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Introduction

The goal of this paper is to analyse two remarkable notes by Stone [StoI, StoII]. Both de-
scribe a compact space in term of some algebra of functions over this space. This description
is intuitively in term of “observable” quantities. Indeed, one primary source of motivation of
these notes is in operator theory, where one considers an algebra generated by elements repre-
senting observable quantities. The approach of “formal” or “point-free” topology [Men, Joh]
has also the aim of describing a space not in term of “ideal” points, but in term of observable
notions. We have thus two different ways of describing a space without using points, and these
two ways are known classically to be equivalent, using representation theorems. A natural
question arises if the formal approach can be connected to Stone’s approach directly, without
relying on points (or non observable notions). We present here such a connection.

This paper is organised as follows. Corresponding to the first note of Stone, we associate to
a preordered ring R its real spectrum which is here defined as a distributive lattice Specr(R)
given by generators and relations. (In term of points, the points of Specr(R) are the prime
cones of R extending the given preorder [BCR].) If the ring satisfies some natural conditions
considered in Stone’s paper, we completely characterise the ordering of this lattice and we
show that it is a normal lattice [Joh, CaC], which means in term of points that any point is
contained in a unique maximal point1. We can then consider the maximal spectrum Max(R)
associated to it. There is a natural map from R to C(Max(R)) and we show constructively
that, in a suitable sense, this map preserves the norm. This is one of the main point of
Gelfand duality, which is proved non constructively in [Joh] and [BM1]2. We show in this
way that the main results in [Kri] have natural constructive proofs3. In particular, we obtain
constructive proofs of theorems such as Kadison-Dubois [BS] by reading Krivine’s arguments
in a point-free setting. We then give a similar treatment for the second note of Stone. As a
typical example Segal’s notion of integration algebra [Seg] is expressed in our framework. We
show then that in some cases, we can compute effectively the points of the maximal spectrum,
like in [Bis]. Finally we explain what happens to the case of f -rings, a structure that combines
the two structures considered by Stone.

Most results in this paper are elementary results about distributive lattices given by
generators and relations. We think that this provides an interesting alternative approach
to the spectral theorem, even in a classical framework, and we hope that this illustrates

1In term of lattices, it means that if a ∨ b = 1 then we can find x, y such that a ∨ x = 1, b ∨ y = 1 and
x ∧ y = 0.

2Our work is in the same spirit of, and directly inspired from, the work of Banaschewski and Mulvey [BM1],
but carried out in a “real” framework, as opposed to the usual “complex” framework presentation of Gelfand
duality.

3The space Max(R) is called Sp(R) in Krivine’s paper [Kri], which does not consider the space corresponding
to Specr(R).
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further the insight of Riesz [Rie] and Stone that some basic results in functional analysis can
be captured by simple algebraic statements. The versions “without points” of the various
representation theorems that we present imply directly their classical version as soon as we
know that the spaces we consider have enough points [Joh] (in classical mathematics or in
intuitionistic mathematics with some form of the fan theorem), thus providing alternative
proofs of these theorems. We present some theorems in the framework of the theory of locales
[Joh] but it can be worth noting that they can be formulated as well in the predicative
framework of formal topology instead [Sam].

1 First representation theorem

The goal of this section is to show a representation theorem, which gives a way to represent the
elements f of an ordered ring R as continuous functions over a compact space Max(R). As
we say in the introduction, this compact space is obtained from a normal distributive lattice
Specr(R), which is a point-free description of the usual real spectrum associated to R, whose
points are the total preorder of R, of prime support4. The maximal total preorder form then
a compact space Max(R). This compact space Max(R) will here be defined as a complete
Heyting algebra given by generators and relations. The generators will be symbols D(a), a
in R. Each element a of R can be thought of as a continuous function â in C(Max(R)). One
intuition is that the open D(a) corresponds to the set {φ ∈ Max(R) | â(φ) > 0}. It will turn
out that the points of Max(R) can also be thought of as ring morphisms σ : R → R preserving
positivity and that we have â(σ) = σ(a). In presence of classical logic and the axiom of choice,
we recover the usual description of Max(R) as a set of points. The important fact is that
there are situations where one may fail to have access to the points of Max(R) [BM1, MP], for
instance without the axiom of choice, or working in intuitionistic logic, while our point-free
description of Max(R) is still possible5.

1.1 Theory of total ordering

Let V be a preordered vector space over Q, with a distinguished positive element 1V . Thus
V has a preorder relation 6 (relation which is reflexive and transitive) such that a 6 b if, and
only if a + c 6 b + c. We shall use the letters a, b, c, . . . for elements of V and letters r, s, . . .
for elements of Q. We shall write 1 for 1V , and more generally r for r.1V .

Definition 1.1 Tot(V ) is the distributive lattice generated by the symbols D(a), a in V and
the axioms

D(a) ∧D(−a) = 0
D(a) = 0 if a 6 0
D(a + b) 6 D(a) ∨D(b)
D(1) = 1

Lemma 1.2 In Tot(V ) we have D(a) 6 D(b) if a 6 b. In general we have D(a) ∧ D(b) 6
D(a + b) and D(na) = D(a) if n > 0 and D(s) = 1 for s > 0 and D(a − r) ∨D(s − a) = 1
whenever r < s.

4The support of a preordering is the set of elements both positive and negative. It is always an ideal.
5We show also later on that with a condition of separability on R and if all elements of R are normable,

then we can also build effectively points in Max(R) using only dependent choice.
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Proof. If a 6 b we have a = b + (a − b) with a − b 6 0. Hence D(a) 6 D(b) ∨D(a − b) and
D(a− b) = 0.

In general a = a + b + (−b) and hence D(a) 6 D(a + b)∨D(−b). Since 0 = D(b)∧D(−b)
it follows that we have D(a) ∧D(b) 6 D(a + b).

We have thus D(na) ∧D(a) 6 D((n + 1)a) and D((n + 1)a) 6 D(na) ∨D(a) and hence
D(na) = D(a) for n > 0 by induction on n.

It follows also that we have 1 = D(r) for and r > 0 in Q: we have 1 = D(n) for each
natural number n > 1 and 1 = D(m.n/m) implies 1 = D(n/m).

Since s− r = s− a + a− r it follows that 1 = D(s− a) ∨D(a− r) if r < s.

One suggestive way to read D(a) is to read it as the proposition a > 0 for some total
preordering refining the given preorder. Classically the spectrum of a lattice L are the lattice
map L → {0, 1}. The points of the spectrum of Tot(V ) can be thought of as total preordering
that refines that given preorder on the vector psace V . Indeed if α is such a point and we
define a 6′ b by α(D(a− b)) = 0 we have

a 6′ a since D(0) = 0 and hence α(D(0)) = 0
6′ is transitive since D(a− c) 6 D(a− b) ∨D(b− c)
6′ is total since D(a− b) ∧D(b− a) = 0

1.2 Preordered archimedean rings

A cone in a ring R is a subset P which contains all squares and is closed by addition and
multiplication. If P is a cone, a P -cone is a subset closed by addition, multiplication and
containing P . The set P itself is clearly the least P -cone. If Π is a P -cone, the P -cone
generated by Π and an element a in R is the set Π+ aΠ since P and hence Π contains all the
squares.

We consider a Q-algebra R with unit 1 with a given cone P . Since P contains all squares
1/n2.1 it contains all elements r.1 with r non negative rationals. We shall write simply r
instead of r.1. (It should be noticed however that we don’t exclude the case where R is
the trivial algebra {0} and thus this notation may be ambiguous; however in practice this
ambiguity is not a problem since it is always clear from the context if we mean r in Q or the
element r.1 in R.) The elements of R are thought of as operators [StoI] and the elements of
P are the positive operators. The relation a 6 b defined as b− a ∈ P is a preorder on R such
that 0 6 a2 for all a in R. The ring R is in particular a predordered vector space over the
rationals, with a distinguished element 1 and we can consider the lattice Tot(R) defined in
the previous section.

We assume the ring R to be archimedean (an alternative formulation is that the ring R
has a strong unit): for all a in R there exists r in Q such that a 6 r.

We will write a � s whenever a 6 s′ for some s′ < s and r � a whenever r′ 6 a for some
r′ > r. Constructively it may not be the case that the set of s such that a � s has a greatest
lower bound sup a in R. If it holds we have sup a < s in R iff a � s in R. We say that a is
normable iff the set of s such that −s � a � s has a greatest lower bound ||a|| ∈ R.

Definition 1.3 Specr(R) is the distributive lattice generated by the symbols D(a), a ∈ R
and the axioms are the ones of Tot(R) together with

D(ab) = (D(a) ∧D(b)) ∨ (D(−a) ∧D(−b))
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Using Lemma 1.2 we see that we have 1 = D(a) if 0 � a. The main goal of the rest of
this section is to show the converse: if we have 1 = D(a) in the lattice Specr(R) then we have
0 � a in R.

Lemma 1.4 The schema D(ab) = (D(a) ∧ D(b)) ∨ (D(−a) ∧ D(−b)) is equivalent to the
conjunction of D(a) ∧D(b) 6 D(ab) and D(ab) 6 D(a) ∨D(−b).

Proof. If we have D(ab) = (D(a)∧D(b))∨(D(−a)∧D(−b)) the we have D(ab) ≤ D(a)∨D(−b)
since D(a)∧D(b) 6 D(a) and D(−a)∧D(−b) 6 D(−b). We have alse D(a)∧D(b) 6 D(ab).

Conversely the schema D(ab) 6 D(a)∨D(−b) can also be written D(ab) 6 D(−a)∨D(b)
since ab = ba. It implies thus

D(ab) 6 (D(a) ∨D(−b)) ∧ (D(−a) ∨D(b)) = (D(a) ∧D(b)) ∨ (D(−a) ∧D(−b))

since D(a)∧D(−a) = D(b)∧D(−b) = 0. Since (−a)(−b) = ab the schema D(a)∧D(b) 6 D(ab)
implies D(−a) ∧D(−b) 6 D(ab) and thus

(D(a) ∧D(b)) ∨ (D(−a) ∧D(−b)) 6 D(ab)

The points of the spectrum of Specr(R) can be thought of as the prime cone that extends
the given cone on R [BCR]. The lattice Specr(R) can be thought of as a point-free description
of the real spectrum of R [BCR].

Lemma 1.5 In Specr(R) we have if s > 0

D(s2 − a2) = D(s− a) ∧D(s + a) D(a2 − s2) = D(a− s) ∨D(−a− s)

Proof. We have

D(s2 − a2) = (D(s− a) ∧D(s + a)) ∨ (D(−s + a) ∧D(−s− a))

Since D(−s + a) ∧D(−s− a) 6 D(−2s) = 0 by Lemma 1.2 we get

D(s2 − a2) = D(s− a) ∧D(s + a)

We have also

D(a2 − s2) = (D(a− s) ∧D(a + s)) ∨ (D(−a + s) ∧D(−a− s))

Since D(a − s) 6 D(a + s), D(−a − s) 6 D(−a + s) by Lemma 1.2 we have D(a − s) =
D(a− s) ∧D(a + s) and D(−a− s) = D(−a + s) ∧D(−a− s) and hence

D(a2 − s2) = D(a− s) ∨D(−a− s)
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The definition of Specr(R) should be compared to Joyal’s point-free definition of the
Zariski spectrum of R [Joy], seen as a ring, which is defined as the distributive lattice generated
by the symbols I(a), a in R and the axioms

I(0) = 0
I(a + b) 6 I(a) ∨ I(b)
I(1) = 1
I(ab) = I(a) ∧ I(b)

These axioms are satisfied if we interpret I(a) as D(a) ∨D(−a) in Specr(R)6.
We shall need the following characterisation of Specr(R), stated in [CC], which holds

more generally for all commutative rings R with a preorder such that all square are positive,
but not necessarily divisible or archimedean. This is essentially a version of the formal
Positivstellensatz [BCR, CLR].

Lemma 1.6 For all a, b, x, y in R we have

D(a) ∧D(x + ay) 6 D(x) ∨D(y) D(x + (−b)y) 6 D(x) ∨D(y) ∨D(b)

Proof. This follows from Lemma 1.2.

Lemma 1.7 We have

D(a1) ∧ . . . ∧D(ak) 6 D(b1) ∨ . . . ∨D(bl)

in Specr(R) if we have a relation m + p = 0 where m belongs to the multiplicative monoid
generated by a1, . . . , ak and p belongs to the P -cone generated by a1, . . . , ak,−b1, . . . ,−bl.

Proof. Let a1, . . . , ak, b1, . . . , bl in R be given and let M be the multiplicative monoid gener-
ated by a1, . . . , ak, and Cj be the P -cone generated by a1, . . . , ak,−b1, . . . ,−bj for j 6 l and
Ci be the P -cone generated by a1, . . . , ai for i 6 k. We have C0 = Ck and C0 = P . An
element of Cj is of the form x + (−bj)y with x, y in Cj−1 and an element of Ci is of the form
x + aiy with x, y in Ci−1.

We deduce from this that we have

D(a1) ∧ . . . ∧D(ak) ∧D(−p) 6 D(b1) ∨ . . . ∨D(bl)

whenever p in Ci by induction on i: this holds for i = 0 since D(−p) = 0 if p is in P and if it
holds for i it holds for i + 1 using Lemma 1.6 and the fact that an element of Ci+1 is of the
form x + ai+1y with x, y in Ci. Similarly using D(x + (−b)y) 6 D(x)∨D(y)∨D(b) (Lemma
1.6) we prove that we have

D(a1) ∧ . . . ∧D(ak) ∧D(−p) 6 D(b1) ∨ . . . ∨D(bl)

whenever p in Cj by induction on j.
The fact that we have D(a1) ∧ . . . ∧D(ak) 6 D(m) whenever m is in M follows from the

schema D(a) ∧D(b) 6 D(ab) and the equality 1 = D(1).
6In term of points this corresponds to the fact that if C is a prime cone of R, then C ∩ (−C) is a prime

ideal of R.
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This lemma gives a special way of proving en inequality

D(a1) ∧ . . . ∧D(ak) ∧D(−p) 6 D(b1) ∨ . . . ∨D(bl)

The next fundamental Theorem states that this way of proving inequality is complete. (This
is essentially a form of cut-elimination result [Sco].)

Theorem 1.8 We have

D(a1) ∧ . . . ∧D(ak) 6 D(b1) ∨ . . . ∨D(bl)

in Specr(R) iff we have a relation m + p = 0 where m belongs to the multiplicative monoid
generated by a1, . . . , ak and p belongs to the P -cone generated by a1, . . . , ak,−b1, . . . ,−bl.

Proof. We define the relation X ` Y between finite subsets X, Y of R by: there exists
a relation m + p where m is in the multiplicative monoid generated by X and p is in the
P -cone generated by X and −Y . We show first that such a relation is an entailment relation
[CC, Sco]: it satisfies the three laws

X ` Y if X meets Y (reflexivity)
X ` Y if X ′ ` Y ′ and X ′ ⊆ X and Y ′ ⊆ Y (monotonicity)
X ` Y if X, x ` Y and X ` Y, x (transitivity)

We notice then next that this relation is the least entailment relation satisfying the laws
corresponding to the definition of Specr(R) (using Lemma 1.4)

a,−a ` ∅
a ` ∅ if a is in −P
a + b ` a, b
∅ ` 1
a, b ` ab
ab ` a,−b

Theorem 1.8 follows then from the general theory of entailment relations and distributive
lattices developped in [CC].

If we know that this relation is an entailment relation, that fact that this is the least
entailment relation satisfying these laws is seen as follows. First it satsfies all these laws

a,−a ` ∅ since a + (−a) = 0
a ` ∅ if a is in −P since a + (−a) = 0
a + b ` a, b since (a + b) + (−a) + (−b) = 0
∅ ` 1 since 1 + (−1) = 0
a, b ` ab since ab + (−ab) = 0
ab ` a,−b since ab + (−a)b = 0

Second, if S is a relation satisfying all these laws we have

a, x + ay S x, y x + (−b)y S x, y, b

We can then follow the proof of Lemma 1.7 and show that whenever we have a relation
m + p = 0 where m is in the multiplicative monoid generated by X and p is in the P -cone
generated by X and −Y then we have X S Y .
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The only remaining result to prove is that ` is an entailment relation. Only the transitivity
of the relation ` is not direct. We show that if M is a multiplicative monoid, if C a P -cone
such that M ⊆ C and x in R is such that we have some relations

m1 + u1 + (−x)v1 = 0 m2x
k + u2 + xv2 = 0

with m1,m2 in M and u1, v1, u2, v2 in C then we have 0 in M + C. We can rewrite the first
relation as m′

1 = xv1 with m′
1 = m1 +u1 is in M +C. We notice next that M +C is closed by

multiplication since M ⊆ C. The second relation implies then m2(xv1)k + u2v
k
1 + xv2v

k
1 = 0

and hence is of the form m′
2 + xv = 0 for some m′

2 ∈ M + C and v is in C. It follows that
m′

1m
′
2 + x2v1v = 0 which shows that 0 is in M + C as desired.

Corollary 1.9 We have 1 = D(b1) ∨ . . . ∨ D(bl) iff an element of the cone generated by
−b1, . . . ,−bl is � 0. In this case, there exists s > 0 such that 1 = D(b1− s)∨ . . .∨D(bl − s).

Proof. To simplify we take l = 2 but the reasoning is uniform in l. By Theorem 1.8 1 =
D(b1)∨D(b2) iff we have a relation 1 + p = 0 where p is an element of the cone generated by
−b1,−b2. Hence we have a relation of the form

1 + (−b1)p1 + (−b2)p2 + b1b2p = 0

with p1, p2, p in P . Since R is archimedian it follows that there exists s > 0 and s′ such that
0 � s′ and

s′ = (−b1 + s)(−p1) + (−b2 + s)(−p2 + (−b1 + s)(−p))

We have D(s′) = 1 since 0 � s′. Using Lemma 1.6

1 = D((−b1 + s)(−p1) + (−b2 + s)(−p2 + (−b1 + s)(−p)))

implies 1 = D(b1 − s) ∨D(b2 − s) as desired.

The next lemma and theorem are the key to our proof theoretic approach to Gelfand
duality.

Lemma 1.10 If 1 6 ac and 0 6 c then 0 � a.

Proof. See [Kri] Théorème 12. In order to be self-contained, and to show that the argument
is elementary, we give a sketch of the argument. Since the ring is archimedean, we have N
in N such that a 6 N . Since 0 6 c and 1 6 ac we have 1 6 Nc and thus 1/N 6 c. We have
also L in N such that c 6 L and we get 1/N 6 c 6 L. If we write b = 1 − c/L we have
0 6 b 6 1−1/NL and 1/L 6 a(1−b). By multiplying by 1+. . .+bn−1 we get 1/L 6 a(1−bn).
For n big enough we have bn 6 1/2 and hence 1/2L 6 a.

Theorem 1.11 D(a) = 1 in Specr(R) iff 0 � a.

Proof. The P -cone generated by −a is P +P (−a). It follows from theorem 1.8 that D(a) = 1
iff there exists b, c > 0 such that 1+ b+ c(−a) = 0, that is ca = 1+ b. The result follows then
from lemma 1.10.
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The following lemma will be used only towards the end of the paper7. We say that a
sequence of elements (xn) in R is a Cauchy sequence iff for each s > 0 there exists N such
that −s � xm − xn � s if n, m > N .

Lemma 1.12 For all x ∈ P we can build a Cauchy sequence (xn) of elements in P such that
x2

n → x.

Proof. We can assume 0 6 x 6 1. We define the two sequences (yn) and (zn) of elements in
[0, 1] defined by y0 = z0 = 0 and

yn+1 = 1/2(1− x + y2
n) zn+1 = 1/2(1 + z2

n)

The sequence zn is in Q. Clearly, we have yn 6 zn for all n
I claim that we have for all n

yn 6 yn+1 zn 6 zn+1 yn+1 − yn 6 zn+1 − zn

This is proved by induction from the equalities

yn+1 − yn = 1/2(yn + yn−1)(yn − yn−1) zn+1 − zn = 1/2(zn + zn−1)(zn − zn−1)

It follows that we have

(1− yn)2 − x = 2(yn+1 − yn) 6 2(zn+1 − zn)

In order to conclude, all is left is to show that (zn) has for limit 1. We know that
0 6 zn 6 zn+1 6 1 and we have

1− zn+1 = (1− zn)1/2(1 + zn) 6 (1− zn)(1− ε/2)

if zn 6 1− ε. This shows that if (1− ε/2)N 6 ε we have 1− zn 6 ε for all n > N .

1.3 The spectrum of an archimedean ring

A lattice L is strongly normal iff for any u, v in L there exists x, y in L such that v 6 u ∨ y
and u 6 v ∨ x and x ∧ y = 0. A lattice L is normal iff whenever u ∨ v = 1 there exists x, y
such that u ∨ y = v ∨ x = 1 and x ∧ y = 0. We write SN(u, v) if, and only if there exist x, y
such that v 6 u ∨ y and u 6 v ∨ x and x ∧ y = 0. Hence L is strongly normal if, and only if
we have SN(u, v) for all u, v in L.

Lemma 1.13 A strongly normal lattice is normal. If we have SN(u1, v) and SN(u2, v) then
we have SN(u1∨u2, v) and SN(u1∧u2, v). Hence L is strongly normal if and only if SN(u, v)
holds for u, v in a generating set of L.

Proof. Assume that L is strongly normal and that u ∨ v = 1. Since SN(u, v) holds there
exists x, y such that v 6 u∨ y and u 6 v ∨ x and x∧ y = 0. Since v 6 u∨ y and u∨ v = 1 we
have u ∨ y = 1. Similarly v ∨ x = 1. Hence L is normal.

Assume SN(u1, v) and SN(u2, v). We have v 6 ui ∨ yi and ui 6 v ∨xi and xi ∧ yi = 0 for
i = 1, 2. We have then v 6 (u1∧u2)∨y1∨y2 and u1∧u2 6 v∨(x1∧x2) and v 6 (u1∨u2)∨(y1∧y2)
and u1 ∨ u2 6 v ∨ (x1 ∨ x2) and (x1 ∨ x2) ∧ y1 ∧ y2 = (x1 ∧ x2) ∧ (y1 ∨ y2) = 0.

7This is the usual lemma that R admits square root of positive elements if R is complete. Notice that the
proof is directly constructive, and it corresponds to the usual Taylor expansion of (1− x)1/2.
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Theorem 1.14 The distributive lattice Specr(R) is strongly normal. Its corresponding com-
pact regular frame [CC] can be described as the frame Max(R) generated by the symbols
D(a), a ∈ R and the relations defined by Specr(R) together with the continuity axiom

D(a) =
∨
r>0

D(a− r)

We have D(a) 6 D(b) in Max(R) iff for all r > 0 there exists s > 0 such that D(a − r) 6
D(b−s) in Specr(R). The space defined by Max(R) is compact completely regular [BM1, MP]

Proof. By Lemma 1.13 it is enough to show SN(D(a), D(b)) for all a, b in R since Specr(R)
is generated by the elements D(a) for a in R. The relation SN(D(a), D(b)) is implied by
D(a) 6 D(b) ∨D(a− b) and D(b) 6 D(a) ∨D(b− a) and D(a− b) ∧D(b− a) = 0.

The lattice Specr(R) defines a complete Heyting algebra of its ideals [Joh] Idl(Specr(R)).
We check next that all the relations defining Max(R) are satistied for D′(a) =

∨
r>0 D(a−

r) in Idl(Specr(R))

D′(a) ∧D′(−a) = 0 holds since D(a− s1) ∧D(−a− s2) = 0 for all s1, s2 > 0
D′(a) = 0 if a 6 0 since then D(a− s) = 0 for all s > 0
D′(a + b) 6 D′(a) ∨D′(b) since D(a + b− s) 6 D(a− s/2) ∨D(b− s/2)
D′(1) = 1 since D(1− s) = 1 if 0 < s < 1
D′(a)∧D′(b) 6 D′(ab) since we have D(b− s2) = D(s1(b− s2)) and D(b− s2) 6 D(b) and

hence D(a−s1)∧D(b−s2) = (D(a−s1)∧D(b))∧D(s1(b−s2)) is 6 D((a−s1)b)∧D(s1(b−s2)) 6
D(ab− s1s2) for all s1, s2 > 0

D′(ab) 6 D′(a)∨D′(−b) since, using the fact that R is archimedian we can, for all s > 0,
find s1, s2 > 0 such that ab− s 6 (a− s1)(b− s2)

It follows that we have a map Max(R) → Idl(Specr(R)), D(a) 7−→ D′(a). In particular
D(a) 6 D(b) in Max(R) implies D′(a) 6 D′(b) in Idl(Specr(R)).

Theorem 1.15 The points of Max(R) can be identified with ring morphims σ:R → R such
that σ(a) > 0 if a > 0.

Proof. Using Lemma 1.2 we have 1 = D(a−r)∨D(s−a) if r < s. Also D(a−r)∧D(r−a) = 0.
A point σ of Max(R) associates a truth value to each generator D(a) of Max(R). We

can then define a Dedekind real σ(a) by taking σ(a) ∈ (r, s) iff D(a − r) and D(s − a)
become true under this interpretation. It is direct that σ:R → R preserves addition and
sends positive elements to positive reals, and Lemma 1.5 shows that it preserves squares, and
hence multiplication.

Thus this space coincides with the space considered by Stone [StoI]. Our results give a
purely phenomenological description of this space. Since, classically, a compact regular frame
has enough points [Joh] all statements about the space Max(R) are directly equivalent to the
usual statements with points. A simplification of the present real framework compared to the
complex case, noticed also in [Joh], is that we don’t need to rely on Gelfand-Mazur’s theorem
like in the reference [BM2].
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1.4 Gelfand duality, main lemma

Theorem 1.16 D(a) = 1 in Max(R) iff 0 � a.

Proof. By theorem 1.14, if we have 1 = D(a) in Max(R) then we have 1 = D(a − s) in
Specr(R) for some s > 0. The assertion follows then from theorem 1.11.

Corollary 1.17 1 = D(s− a) ∧D(a + s) in Max(R) iff we have −s � a � s in R.

This is one of the main lemma in establishing Gelfand’s duality [Joh]. One can contrast
our purely constructive development, based on theorem 1.16 with the treatment in [BM1],
which is based on the non constructive use of Barr’s theorem.

In general, to give a continuous function f ∈ C(X) on a frame X is to give two families
of elements of X Ur and Vs, indexed by rationals r, s ∈ Q and satisfying some conditions.
Intuitively Ur stands for f−1(r,∞) and Vs for f−1(−∞, s). The conditions are

∨rUr = ∨sVs = 1
Ur = ∨r′>rUr′ , Vs = ∨s′<sVs′

1 = Ur ∨ Vs if r < s
0 = Ur ∧ Vs if s 6 r

These conditions hold if we take X = Max(R) and Ur = D(a− r) and Vs = D(s− a) for
a fixed a ∈ R. Hence any element a ∈ R defines a continuous map â ∈ C(Max(R)). If σ is a
point of Max(R) it follows from this definition that we have â(σ) = σ(a).

The corollary 1.17 can then be interpreted as a point-free formulation of the fact that the
uniform norm of â ∈ C(Max(R)) is exactly the norm of a in R. If we know that the space
Max(R) has enough points (in classical mathematics or in intuitionistic mathematics with
some form of the fan theorem) this corollary implies directly the usual statement of Gelfand
duality.

1.5 A generalisation

The corollary 1.17 can also be seen as a point-free formulation of the Kadison-Dubois theorem
[BS]. The theorem of Kadison-Dubois is actually more general in that it does not assume
that P contains all squares. In this subsection we show how to deal with this generalisation,
following and simplifying slightly [Kr1].

Lemma 1.18 For all n we can write x2 + 1 = P (n − x, n + x) where P (X, Y ) is a rational
homogeneous polynomial with coefficients > 0.

Proof. We use the change of variables y(n + x) = n− x. The question reduces to find k such
that all coefficients of

(1 + y)k(1− 2
n2 − 1
n2 + 1

y + y2)

are > 0. A small computation shows that this is the case iff n2 − 1 6 k. If we write

Σaiy
i = (1 + y)k(1− 2

n2 − 1
n2 + 1

y + y2)

we can take P (X, Y ) = ΣaiX
iY k+2−i.

10



Notice that P (X, Y ) is of degree n2 + 1. We don’t know if this degree is optimal.

Corollary 1.19 If R is a Q-algebra with an archimedean order containing Q+, but without
assuming that all squares are > 0 then we have x2 + s > 0 for all x ∈ R and all rationals
s > 0.

Proof. Let s be a rational > 0. We can find l in N such that 1/l2 6 s. Since R is archimedian,
we can find n in N such that −n 6 lx 6 n. Using Lemma 1.18 we can write 1 + (lx)2 =
P (n− lx, n + lx) where P (X, Y ) is a rational homogeneous polynomial with coefficients > 0.
It follows that we have 0 6 1 + (lx)2 and hence 0 6 x2 + s.

Let R be a Q-algebra with an archimedean order containing Q+, but without assuming
that all squares are > 0. This means that we have a subset Ω ⊆ R closed under addition and
multiplication, Q+ ⊆ Ω and for all x ∈ R there exists n such that n− x ∈ Ω. Let now Ω′ be
the cone generated by Ω that is the least subset of R closed under addition and multiplication,
containing Ω and all squares x2, x ∈ R.

Corollary 1.20 If x ∈ Ω′ and r is a rational > 0 then x + r ∈ Ω.

Proof. Let Π be the set of all elements x ∈ R such that x+ s ∈ Ω for all s > 0. We show that
Π is a cone containing Ω and Q+. This would imply that Ω′ ⊆ Π.

if x, y are in Π then x + y + s = (x + s/2) + (y + s/2) is in Ω for all s > 0 so Π is closed
under addition

if x, y are in Π and s > 0 then, since R is archimedian, there exists a rational r > 0 such
that (x + r)(y + r) 6 xy + s and hence xy + s belongs to Ω; this shows that Π is closed under
multiplication

Π contains all square by Corollary 1.20
Π contains Ω since x+ s is in Ω if x is in Ω and s is a rational > 0, because then s belongs

to Ω

We get a constructive proof of the following result, due to Krivine [Kri].

Theorem 1.21 Let Q(x1, . . . , xn) a rational polynomial which is > 0 on [0, 1]n, then we
can write Q = P (x1, . . . , xn, 1 − x1, . . . , 1 − xn) where P is a rational polynomial with all
coefficients > 0.

Proof. Let R be the Q-algebra generated by x1, . . . , xn. We let Ω be the subset of R gener-
ated by addition, multiplication, and the elements Q+ and xi and 1 − xi. The polynomial
Q(x1, . . . , xn) can be seen as an element xQ of the algebra R. If Ω′ is the cone generated by Ω,
and R is ordered by Ω′ a point of Max(R) is a ring morphism σ : R → R such that σ(x) > 0 if
x is in Ω′. This ring morphism is determined by (σ(x1), . . . , σ(xn)) in [0, 1]n. The hypothesis
is that we have σ(x) > 0 for all σ in Max(R). It can be formulated in a point-free way as
the fact that we have D(xQ) = 1 in Max(R). The result follows then from Theorem 1.16 and
Corollary 1.20: there exists s > 0 such that xQ − s belongs to Ω′ and hence (Corollary 1.20)
xQ belongs to Ω.
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The polynomial P can be computed from any given proof that D(xQ) = 1. Notice that
such a proof can be computed uniformely from Q and an explicit lower bound > 0 of Q on
[0, 1]n by computing a finite decomposition of [0, 1]n such that the variation of Q is small
enough on each part.

1.6 Example

Let B be a Boolean algebra. We let R to be the Q-algebra generated by symbols v(b), b ∈ B
with the relations

v(b1b2) = v(b1)v(b2) v(b1) + v(b2) = v(b1b2) + v(b1 ∨ b2) v(1) = 1 v(0) = 0

We can define 0 6 a to mean that we can write a = Σriv(bi) with 0 6 ri. Notice that
any element a ∈ R can be written Σriv(bi) with bibj = 0 if i 6= j. It follows from this remark
that we have 0 6 a2 for all a : indeed we have a2 = Σr2

i v(bi). It is clear also that we have
0 6 v(b) 6 1 for all b ∈ B and hence that R is archimedean.

Theorem 1.22 The space Max(R) is the Stone dual space of B.

Proof. In this case Max(R) coincides with the spectral frame defined by Specr(R) and
Specr(R) coincides with B.

The construction of this ring R is implicit in [Tar], and is useful for analysing measures
on B. This is because v:B → R is the universal valuation. If w:B → S is another valuation
in an ordered Q-vector space S, with a distinguished positive element 1, then there exists one
and only one map f :R → S such that f ◦ v = w.

2 Second representation theorem

2.1 Lattice-ordered groups

Let R be now a lattice ordered abelian group (or l-group) [Bou, Lux]. The elements of R
are written a, b, c, . . . The group operation of R is written additively and the sup operation is
written a ∨ b. We shall use the following elementary facts, that are proved in the references
[Bou, Lux].

Lemma 2.1 We have c + (a ∨ b) = (c + a) ∨ (c + b). Any two elements a, b have an inf a ∧ b
and a + b = a ∧ b + a ∨ b. If 0 6 y and x ⊥ z and x 6 y + z then x 6 y. Considered as a
lattice, R is distributive. For n > 1 we have n(a ∨ b) = na ∨ nb and n(a ∧ b) = na ∧ nb, also
na > 0 implies a > 0.

This implies that R can be embedded as an l-group in a divisible lattice ordered group
where for each x and n > 1 there exists exactly one solution for ny = x. To simplify the
presentation, we will assume in the following that R is divisible; it has then naturally the
structure of a Riesz space over the set of rationals Q [Lux].

We write as usual a+ for a ∨ 0 and a− for (−a) ∨ 0. We say that a is positive iff a > 0.
Let P be the set of positive elements. We write x ⊥ y if x ∧ y = 0 (notice that this implies
that x and y are in P ).
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Lemma 2.2 We have a = a+ − a− and a+ ⊥ a−. Also if a = b − c and b ⊥ c then b = a+

and c = a−.

Proof. See [Bou, Lux].

If b ∈ P we write a � b to mean that there exists n > 1 such that a 6 nb. If a, b ∈ P we
write a ∼ b iff a � b and b � a.

We assume now that R has a strong unit 1: we have 0 6 1 and a � 1 for all a ∈ R. An
important consequence is the following fact.

Lemma 2.3 If a ⊥ 1 then a = 0. If 0 � a+ then a = a+.

Proof. We have a 6 n1 for some n and a ⊥ 1 implies a ⊥ n1, hence a = 0.
If 0 � a+ that is 1 6 na+ for some n > 0 we get a− ⊥ 1 since a− ⊥ na+ and hence

a− = 0.

The following remark will be important, and it has a direct proof from lemmas 2.1 and
2.2.

Proposition 2.4 For a, b, c ∈ P we have

a � c, b � c → a ∨ b � c c � a, c � b → c � a ∧ b,

hence the structure (P/ ∼,∧,∨,�) forms a distributive lattice L.

2.2 Real spectrum of an l-group

We associate to R a distributive lattice Specr(R). It is generated by the symbols D(a), a ∈ R
and the axioms are the ones of the lattice Tot(R) together with the schema

D(a ∨ b) = D(a) ∨D(b)

Proposition 2.5 In Specr(R) we have D(a+) = D(a) and D(a ∧ b) = D(a) ∧D(b)

Proof. Since D(a∨0) = D(a)∨D(0) we get D(a∨0) = D(a), that is D(a+) = D(a). It follows
that we have D(u−) = D((−u)+) = D(−u) and hence D(u+) ∧D(u−) = D(u) ∧D(−u) = 0
for all u ∈ R. Since a = a ∧ b + (a− b)+ and b = a ∧ b + (a− b)− we have also

D(a) 6 D(a ∧ b) ∨D((a− b)+) D(b) 6 D(a ∧ b) ∨D((a− b)−)

and hence D(a) ∧D(b) 6 D(a ∧ b).

A similar reasoning would show.

Proposition 2.6 In the theory describing the lattice Tot(R) we have equivalence between
the three schemas

D(a ∨ b) = D(a) ∨D(b) for all a, b ∈ R
D(a+) = D(a) for all a ∈ R
D(a ∧ b) = D(a) ∧D(b) for all a, b ∈ R

13



Theorem 2.7 The lattice Specr(R) coincides with the lattice L with the interpretation
D(a) = a+. In particular, D(a) 6 D(b) in Specr(R) iff a+ � b+.

Proof. Using Lemma 1.2 and Proposition 2.5, we have that a+ 6 nb+ implies D(a) 6 D(b)
and hence if (a1 ∧ . . . ∧ ak)+ = a+

1 ∧ . . . ∧ a+
k � b+

1 ∨ . . . ∨ b+
l = (b1 ∨ . . . ∨ bl)+ then

D(a1) ∧ . . . ∧D(ak) 6 D(b1) ∨ . . . ∨D(bl)

in Specr(R). The other direction follows from the fact that a 7−→ a+ satisfies the conditions
of Tot(R) and the equality (a ∨ b)+ = a+ ∨ b+.

Corollary 2.8 We have 1 = D(b1) ∨ . . . ∨D(bm) in Specr(R) iff 0 � b+
1 ∨ . . . ∨ b+

m. If this
holds there exists r > 0 such that 1 = D(b1 − r) ∨ . . . ∨D(bm − r).

Corollary 2.9 We have D(a) = 1 in Specr(R) iff 0 � a.

Proof. If D(a) = 1 in Specr(R) we have first 0 � a+ by the theorem 2.7 and then 0 � a by
lemma 2.3.

2.3 The spectrum of an archimedean divisible l-group

Theorem 2.10 The lattice Specr(R) is strongly normal. The corresponding compact regular
frame Max(R) of its maximal ideals is defined by generators D(a), a ∈ R, the axioms of
Specr(R) and the continuity axiom

D(a) =
∨
r>0

D(a− r)

The frame Max(R) is completely regular and its points can be identified with l-group mor-
phims σ:R → R such that σ(1) = 1.

Proof. Like for the proof of Theorem 1.14 we define an interpretation of Max(R) in Idl(Specr(R))
by interpreting D(a) by D′(a) =

∨
r>0 D(a − r) in Idl(Specr(R)). The equality D′(a ∨ b) =

D′(a) ∨D′(b) follows from the equality (a ∨ b)− s = (a− s) ∨ (b− s) in R.

Corollary 2.11 We have D(a) = 1 in Max(R) iff 0 � a.

3 Stone-Weierstrass Theorem

Let X be an arbitrary compact completely regular locale. We let V be a sub Q-vector space of
C(X) such that such 1 ∈ V and f ∨g ∈ V if f, g ∈ V (hence also f ∧g ∈ V ) and the collection
of open sets D(f) = f−1(0,∞) form a basis for the topology of X. The next proposition
states the existence of partition of unity, without having to mention points [BM3].

Proposition 3.1 If Uj is an arbitrary covering of X it is possible to find a partition of unity
p1, . . . , pn with pi ∈ V, 0 6 pi 6 1 and Σpi = 1 and each open D(pi) is a formal subset of
some Uj .
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Proof. Given any covering Uj we can find positive elements a1, . . . , an such that the formal
open D(ai) is a formal subset of some Uj and

X = D(a1) ∨ . . . ∨D(an) = D(a1 ∨ . . . ∨ an)

We have then
1 6 N(a1 ∨ . . . ∨ an) = Na1 ∨ . . . ∨Nan

for some N > 1. If we define qi = 1 ∧ Nai we have thus ∨qi = 1. If we define next
pi = qi− (qi ∧∨j<iqj), we have 0 6 pi 6 1, each basic open D(pi) ⊆ D(ai) is a subset of some
Uj and Σj<ipj = ∨j<iqj . In particular Σpi = ∨qi = 1.

Corollary 3.2 V is dense in C(X).

We can now recover the density results stated in the references [StoI, StoII].

Theorem 3.3 If R is an ordered archimedean Q-algebra or Riesz space over Q, the set
{â | a ∈ R} is dense in C(Max(R)).

Proof. This is direct from Corollary 3.2 in the case where R is a Riesz space, and in the case
of an algebra, this follows also from lemma 1.12.

Given the results of this paper, it would not be difficult from them to develop Gelfand
duality in the real case like in [Joh] but in a constructive way.

4 Integration Algebra

An integration algebra [Seg] is a pair (A,E) where A is a Q-algebra and E a linear functional
on A such that

E(a2) > 0

For all elements b there exists cb such that E(ba2) 6 cbE(a2) for all a ∈ A

Segal argues in [Seg] that this is a natural framework in which to develop integration
theory, and gives a representation theorem using complex Gelfand duality. We show here
that our framework directly gives a representation theorem in the real case. Let (A,E) be
an integration algebra. We write (a, b) = E(ab) for a, b ∈ R. We can think now of A as a
preHilbert space. In particular, we prove as usual.

Lemma 4.1 If a, b ∈ A we have (a, b)2 6 (a, a)(b, b).

Each element a of A defines a bounded self-adjoint operator Ta(b) = ab on this space. We
let R be the ring of operators generated by the unit operator and the operators Ta, a ∈ A.
We define a subset P on R by

u ∈ P ≡ ∀a ∈ A.0 6 (ua, a)

Each operator in R is auto-adjoint and we can prove as usual.

Lemma 4.2 If u ∈ P and (ua, a) 6 r(a, a) for all a ∈ A then (ua, ua) 6 r2(a, a) for all
a ∈ A.
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We have clearly u2 ∈ P for all u ∈ R, and more generally vu2 ∈ P if v ∈ P . What is
remarkable is the following result.

Proposition 4.3 If u ∈ P and v ∈ P then uv ∈ P

Proof. (F.Riesz) Let us write u1 6 u2 iff u2−u1 ∈ P and, for un ∈ P , un → 0 iff for all r > 0
there exists N such that un 6 r if n > N .

By axiom 2, we can assume 0 6 v 6 1.
We define v0 = v, vn+1 = vn − v2

n. Since

vn+1 = vn(1− vn)2 + (1− vn)v2
n > 0 1− vn+1 = 1− vn + v2

n

we have 0 6 vn 6 1 for all n. Furthermore vn − vn+1 = v2
n and hence vn+1 6 vn. Also,

v2
n − v2

n+1 = v2
n(vn + vn+1)

and hence v2
n+1 6 v2

n.
Since v = v2

1 + . . . + v2
n−1 + vn we have v2

n 6 v/n and so v2
n → 0. It follows from lemma

4.2 that uvn → 0 and since uv − uvn = uv2
0 + . . . + uv2

n−1 > 0 we get uv > 0.

Theorem 4.4 If (A,E) is an integration algebra, the set P defined by

u ∈ P ≡ ∀a ∈ A.0 6 (ua, a)

is a cone and defines an archimedean preordering on R such that 0 6 u2 for all u.

We can thus apply the result of the first part of the paper and consider the formal compact
Hausdorff space Max(R), and the elements of R can be thought of as functions on the space
Max(R).

For a typical application, if G is a compact abelian group of unit e, and A is the algebra
C(G) with the convolution product, and we consider E(a) = a(e), then the open subset
Σ = ∪a∈AD(a) can be identified with the space of characters over G [Bis]. In this case, each
operator Ta is compact, and hence each elements of R is normable [Bis]. The next section
shows in such a case how to build effectively some points of Max(R), using dependent choice.

5 Positivity on Max(R)

We state first a general result on compact completely regular locales. We refer to the [JoO]
for a definition of open locales. Intuitively, it means that we have a predicate on open subsets,
called positivity predicate, which expresses when an open is inhabited 8.

Theorem 5.1 If X is a compact completely regular locale, then X is open iff for all f ∈ C(X)
there exists sup f ∈ R such that sup f < s iff f(x) < s for all x ∈ X9.

8A basic axiom is that if a positive open is covered by a family, then at least one open in this family should
be positive. In particular the empty open is not positive.

9To give f ∈ C(X) is to give two families of open f−1(−∞, s) and f−1(r,∞) satisfying some conditions.
We write “f(x) < s for all x ∈ X” as a suggestive way to state that X = f−1(−∞, s).
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Proof. In one direction, we define the open D(f) to be positive iff sup f > 0. It is then direct
to check that this defines a positivity predicate.

Conversely, if X is open and f ∈ C(X) we can find an arbitrary ε approximation of the
supremum of f by considering a finite covering of X by positive open of the form f−1(r, s),
with s− r < ε.

We deduce the following fact, which holds if R is a divisible archimedean ring or a divisible
l-group.

Theorem 5.2 Max(R) is open iff for all f ∈ R there exists sup f ∈ R such that sup f < s
iff f � s.

In the case where Max(R) is open, we can define ||a|| to be sup a ∨ sup (−a) in R and
the corollary 1.17 gets a sharper version.

Theorem 5.3 For all a in R, the real ||a|| is equal to the uniform norm of the map â :
Max(R) → R, σ 7−→ σ(a).

We can also make a connection with the spectral theorem as presented in [Bis]. (It is the
only proof which requires the axiom of dependent choice.)

Theorem 5.4 If R is separable, that is contains a dense sequence of elements an, and
Max(R) is open, for each f ∈ R such that sup f > 0 we can, using dependent choice,
find a point σ:R → R of Max(R) such that σ(f) > 0.

Proof. Let us write a ∈ (p, q) for the open D(q − a) ∧ D(a − p) of Max(R). We can find,
using dependent choice, r > 0 and a sequence qn ∈ Q such that all open sets

D(f − r) ∧ a1 ∈ (q1 − 1/2, q1 + 1/2) ∧ . . . ∧ an ∈ (qn − 2−n, qn + 2−n)

are positive, that is can be written D(g) with g ∈ C(Max(R)) such that sup g > 0. If b ∈ R
we can find a subsequence (akn) which converges to b. It can then be shown that qkn converges
to a limit l. For this it is enough to notice that if the open

a ∈ (p− r, p + r) ∧ b ∈ (q − s, q + s)

is positive and |b−a| 6 t then |q− p| < r + s+ t. Indeed if |q− p| > r + s+ t then this open is
empty and hence cannot be positive. If we take σ(b) = l we have defined a function σ:R → R
which is a point such that σ(f) > 0.

Notice however that it does not mean, even in this case, that the space Max(R) has
enough points constructively (intuitively the constructive points are recursive and there is not
enough recursive points in general). With classical logic and the axiom of choice however, we
know that Max(R) being compact regular, has enough points [Joh].
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6 f-ring

The structure of f -ring combines the two structures considered by Stone [Bir]. We consider
only the case where we have a strong unit 1, in which case the structure can be simply
described as an ordered ring which has also a binary sup operation. A typical example is
provided by the subsection 1.6.

Lemma 6.1 In an f -ring we have ab = 0 whenever a ⊥ b, and |a|2 = a2 and a(b∧c) = ab∧ac
if a > 0. If a, b > 0 and c ⊥ d then ac ⊥ bd.

Proof. Assume a ⊥ b. We have n such that a 6 n and b 6 n. We have then also ab 6
an, ab 6 bn and since na ⊥ nb we have ab = 0.

If a ∈ R we have a = a+ − a−, |a| = a+ + a− and a+ ⊥ a−. It follows that a2 =
(a+)2 + (a−)2 = |a|2.

Corollary 6.2 We have (ab)+ = a+b+ + a−b− and (ab)− = a−b+ + a+b−.

Proof. We have ab = (a+ − a−)(b+ − b−) = (a+b+ + a−b−)− (a−b+ + a+b−). Since a+ ⊥ a−

and b+ ⊥ b− we have also a+b+ + a−b− ⊥ a−b+ + a+b−, hence the result.

Lemma 6.3 We have (a− r)+ ∧ b+ 6 1/r(ab)+ if r > 0.

Proof. Using the corollary 6.2 we reduce this to (a − r)+ ∧ b+ 6 1/ra+b+. Writing u =
(a − r)+ ∧ b+ this in turn follows from ru 6 a+u or 0 6 u(a+ − r). This holds since
u(a+ − r)− = 0 because u 6 (a+ − r)+ and lemma 6.1.

Theorem 6.4 Let R be an f -ring with a strong unit. In the lattice Tot(R) the schema

D(ab) = (D(a) ∧D(b)) ∨ (D(−a) ∧D(−b))

implies
D(a ∨ b) = D(a) ∨D(b)

In the other direction the schema

D(a ∨ b) = D(a) ∨D(b)

together with the continuity axiom D(a) =
∨

r>0 D(a− r) implies

D(ab) = (D(a) ∧D(b)) ∨ (D(−a) ∧D(−b))

Proof. Assume
D(ab) = (D(a) ∧D(b)) ∨ (D(−a) ∧D(−b))

Notice that this implies D(a) ∧ D(b) = 0 if ab = 0. By the proposition 2.6 it is enough to
show D(a+) = D(a). We have D(a2) = D(a) ∨D(−a). Hence in particular D(x2) = D(x) if
0 6 x. By the lemma 2.2

D(a2) = D(|a|2) = D(|a|) 6 D(a+) ∨D(a−)

since D(a+) 6 D(|a|), D(a−) 6 D(|a|) it follows that we have

D(|a|) = D(a+) ∨D(a−) = D(a) ∨D(−a)
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We have a+a− = 0 by lemma 2.2 and hence D(a+) ∧D(a−) = 0. Since D(a) 6 D(a+) and
D(−a) 6 D(a−) it follows that we have D(a) = D(a+), hence the result.

Conversely, assume the continuity axiom and D(a∨ b) = D(a)∨D(b). We use the lemma
1.4 and prove D(a) ∧D(b) 6 D(ab) and D(ab) 6 D(a) ∨D(−b).

Using the theorem 2.7 we reduce for each r > 0

D(a− r) ∧D(b− r) 6 D(ab)

to the inequality (a − r)+ ∧ b+ 6 1/r(ab)+ which is lemma 6.3. By continuity this implies
D(a) ∧D(b) 6 D(ab). We show next D(ab) 6 D(a) ∨D(−b) using the fact that we have a
strong unit: there exists n such that |a| 6 n and |b| 6 n. It is then direct that we have, using
corollary 6.2

(ab)+ = a+b+ + a−b− 6 n(a+ + b−)

which by the theorem 2.7 implies D(ab) 6 D(a) ∨D(−b)

Conclusion

In physical terms, both algebraic structures, ordered ring and l-group, cover the case of a
system of real, simultaneously observable physical quantities as envisaged in the quantum
theory. It would be interesting to compare in the present constructive framework the gener-
alisation of these two algebraic structures in the case where the quantities represented by the
elements of the structure may not be always simultaneously observable. In the ring case, one
takes away the commutativity axiom, and considers that two quantities are simulatenously
observable iff the corresponding operators commute. In the l-group case, one has to take
away the lattice axioms, and considers that two quantities are simulatenously observable iff
the corresponding operators have a least upper bound.
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