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From Type Theory to Homotopy Theory

An example of a model

◻ category of finite nonempty posets

The objects are denoted by X,Y, . . .

This category contains the object [n], linear poset with n + 1 elements

We take the interval I to be Y o([1])

Since ◻ has finite product, I is tiny

(Over ∆, the interval Y o([1]) is not tiny)
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From Type Theory to Homotopy Theory

An example of a model

Any subset S of X defines a sieve on X: sieve of maps having image inside S

We define Φ(X) to be the set of sieves that are finite sup of such sieves

An element of Φ(X) is determined by a finite collection S1, . . . , Sn and sieve
of maps having image inside one Si

We can have n = 0 which corresponds to the empty sieve

Then Φ is a strict subpresheaf of Ω: the sieve determined by {0,1} → [1] is
not in Φ([1])
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Quillen Model Structures

The associated Quillen Model Structure satisfies the following properties

-Frobenius (and right properness: trivial cofibrations and equivalences are
preserved by pullbacks along fibrations)

-Equivalence Extension Property

-Fibration Extension Property (a.k.a. “Joyal’s trick”)
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Example (due to Christian Sattler)

Let A = Y o({0,1}) then the diagonal map A→ AI is an isomorphism

Hence A is such that any family of types B over A is fibrant

A has two global points 1→ A and we have the two maps δ0, δ1 ∶ A→ Φ

In particular B = λa∶AT (δ0a) + T (δ1a) is fibrant and is a family of (strict)
propositions

(T (ψ) is the subsingleton corresponding to ψ)

For any global points a ∶ 1→ A we have that Ba is the unit type

But B has no global section
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Example (due to Christian Sattler)

We have an example of a fibration B → A (family of propositions)

Any pullback along 1→ A is contractible

B → A has no section

It follows that the Quillen Model Structure on presheaves over ◻ cannot be
equivalent to spaces!

We are going to build a suitable relativization of this model which will be
equivalent to spaces
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Question

Mike Shulman The Derivator of Setoids, 2021

Can homotopy theory be developed in constructive mathematics, or even in
ZF set theory without the axiom of choice?
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Question

In particular, there are now at least two constructive homotopy theories -
the aforementioned simplicial sets and the equivariant cartesian cubical sets of
[ACC+21] - that can classically be shown to present the homotopy theory of
spaces. However, it is not known whether they are constructively equivalent to
each other. Thus one may naturally wonder: if they are not equivalent, which
is the “correct” constructive homotopy theory of spaces? Or, perhaps, are they
both “incorrect”? What does “correct” even mean?
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Some troubling points

While it is difficult to formulate what does “correct” even mean, one can list
some trouble points that have appeared while working with these models from a
constructive point of view
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Some troubling points

(1) Like for the groupoid model, one would expect countable choice to hold
in these models, but this does not seem to be the case

(2) Related to the last point, one would expect that propositional truncation
can be defined like in the setoid model/Bishop notion of set, but this is not the
case

(3) Some of these models validates the negation of excluded-middle!

(4) Too many models!
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Some troubling points

It is possible to define a modified form of Model Structure on simplicial
sets with decidable degeneracies (work of Simon Henry) and this is related to
a previous attempt of defining a semisimplicial model of type theory (work with
Bruno Barras and Simon Huber)

However, we don’t seem to get a model of dependent type theory in this way

We can interpret a weak form of dependent products, and it does not seem
possible to “strictify” the model
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A positive point

There has been however some positive points, e.g. the models are developped
in weak metatheory

One most important positive point may be the following

It is direct to define presheaf models of dependent type theory with univalence

If we have a model over a base category ◻ and we want to define a presheaf
model over a category C we reproduce the construction of the model with the
base category C ×◻
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A positive point

Such a simple construction of general presheaf models cannot be done if one
justifies univalence using classical logic
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A positive point

It is then possible to define sheaf models by relativization

This is the technique of forcing: we force a family of propositions pr, r ∶X to
be true by relativizing the model to types A such that all diagonal maps A→ Apr

are equivalence

This defines a property C ∶ Un → Un of A
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A positive point

We have

ΠA∶UnΠB∶A→Un(Πa∶AC(B a))→ C(Π A B)

ΠA∶UnΠB∶A→UnC(A)→ (Πa∶AC(B a))→ C(Σ A B)

C(ΣX ∶UnC(X))

Hence we get a new model of univalence by relativization
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Left exact modalities

This also works for data types and higher inductive types

We add new constructors, e.g. N will also have constructors

0 ∶ N

S ∶ N

patch ∶ Πr∶XNpr → N

linv ∶ Πn∶NPathN n (patch (δ n)) with δ n z = n

This forces N to be such that δ ∶ N → Npr is an equivalence
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Left exact modalities

This has been used to get, in a constructive metatheory, a model of Synthetic
Algebraic Geometry

The base category is the category of f.p. k-algebra for some fixed commutative
ring k

One has then the generic k-algebra R and one forces this ring to be local
using the Zariski topology

Here the family of propositions is inv(r1) ∨ ⋅ ⋅ ⋅ ∨ inv(rn) for any r1, . . . , rn
such that 1 = (r1, . . . , rn) in R
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A positive point

What is crucial is that A → Ap defines a strict left exact modality if p is a
proposition

There are however new kinds of strict left exact modalites that do not come
from propositions
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Descent data

In particular the notion of descent data can be seen to define a strict left exact
modality (closely connected to the cobar operation used by Mike Shulman in his
semantics in higher topos, but, in this setting, it defines a left exact modality)

DF (X) is the collection of family of points u(f0) in F (X0) for f0 ∶ X0 → X
and family of lines u(f0, f1) ∶ u(f0)f1 → u(f0f1) for f1 ∶ X1 → X0 and family of
triangles u(f0, f1, f2) for f2 ∶X2 →X1 and so on

One can show that this defines a strict left exact modality on any given
presheaf model
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Lex operation

We axiomatised what is going on in previous work with F. Ruch and Ch.
Sattler by the notion of lex operation

This is a strict pointed functor D, with a natural transformation ηA ∶ A→DA.
acting also on families; we extracted a necessary and sufficient condition for this
to define a left exact modality

ηDA and DηA ∶DA→D2A should be path equal and should be equivalence

By localisation, we get a (strict) model of dependent type theory with
univalence and higher inductive types
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Lex operation

A typical lex operation is exponentiation DA = AR for a fixed type R

We have D(Σx∶ABx) isomorphic to Σu∶DAΠr∶RB(ur) and we also have an
action on families

DfB ∶DA→ U if B ∶ A→ U

with (DfB)u = Πr∶RB(ur)

This lex operation is a left exact modality if R is a proposition

We have ηA ∶ A→ AR

And in this case, ηDA and DηA are path equal and are equivalences
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Descent data

If we relativize w.r.t. this descent data modality we get a new model of type
theory

We can look at the associated Quillen Model Structure

This becomes the injective model structure: a weak equivalence α ∶ A → B is
equivalence a map such that each maps αX ∶ A(X)→ B(X) are equivalences

This has been used by D. Licata and M. Weaver to get constructive models
of directed type theory

21



From Type Theory to Homotopy Theory

A new model

I will now describe a new insight (due to Christian Sattler) which seems to
provide a positive answer to Mike Shulman’s question

Can homotopy theory be developed in constructive mathematics, or even in
ZF set theory without the axiom of choice?

This uses the technique of relativization w.r.t. a left exact modality which is
not propositional
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∆ and ◻

(All I present from now on is due to Christian Sattler)

∆ is the category of finite nonempty linear posets

∆+ is the category of finite nonempty linear posets, with injective maps

◻ is the category of finite nonempty posets

This is the dual of the category of nondegenerate f.p. distributive lattices and
it corresponds to a version of cubical type theory having nice properties

∆+ →∆→◻
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∆+ and ◻

We have the inclusion ∆+ →◻

This defines a strict monad D on the presheaf model Ps(◻)

It is direct to check that this strict monad satisfies that ηDA and DηA are
path equal and are equivalences (we don’t even need A to be fibrant to build
such a path)

What is a little more subtle is that DA is fibrant if A is fibrant

Hence D is a strict left exact modality

By localisation a model of dependent type theory with univalence and higher
inductive types
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∆+ and ◻

The objects X,Y, . . . of ◻ are finite nonempty posets

In particular we have the linear poset [n] with n + 1 elements

∆ is a full subcategory, and ∆+ a subcategory

If A in Type(Γ) and ρ in Γ(X) then an element u of DA(X,ρ) is a
family u(f) ∶ A([n], ρf) for f ∶ [n] → X such that u(fg) = u(f)g whenever
g ∶ [m]→ [n] is stricly monotone

This allows arguments by induction on dimension, which is a key component
of the semisimplical set model
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∆+ and ◻

This relativized model does not have any of the troubling points we listed
above

(1) countable choice holds (even if it does not hold in the meta theory)

(2) propositional truncation can be defined as expected

(3) Whitehead principle holds: a map f ∶ X → Y is an equivalence iff π0(f)
bijection and all πn(f, x) are isomorphisms
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∆+ and ◻

(1) follows from the key property

Let A be a type over Γ which is a proposition, with A which is D-modal, then

any section on points can be extended to a global section
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Consequences for Cubical type theory

Syntactically, we work with contexts that contain a finite presentation of a
non degenerate distributive lattice, and we still have normalisation and decidable
type checking

All the syntactical operations (as long as we do not use reversal) are validated
by this semantics

Classical compatibility with excluded-middle and axiom of choice
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∆ and ◻

Christian Sattler also noticed that if we don’t relativize the presheaf model
Ps(◻) this model is not equivalent to spaces

Over the (representable) context Γ = x ∶ I, y ∶ I, x ∧ y = 0, x ∨ y = 1 we have
the family of strict proposition A = (x = 1) + (y = 1)

For any global point ρ ∶ 1→ Γ, the type Aρ is contractible

But A is not contractible Elem(Γ,A) is empty

This shows that Ps(◻) satisfies the negation of excluded-middle

(Note that DA is contractible as it should be)
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∆ and ◻

We obtain a Quillen Model Structure on Ps(◻), which not only corresponds
to spaces classically, but should also be well behaved constructively

This should provide a constructive explanation of homotopy types!

For instance, we can define the nerve of a category by taking N(C)(X) to
be the set of functors from X to C and we expect Quillen’s Theorems A and B
to be (constructively) valid in this setting
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