a group is G

So this is an equivalence

The type K1(U) is equivalent to the type of groups in U !
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Torsors in Dependent Type Theory

Thus, we can present group theory by working with pointed 0-connected
1-types and pointed maps

This is the basis of the Symmetry book

https://unimath.github.io/SymmetryBook/book.pdf

M. Bezem, U. Buchholtz, P. Cagne, B. I. Dundas, D. R. Grayson
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Connected types

More generally, the same argument gives a (new) proof of the following result.

Theorem: If A is n-connected and B (2n)-type then for a in A and b in B

((A, a)→• (B, b))→ (Ω(A, a)→• Ω(B, b))

is an equivalence

(David Wärn, formalised in Agda by Louise Leclerc)
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Dependent Type Theory

We only make use of the two Lemmas

Lemma 1: If A n-connected and B n-type then the canonical map B → BA

is an equivalence

Lemma 2: If A n-connected with a : A and P (x) family of (n+ k+ 1)-types
over A then all fibers of the evaluation map (

∏
x:AP (x))→ P (a) are k-types

Particular case: if k = −2 then the fibers are contractible

Both n-connected and n-type are defined by induction on n
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Application 1

Let Kn(U) be the type of pointed (n− 1)-connected n-types with n > 0

Let U• be the type of pointed types
∑
X:U X

We have the loop space function Ω : U• → U•

This defines a map Ω : Kn(U)→ Kn−1(U)

It follows from the Theorem that this map is fully faithfull
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Application 1

We can then show that

Ω : Kn(U)→ Kn−1(U)

is an equivalence for n > 2

Furthermore all these types are actually equivalent to the type Ab(U) of
abelian groups

All these types define univalent categories

For abelian groups, group maps

For Kn(U), pointed maps
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Categories in Dependent Type Theory

Each type Km(U) is equivalent to the type Ab(U) (and all are 1-types)

Each category Km(U) is equivalent to the category Ab(U) of abelian groups

(All this is effective if we have an effective model of type theory)

For L abelian group we write K(L, n) the corresponding object in Km(U)

This is the nth Eilenberg-MacLane space associated to L
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Application 2: Universal characterisation of K(L, n)

To give a map K(L, n) →• (A, a) for any n-type A is equivalent to give a
map Ω(K(L, n))→• Ω(A, a), i.e. K(L, n− 1)→ Ω(A, a)

And then K(L, n− 2)→• Ω2(A, a), and so on, until we get L→ Ωn(A, a)

We thus get that to give a pointed map K(L, n)→• (A, a) is the same as to
give a group morphism L→ Ωn(A, a)
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Application 2

The n-sphere (Sn, b) has a similar universal characterisation: to give a
map (Sn, b) →• (A, a) for any pointed n-type is the same as to give a map
Z→ Ωn(A, a)

K(Z, n) satisfies the same universal property, but for A n-type

It then follows that K(Z, n) is the nth truncation of Sn

Hence πk(Sn, b) = 0 if k < n and πn(Sn, b) = Z!
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Comparison with other approaches

The proof in the HoTT book uses Freudenthal Suspension Theorem (the
original proof by G. Brunerie and D. Licata uses the decode-encode method)

Actually, this was used to define K(Z, n) as the nth truncation of Sn
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Short exact sequence

We thus get another presentation of the category of Abelian groups

What happens to the notion of short exact sequence?

How is it expressed in Kn(U)?

A sequence (A, a)→• (B, b)→• (C, c) corresponds to a short exact sequence
if, and only if, it is a fibration sequence
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Short exact sequence

If L → M → N is a short exact sequence of abelian groups we get the
fibration sequence K(L, n)→• K(M,n)→• K(N,n)

We can then obtain the long fibration sequence

. . .K(L, n− 1)→• K(M,n− 1)→• K(N,n− 1)

→• K(L, n)→• K(M,n)→• K(N,n)

This can be done for any n
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Sheaf models

So far, we have shown how to use the language of dependent type theory to
express what should happen in a sheaf model

How to model types as stacks over a site?

All (∞, 1)-toposes have strict univalent universes
M. Shulman

Constructive sheaf models of type theory
Th. C., F. Ruch and Ch. Sattler
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Sheaf models

The second paper is developped in a constructive meta theory

It is done in a relatively weak meta theory

Proof theoretic strength: dependent type theory with hierarchy of universes

Weaker than second-order arithmetic

The notion of universes in an intuitionistic setting is surprisingly weak (P.
Martin-Löf, P. Hancock, P. Aczel, E. Palmgren, E. Griffor, M. Rathjen)
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How to recover cohomology groups?

If L is a sheaf of abelian group over a space X

Compute K(L, n) in the sheaf model over X

Apply global section Γ(K(L, n)): this is a global n-type

π0(Γ(K(L, n)) is Hn(X,L)!

This is the special case X → 1 and can be generalised to X → Y
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How to recover cohomology groups

If we apply global section, and then π0 to the sequence

. . .K(L, n− 1)→• K(M,n− 1)→• K(N,n− 1)

→• K(L, n)→• K(M,n)→• K(N,n) . . .

we get the long exact sequence

. . . Hn−1(X,L)→ Hn−1(X,M)→ Hn−1(X,N)

→ Hn(X,L)→ Hn(X,M)→ Hn(X,N) . . .
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Summary

We have different presentations of the category of abelian groups (in a given
universe)

The elements are pointed (n− 1)-connected n-types

This is the method that Grothendieck alluded to in a letter to Larry Breen
1975 where we don’t need injective resolutions, and which can be represented
faithfully in a weak meta theory

The uniformity and elegance of this picture is well expressed using the language
of dependent types
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Summary

If we apply this to the sheaf/stack model of dependent types, we get a
definition of cohomology groups of sheaves of abelian group, with rather direct
proofs of the basic properties (e.g. long exact sequence of cohomology groups
associated to a short exact sequence)

This can be formally represented in dependent type theory, and the formal
proofs are quite close to the informal proofs
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Example

Let F be a field and X be the étale site of finite separable extensions of F

This is the small étale topos over F

This site is quite natural as a constructive representation of the separable
closure of F

See Dynamic Newton-Puiseux Theorem, Th. C. and B. Mannaa, 2013

We have a sheaf L on X which represents the separable closure of F , and the
sheaf Gm which represents the invertible elements of L
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Example

We can prove constructively that H1(X,Gm) is trivial, by showing that any
global Gm-torsor is trivial

We expect to be able to prove constructively that H2(X,Gm) is the Brauer
group of F , i.e. the abelian group of algebras that are locally matrix algebra,
modulo Morita equivalence

We can start from a ring R and define the étale topos over R

A R-algebra which is locally a matrix algebra is called an Azumaya algebra

We expect to be able to prove constructively that the torsion part of
H2(X,Gm) is the Brauer group of R
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Milnor’s conjecture

We can formulate Milnor’s conjecture in a weak meta theory: the canonical
map KM

n (F )/2→ Hn(X,Z/2Z) is an isomorphism

Milnor’s conjecture is about the Eilenberg-MacLane space of Z/2Z in this
topos
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