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We give an elementary and essentially self-contained proof1 that a reduced ring R is semi-
normal if and only if the canonical map Pic R → Pic R[X] is an isomorphism, a theorem due to
Swan [15], generalizing some previous results of Traverso [16]. By a simple modification of this
argument, we obtain a constructive proof, and hence an algorithm [12], associated to a classical
proof which is not so easy otherwise to access, since it requires a journey through [15, 16, 1] or,
in the domain case, through [14, 13, 2, 6, 7].

We recall [15] that R is seminormal if and only if if b2 = c3 then there exists a ∈ R such
that b = a3 and c = a2. This is a remarkably simple (and technically first-order) condition.
Similarly, as we will show in this note, the statement that the canonical map Pic R → Pic R[X]
is an isomorphism can also be formulated in an elementary way. Swan’s original definition
includes that R is reduced, but, as noticed by Costa [4], reduceness follows from seminormality:
if d2 = 0 then d2 = d3 = 0 and so there exists a ∈ R such that d = a2 = a3. We have then
d = aa2 = ad and so d = a(ad) = d2 = 0. Section 7 of Chapter VIII of [9] surveys the work on
commutative seminormal ring up to day.

1 General Lemmas

To any commutative ring R we can associate the group of projective modules of rank one, with
tensor product as group operation. This is the Picard group Pic R of the ring R. If R is an
integral domain then Pic R is isomorphic to the class group of R, group of invertible ideals in
the field of fraction of R, modulo the principal ideals. So this group generalizes to an arbitrary
ring the class group introduced originally by Kummer.

It is possible to give a more concrete description of this group. We can represent a finitely
generated projective module over R by a n× n idempotent matrix, considering the submodule
of Rn generated by the n column vectors of this matrix. If M and M ′ are two idempotent
matrices over R, not necessarily of the same size, we write M 'R M ′ to express that M and
M ′ represents isomorphic modules over R. If M represents a projective module of rank one,
M 'R 1 expresses that M represents a free module over R.

The first lemma gives a simple necessary and sufficient condition for a projection matrix of
rank one to represent a free module.

Lemma 1.1 Let M be a projection matrix of rank one over a ring A. We have M 'A 1 if and
only if there exist xi, yj ∈ A such that mij = xiyj . If we write x the column vector (xi) and y
the row vector (yj) this can be written as M = xy. Furthermore the column vector x and the
row vector y are uniquely defined up to a unit by these conditions: if we have another column

1The only non trivial result that we use is a basic theorem of Kronecker, proved in an elementary way in the
references [3, 5, 10].
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vector x′ and row vector y′ such that M = x′y′ then there exists a unit u of A such that x = ux′

and y′ = uy.

Proof. Assume M2 = M and M 'A 1. If I be the the module generated by the columns of
M then I is a projective module of rank 1. Let x be a column vector in An×1 that generates
the module I. There exists then a row vector y such that xy = M. Since M2 = M we have
(yx − 1)M = 0 and so 1 = yx. If we have also M = x′y′ then similarly y′x′ = 1. If we take
u = y′x and v = yx′ we have then uv = 1 and x = ux′, y′ = uy.

We let Pn be the n × n matrix pij with p11 = 1 and pij = 0 if i, j 6= 1, 1 and In the n × n
identity matrix. The next results are concerned with the following situation: we have a n × n
matrix M over a ring A[X], A reduced ring, such that M(0) = Pn and we are interested in the
case where M 'A[X] 1.

Lemma 1.2 If E is a reduced ring, and f, g ∈ E[X] are such that fg = 1 then f = f(0) and
g = g(0) in E[X].

Proof. We can assume f(0) = g(0) = 1. We write then f = 1 + a1X + . . . + amXm and
g = 1 + b1X + . . . + bnXn. It is then direct that we have bk

nam−k = 0 for k = 0, . . . ,m. In
particular bm

n = 0 and so bn = 0 since E is reduced. We obtain similarly bn−1 = 0, . . . , b1 = 0.

Corollary 1.3 Let E be an extension of the ring R which is reduced. Let M be a n × n
projection matrix over R[X] such that M(0) = Pn. Assume that fi, gj ∈ E[X] are such that
mij = figj and f1(0) = 1. If M 'R[X] 1 then fi, gj ∈ R[X].

Proof. By Lemma 1.1 there exists f ′i , g
′
j ∈ R[X] such that mij = f ′ig

′
j . We can assume f ′1(0) = 1.

By Lemma 1.1 there exists a unit u of E[X] such that fi = uf ′i and g′j = ugj . We have u(0) = 1
and since E is reduced, Lemma 1.2 shows u = u(0) = 1.

Lemma 1.4 Let R be a gcd domain [12] and M = (mij) is a projection matrix of rank one
such that m11 is regular then M 'R 1.

Proof. For this, we take f1 ∈ R to be a gcd of the first line m1j . We have then gj such that
gjf1 = m1j . Since m11 is regular, so is f1 and gj is uniquely defined by this equations. Since
M is of rank one we have m11mij = mi1m1j and so g1mij = mi1gj , so that g1 divides all mi1gj

and so divides their gcd, which is mi1. This determines uniquely fi such that g1fi = mi1 and it
follows from m11mij = mi1m1j that we have mij = figj .

Corollary 1.5 If K is a field, R = K[X1, . . . , Xn] and M is a n× n projection matrix of rank
one over R such that M(0) = Pn then M 'R 1.

Proof. We know that R is a gcd domain [12] and we can apply Lemma 1.4.

This result extends from the case of field to the case of reduced zero-dimensional (von
Neumann regular) rings, using that such a ring is isomorphic to the ring of global sections of a
sheaf of fields over a Stone space [8] (see also section 3.4.3 of [11]).

Corollary 1.6 If C is a reduced zero-dimensional ring, R = C[X1, . . . , Xn] and M = (mij) is
a n× n projection matrix of rank one over R such that M(0) = Pn then M 'R 1.
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Proof. Using Corollary 1.5 we can find a system of orthogonal idempotents pk and fk
i , gk

j ∈
C[X1, . . . , Xn] such that pkmij = pkf

k
i gk

j in C[X1, . . . , Xn] and Σpk = 1. We can then take
fi = Σpkf

k
i and gj = Σpkg

k
j , and we have mij = figj in C[X1, . . . , Xn].

Lemma 1.7 Let M = (mij) be a n × n projection matrix of rank one over A[X], A reduced
ring, such that M(0) = Pn and such that, for all a ∈ A, if M 'A[1/a][X] 1 then a = 0 in A. We
have 1 = 0 in A.

Proof. If A is not trivial, let p be a minimal prime of A and S its complement in A. Then AS

is a field and so, by Corollary 1.5, M 'AS [X] 1: we can find fi, gj ∈ AS [X] such that mij = figj

in AS [X]. There is then s ∈ S such that fi, gj ∈ A[1/s][X] and mij = figj in A[1/s][X], so that
M 'A[1/s][X] 1. This implies s = 0 which contradicts s ∈ S = A− p.

The formulation of the previous lemma may seem surprising. Another, classically equivalent,
formulation would be: if A is nontrivial reduced ring then there exists a non zero element a ∈ A
such that M represents a free module over A[1/a][X]. We give a constructive proof of Lemma
1.7 in Appendix 2.

Lemma 1.8 If A is a reduced ring then A has a reduced zero-dimensional (von Neumann
regular) extension.

Proof. There are different ways of building such extension. For instance, one may first show
how to extend A by adding a quasi-inverse a∗ to an element a ∈ A, for instance, by taking
A[a∗] = A[1/a]×A/

√
<a>. One then take the inductive limits of such extensions.

An alternative construction of A[a∗] is to take A[a∗] = A[1/a]×A/<a>⊥⊥ where I⊥ denotes
the annihilator ideal of I.

If A is an integral domain, we can take the fraction field of A. (This is indeed what we
obtain with the second construction.)

Lemma 1.9 Let M be a n× n projection matrix of rank one over A[X], A reduced ring, such
that M(0) = Pn. There exists a reduced extension C of A such that M 'C[X] 1.

Proof. This follows from Lemma 1.8 and Corollary 1.6.

2 Picard groups for seminormal rings

Lemma 2.1 Let A be seminormal and C be a reduced extension of A. The conductor

I = {r ∈ A | rC ⊆ A}

of C in A is an ideal radical of A and C

Proof. We prove first that if u ∈ C and u2 ∈ I then u ∈ A. This follows from u2 ∈ I ⊆ A and
u3 = u2u ∈ A. We have then a ∈ A such that a2 = u2, a3 = u3 and this implies (a − u)3 = 0
and since C is reduced, a = u and hence u ∈ A.

We now prove that u ∈ I which will prove that I is a radical ideal. For this, let c be an
element of C. We know u2c2 ∈ A and u3c3 = u2uc3 ∈ A since u2 ∈ I. Hence as previously, we
conclude uc ∈ A. This shows u ∈ I.
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Lemma 2.2 (key lemma) Let A be seminormal and M = (mij) be a n × n projection matrix
of rank one over A[X] such that M(0) = Pn. We assume that C is a finite reduced integral
extension of A generated by the coefficients of fi, gi ∈ C[X], 1 ≤ i ≤ n satisfying mij = figj

and f1(0) = 1. We have fi, gj ∈ A[X] and hence C = A.

Proof. Since A is seminormal, the conductor I = {r ∈ A | rC ⊆ A} of C in A is an ideal
radical of A and C by Lemma 2.1.

Since C is generated by the coefficients of fi and gj and they are all integral over A we
conclude from the fact that I is radical that we have also

I = {r ∈ A | rfi, rgj ∈ A[X]}

Indeed, if ru ∈ A for all coefficients u of fi and gj then we have rNu ∈ A for all u ∈ C for a big
enough N . Hence rN ∈ I and so r ∈ I.

To prove C = A, it is enough to show 1 ∈ I. For this we show that 1 = 0 in the ring A/I.
This follows from Lemma 1.7. Indeed if M represents a free module over (A/I)[1/a][X] then,
since (C/I)[1/a] is a reduced extension of (A/I)[1/a], we can apply Corollary 1.3 and conclude
that fi, gj ∈ (A/I)[1/a][X] so that a = 0 in A/I.

We notice that we don’t need to state that the coefficients of fi and gj are integral over
A, since this is implied by the other conditions. Indeed, if u is a coefficient of fi, it follows
from figj ∈ A[X] that ugj(0) is integral over A for all j. This is a consequence of Kronecker’s
theorem [3, 5, 10] that states that if P1P2 = Q in A[X] then any product u1u2, where ui is a
coefficient of Pi, is integral over the coefficients of Q. Since g1(0) = 1 this implies that u is
integral over A.

Lemma 2.3 If A is seminormal, and M is a n× n projection matrix of rank one of A[X] such
that M(0) = Pn then M 'A[X] 1.

Proof. This follows from Lemmas 1.9 and 2.2.

Theorem 2.4 If A is seminormal then the canonical map Pic A → Pic A[X] is an isomorphism.

Proof. We have to prove that if M is a projection matrix of rank one over A[X] such that
M(0) 'A 1, then M 'A[X] 1. By Lemma 1.1 we have a column vector x in An×1 and a row
vector y in A1×n such that xy = M(0) and 1 = yx. By adding a line and a column of 0 to the
matrix M , we can assume that M(0) is similar to a matrix Pn+1: indeed we have2(

0 0
0 xy

)
=

(
0 y
−x In − xy

) (
1 0
0 0

) (
0 −y
x In − xy

)
and

In+1 =
(

1 0
0 In

)
=

(
0 y
−x In − xy

) (
0 −y
x In − xy

)
In this way we reduce further the problem to the case where M(0) = Pn+1, and we can then

apply Lemma 2.3.

We notice also that the previous reasoning applies directly for A[X1, . . . , Xn]. Indeed, Kro-
necker’s theorem holds for polynomials in several variables as well: if P1P2 = Q ∈ A[X1, . . . , Xn]
then, any product u1u2 where ui is a coefficient of Pi, is integral over the coefficients of Q [5].

2These identities are due to Claude Quitté and allow for a self-contained argument.
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Theorem 2.5 If A is seminormal then the canonical map Pic A → Pic A[X1, . . . , Xn] is an
isomorphism.

As a very special case, we get a direct proof of Quillen-Suslin’s theorem for projective
modules of rank 1.

Conclusion

In general, if A is reduced and C is the integral extension of A generated by the coefficients
of fi and gj we can still conclude that there are finitely many constants a1, . . . , an ∈ C such
that a2

i+1, a
3
i+1 ∈ A[a1, . . . , ai] and C = A[a1, . . . , an]. Indeed, we consider the intermediary

extension B ⊆ C of elements that belong to such a chain of seminormal extensions, and we can
apply the reasoning of Lemma 2.2 to conclude that B = C. Since our argument is constructive,
it can be seen as an algorithm which computes such a1, . . . , an ∈ C from the coefficients of the
matrix M .

Appendix 1: Schanuel’s example

Conversely, one can show that if A is reduced and the canonical map Pic A → Pic A[X] is
an isomorphism, then A is seminormal. The construction is elementary and due to Schanuel.
Take b, c ∈ A, assume b3 = c2 and let B be a reduced extension of A with a ∈ B such that
b = a2, c = a3. We consider the polynomials in B[X]

f1 = 1 + aX, f2 = bX2, g1 = (1− aX)(1 + bX2), g2 = bX2

The matrix M = (figj) is a projection matrix of rank one in A[X] such that M(0) = P2.
If the canonical map Pic A → Pic A[X] is an isomorphism, this matrix should present a free

module over A[X]. By Corollary 1.3 this implies fi, gj ∈ A[X] and so we have a ∈ A.

Corollary A.1 If A is seminormal so is A[X].

Proof. This follows from Schanuel’s example and Theorem 2.5.

Appendix 2: A constructive proof of Lemma 1.7

Using Corollary 1.8 that we can find a reduced zero-dimensional extension C of A. By Corollary
1.6 we have M 'C[X] 1. We can assume that C = A[a∗1, . . . , a

∗
n] is generated by finitely many

quasi-inverse a∗1, . . . , a
∗
n of elements a1, . . . , an of A. We write ei = aia

∗
i so that ei is idempotent

and aiei = ai, a∗i ei = a∗i . To simplify we take n = 2 from now on, but our argument is general.
We can decompose C in 2n rings

C = e1e2C + e1(1− e2)C + (1− e1)e2C + (1− e1)(1− e2)C

with
e1e2C = e1e2A[a∗1, a

∗
2] ' A[1/a1, 1/a2] ' A[1/a1a2]

Indeed, since xei = 0 if and only if xai = 0, we have for u ∈ A[1/a1a2], ue1e2 = 0 if and only if
u = 0 in A[1/a1a2], and so, e1e2C is isomorphic to A[1/a1a2].
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Since M represents a free module over C[X] it represents also a free module over e1e2C[X]
and so over A[1/a1a2][X]. We deduce a1a2 = 0 in A. It follows that we have e1e2 = 0 and we
can simplify the decomposition of C:

C = e1C + e2C + (1− e1)(1− e2)C

Since e1C is isomorphic to A[1/a1], we have M 'A[1/a1][X] 1. This implies a1 = 0 in A. Similarly
we have a2 = 0 in A. It follows that C = A and M represents a free module over A[1/1][X] so
that 1 = 0 in A.

Appendix 3: Gilmer and Heitmann’s counter-example

In the reference [6] the authors present an example of a reduced ring R which is equal to its own
total quotient ring, but such that Pic R is not canonically isomorphic to Pic R[X]. This example
is the following. Let K be a field and let A be the K-algebra generated by x2, x3, y1, y2, . . . with
the relations x2yn = 0 and ynym = 0 for n 6= m. Each element in A can be written in a unique
way u = a+ p(x)+ t1(y1)+ . . .+ tn(yn) with a ∈ K, and p(0) = p′(0) = t1(0) = . . . = tn(0) = 0.
If v = b+q+s1 + . . .+sn we have uv = ab+bp+aq+pq+bt1 +as1 + t1s1 + . . .+btn +asn + tnsn

in A. In particular u2 = a2 + 2ap + p2 + 2at1 + t21 + . . . + 2atn + t2n and so u2 = 0 implies
u = 0. This shows that A is reduced. If a = 0 we have uym = 0 for m big enough and so u is
not regular. On the other hand if a 6= 0 then u is regular. We let S be the monoid of regular
elements u, i.e. elements such that a 6= 0, and R = AS . The ring R is reduced since A is.
By construction, R is equal to its own total quotient ring. On the other hand, we cannot have
u2 = x2v2, u3 = x3v3 in A with v ∈ S so the equations r2 = x2, r3 = x3 have no solution r ∈ R,
though (x2)3 = (x3)2, and so R is not seminormal.

We think that this example shows that what should be used instead of the total quotient
ring is a von Neumann regular extension of the ring, as in Lemma 1.8.
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