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Point-Free Topology and Sheaf Models

This talk

Two examples from practice of constructive mathematics

(1) How to define Cantor space? Or the real interval [0, 1]?

(2) How to represent the algebraic closure of a field?

Classically, (1) is concerned with non countable sets, while the algebraic
closure might be countable if we start from a countable field

In both cases, these sets are best represented not as “actual”, “completed”
totalities, but as “potential”, “open” collections

The second example is connected with the history of the notion of field
(Dedekind) versus domain of rationality (Galois, Abel, Kronecker)
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This talk

The first example is inspired by the presentation of Cantor space in

Notes on Constructive Mathematics, P. Martin-Löf, 1968

The second example is a variation on two notes of A. Joyal

Les théorèmes de Chevalley-Tarski et remarque sur l’algèbre constructive 1975

La Logique des Topos 1982 (with André Boileau)
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Cantor space

Cantor space X is classically the topological space {0, 1}N

Use α, β, . . . for points of this space

Use σ, τ, . . . for finite binary sequence

Finite sequences represent basic neighbourhoods of X
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Cantor space

An open set can be seen as a predicate V on finite sequences

We assume V to be monotone: V (σ′) if V (σ) and σ′ extends σ

Write α(n) the finite sequence α(0) . . . α(n− 1)

αεV means ∃nV (α(n))
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Cantor space

How to define that V covers X?

First attempt

∀ααεV = ∀α∃nV (α(n))

Brouwer formulated this as: V is a bar

V bars X =def ∀α∃nV (α(n))

Whenever we make a sequence of successive choice α(0), α(1), . . .

eventually we hit the bar V
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Example of a bar
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Brouwer’s Fan Theorem

Brouwer’s Fan Theorem can then be stated as the implication

V bars X → ∃N∀αV (α(N))

or any bar is a uniform bar

This holds classically: compactness of Cantor space
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Brouwer’s Fan Theorem

One possible formulation would then be

∀α∃nV (α(n)) → ∃N∀αV (α(N))

However, this does not hold constructively

Kleene defined explicitely V such that

(1) one can find arbitrary long finite sequences not in V

(2) any computable α is barred by V

Intuitively, reduces to the fact that we can enumerate computable functions
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Brouwer’s Fan Theorem

In constructive mathematics, such as developed by Bishop, one cannot prove

V bars X → ∃N∀αV (α(N))

if we identify V bars X with ∀α∃nV (α(n))

One intuition: we want to express that for any sequence of successive choices
α(0), α(1), α(2), . . . we will eventually get a number n such that V (α(n)) but
we do not want to restrict this sequence of choices to one given by a law
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Brouwer’s Fan Theorem

∀α∃nV (α(n)) → ∃N∀αV (α(N))

This is also not provable in dependent type theory, where we analyse the
meaning of universal quantification

The problem is that we consider X as a set of its points

We do not force in the formalism N → {0, 1} to only consist of computable
functions

Not clear how to change this meaning to make this implication valid (maybe
some hints toward the end of the talk)
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What is a bar?

Solution in constructive mathematics: to define V bars X in a point-free way

We define V bars σ inductively

(1) V bars σ if V (σ)

(2) V bars σ if V bars σ0 and V bars σ1

Define then V bars X to mean V bars ()

Then we can prove V bars X → ∃N∀αV (α(N))
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What is a bar?

The inductive definition of V bars () is the correct formal expression of a
universal quantification over all sequences, not necessarily given by a law

More generally V bars σ describes in a correct way Cantor space as a
topological space

This is a motivation for point-free topology, where one describes a space not
as a collection of points, but in term of its basic open and a covering relation
V bars σ described inductively
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What is a bar?

“We consider the arguments given by Brouwer 1927 in the proof of the bar
theorem, rather as an intuitive analysis justifying the definition we have adopted
of what it means for a Π1

1 statement to hold.”

P. Martin-Löf Notes on Constructive Mathematics, 1968

See also the end of W. Veldman Intuitionism, an inspiration?, 2021
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The continuum

The same analysis can be done for [0, 1]

The fact that such a space cannot be considered as the set of its points is
stressed in a forceful way by H. Weyl

Über due neue Grundalgenkrise der Mathematik, 1921
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The continuum

This point-free approach was also adopted by Lorenzen (for Cantor-Bendixson)

Logical reflection and formalism, 1958

“This new analysis will never have to use the “naive” concept of a set, and
so I would like to call it a “critical” analysis... In a critical analysis, however, one
would have to avoid not only in the results, but also in the proofs, any reference
to the naive concept of relation or function. In work on recursive analysis this
latter is often not done.”
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What is a space?

What is a space?

Defined in term of basic open and covering relation

If we write αεσ for ∃nσ = α(n) and αεV for ∃nV (α(n))

V bars σ is the “correct” formulation of

∀α αεσ → αεV
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What is a space?

“Phenomemological” description of the space in term of finite syntactical
elements, without assuming the space to be a collection of its points

Strong analogy with thermodynamics which describes phenomena without
assuming a reduction in terms of molecular details or microscopic processes
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What is a space?

The same approach works in algebra for representing the Zariski spectrum of
a ring R

Distributive lattice generated by symbols D(a) and relations

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a+ b) 6 D(a) ∨D(b)

Such a description would not be possible in terms of points (prime ideals)
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Algebraic closure

Each syntactical/finite element σ can be thought of as a possible finite piece
of information/knowledge about a “generic” sequence α

We have the basic covering σCσ0, σ1 which describes the topology of Cantor
space X

The notion of site introduced by Grothendieck generalizes this situation

It can be used to describe constructively the algebraic closure of a field F
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Constructive algebra

Algebraic closure in constructive mathematics??

The problem is more basic than use of Zorn’s Lemma

We cannot decide if a given polynomial in F [X] is irreducible or not

Theorem: The sentence (∀x x2 + 1 6= 0) ∨ ∃x x2 + 1 = 0 is not provable
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Algebraic closure

F field

A finite approximation of the algebraic closure of F can be thought of as a
triangular algebra

Definition: A F -algebra is triangular if it can be obtained from F by a
sequence of (formal) monic separable extensions

Monic: leading coefficient is 1

P separable: we have AP +BP ′ = 1 “all roots are simple roots”
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Algebraic closure

Example: Q[x] where x2 = 3 and then Q[x, y] where y3 + xy + 1 = 0

Theorem: If R is triangular then R = R/(a)×R[1/a] for all a in R

Furthermore R/(a) and R[1/a] are products of triangular algebras

What is important is that the computations never involve irreducibility tests,
only computations of g.c.d. of polynomials
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Algebraic closure

The triangular algebra plays the role of finite binary sequences

Basic covering? We define a site, notion introduced by Grothendieck

Objects: triangular F -algebra

Maps: maps of F -algebra

Coverings:

R = R1 × · · · ×Rm for instance R = R/(a)×R[1/a]

R→ R[X]/(P ) with P separable monic polynomial
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Site

What is a sheaf over this site?

We should have L(R) set for each R with transition maps L(R)→ L(S)

(1) L(R) = L(R1)× · · · × L(Rm) if R = R1 × · · · ×Rm

(2) sheaf condition for L(R)→ L(R[X]/(P ))
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Algebraic closure

In the topos model over this site, we can consider the presheaf

L(R) = Hom(F [X], R)

(Note that F [X] is not in the base category, not being triangular)

L(R) can be identified with the set of elements of the algebra R

Theorem: L is actually a sheaf and is the (separable) algebraic closure of F
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Algebraic closure

In this sheaf model, L satisfies the following axioms

1 6= 0 ∀x x = 0 ∨ ∃y (xy = 1)

∀x1...xn∃x xn + x1x
n−1 + · · ·+ xn = 0

∀x
∨
P P (x) = 0

where the disjunction is over all monic separable polynomials P in F [X]

So L is the algebraic closure of F

But L is not defined as a set
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Algebraic closure

L is not given as a set but as a collection of sets L(R)

Each triangular algebra R can be described by a finite syntactical object

At any stage of knowledge R, we only have access to a finite approximation
of the algebraic closure
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Algebraic closure

This is compatible with the description of Galois, Abel, Kronecker in term of
adjoining a finite number of algebraic quantity

This point is stressed by Harold Edwards, in Divisor Theory

“It is usual in algebraic geometry to consider function fields over an
algebraically closed field-the field of complex numbers of the field of algebraic
numbers-rather than over Q. In the Kroneckerian approach, the transfinite
construction of algebraically closed field is avoided by the simple expedient of
adjoining new algebraic numbers to Q as needed.”
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Algebraic closure

“The necessity of using an algebraically closed ground field introduced-and
has perpetuated for 110 years-a fundamentally transcendental construction at
the foundation of the theory of algebraic curves. Kronecker’s approach, which
calls for adjoining new constants algebraically as they are needed, is much more
consonant with the nature of the subject.”

in Mathematical Ideas, Ideals and Ideology, 1992
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Algebraic closure and computations

“Clearly, a numerical extension of a numerical extension is a numerical
extension. Moreover, given two numerical extension L and L′ of the same
function field K, there is a third numerical extension L′′ of K which contains
subextesions isomorphic to L and L′.”

The algebraic closure of K is conceived as an open, never finished totality
that we can only access through its finite approximations
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Algebraic closure

This is to be contrasted with Dedekind-Weber’s approach who used for L the
set of all complex numbers (or of all algebraic number)

Dedekind actually defined a field as a subset of the set C

To use the set C as a complete totality was important for Dedekind and
Weber, but not for Kronecker, not being “consonant with the nature of the
subject”

The fact that Kronecker never considered C as an actual totality is missed in
Bourbaki’s historical notes who writes that Kronecker was concerned with ideals
of C[X1, . . . , Xn]
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Algebraic closure and computations

In this approach the algebraic closure is never given in its totality but suitable
finite approximations are unfolded by doing computations

This model is effective

This description was motivated by the dynamical technique introduced in
computer algebra by Dominique Duval (1985)

cf. Teo Mora’s book

Solving Polynomial Equation Systems: the Kronecker-Duval Philosophy

32



Point-Free Topology and Sheaf Models

Example of computation

E.g. Abhyankar’s proof of Newton-Puiseux Theorem

Algebraic Geometry for Scientists and Engineers

course notes taken by Sudhir Ghorpade

Th. C. and Bassel Mannaa A sheaf model of the algebraic closure, 2014

For instance, given an equation y4 − 3y2 + xy + x2 = 0 find y as a formal
serie in x (in general x1/n)?

The coefficients of this power serie have to be in an algebraic extension of Q
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Algebraic closure

We first prove that theorem assuming an algebraic closure of Q

We need to consider structures we can build from L, in this examples L((X))

Theorem: ∪nL((X1/n)) is separably closed

Hence for y4 − 3y2 + xy + x2 = 0 we can describe y as a formal serie in x
with coefficients in L
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Algebraic closure

Since this interpretation is effective, we can compute y in y4−3y2+xy+x2 = 0
as a formal serie in x in a triangular algebra Q[a, b] with a2 = 13/36 and b2 = 3

This finite extension is created or actualized by the computation

The algebraic closure is only given in a potential way
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Algebraic closure

If F is countable there exists a construction of the algebraic closure of F

cf. A Course on Constructive Algebra, by Mines, Richman and Ruitenburg

But this involves a non canonical enumeration

So even in the countable case, this description in term of a potential totality
seems both conceptually and computationally preferable

The classical argument involves a non canonical enumeration or Zorn’s Lemma
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Field as an actual totality

At around the same time (1897), Hensel introduced Qp

Yet another example of field as an actual totality

Algebraic p-adic numbers

F. Kuhlmann. H. Lombardi, H. Perdry

Dynamic computations inside the algebraic closure of a valued field, 2003
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What is going on?

This way to build the algebraic closure is a special case of a general way to
build the classifying topos of a geometric theory

The simplest example: theory of an infinite set

∀x1,...,xn∃x x 6= x1 ∧ · · · ∧ x 6= xn

The site is the following

objects are finite sets, maps are arbitrary functions

basic covering X → X,x
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Classifying topos

Yet another example is the theory

¬(x < x) x < y ∧ y < x→ x < z ∃y (x < y)

which does not have any finite model

The classifying topos provides a finitistic model theoretic proof of consistency
of this theory

Th. C. A completness proof for geometric logic, 2004

39



Point-Free Topology and Sheaf Models

What is going on?

This is reminiscent of some remarks in Formalism 64, A. Robinson

“I was less definite in dicussing the logic which applies to systems of unbounded
extent, i.e. which are potentially infinite. I now wish to suggest that for these a
form of Modal Logic may be appropriate.”

Appendix A Notion of Potential Truth

“It corresponds to the intuitive idea that an existential sentence is potentially
true in a given structure if we can find an element that satisfies it by extending
the structure far enough in the right direction.”
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Algebraic closure

Grothendieck’s idea was that a sheaf model can be thought of as a new
“frame” where one can develop mathematics

If A and B are sheaves, we can form A×B and A→ B as sheaves

We can develop mathematics in this new “frame”, e.g. define what is a group,
what is a field, and so on
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What is going on?

The algebraic closure of F may not exist in Sh(1) the usual frame of sets,
but may exist in Sh(S) the frame of sheaves over S

J.L. Bell, From Absolute to Local Mathematics, 1988

Parallel with physics

Let S be a “space” (given as a point-free space or by a Grothendieck site)

Canonical map f : S → 1 and f∗ : Sh(1)→ Sh(S)

f∗ allows us to change the frame of reference
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What is going on?

Bell: This is like change of reference frames in physics

Each frame has it own notion of functions

E.g. there may be more functions N→ {0, 1} in Sh(S) then in Sh(1)

V bars σ described in Sh(1) captures the fact that in any possible sheaf model
Sh(S) we have ∀α∃nV (α(n))
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What is going on?

In Sh(1) we have the field F

It may not have an algebraic closure in Sh(1)

In Sh(S) the field F has a (separable) algebraic closure!
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Conclusion

Constructive mathematics contains examples of collections that are given only
in a potential way

Not only uncountable collections such as Cantor space of [0, 1], but also
collections that classically may be countable, e.g. algebraic closure of a field

One can argue that this description is more consonent with the nature of what
is going on mathematically

This description is also “dynamic” with e.g. an open notion of binary functions

I found it interesting that the notion of site, and of classifying topos, introduced
by Grothendieck, seems to represent well Kronecker’s approach
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