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Introduction

The infinite version of Ramsey’s Theorem is clearly not valid intuitionistically: even in the
simple case where we color N in two colors in a recursive way, one cannot decide which color
will appear infinitely often, and even less enumerate an infinite monochromatic subset. However,
W. Veldman [5] found an elegant version of Ramsey’s Theorem, directly equivalent classically to
the infinite version, which is valid intuitionistically. Define a n-ary relation R to be almost-full
iff for any infinite subset z1,22,... we can find iy < ... < 4 such that R(z;,,...,x;, ). The
intuitionistic Ramsey’s Theorem states that the intersection of two almost-full relations is almost
full (this can be seen as a generalisation of Dickson’s Lemma). This is valid intuitionistically
using Brouwer’s thesis [5]! and implies another intuitionistically valid statement of Ramsey’s
Theorem [1] which can be seen as a generalisation of Paris-Harrigton’s Theorem. The goal of
this note is to present a simple direct proof of the intuitionistic Ramsey’s Theorem. Indeed, this
can be seen as a simple proof of the usual version of Ramsey’s Theorem. Our version generalizes
both Veldman’s and the clopen version of Ramsey Theorem [2].

Intuitionistic Ramsey Theorem

We consider an arbitrary set X, and the set ¥ of finite sequences of elements in X. An element
of ¥ is either the empty sequence () or of the form xo for a sequence o and z element of X.
The predicates on ¥ form a distributive lattice L for the operation (A A B)(o) = A(o) A B(o)
and (AV B)(0) = A(o) vV B(o). We write A < B to mean that A(c) implies B(o) for all o. If
A is a predicate on ¥ and x an element of X we write A -z for the predicate (A -x)(0) = A(zo)
and A[z] for the predicate AV A - x. To any k-ary relation R on X we associate the predicate
R on X defined as follows: R(x7...zy) holds iff n > k and R(z1,..., ;) holds. If there is no
confusion, we may write simply R for R. We write 1 the predicate on X such that 1(o) holds
for all o. For two predicates A, B on ¥ we have A = B iff A(o) <> B(o) for all 0.

We formulate the results in a more general setting. Let D be a distributive lattice with a
top element 1 and an action of X over D, written a - x, so that we have

(avVb)-z=a-zVb-x (anb)-x=a-xANb-x l-z=1

We define a[z] = a V a - z. Notice that we have (a V b)[z] = a[x] V b[z] but we have (a A b)[z] =
(aAb)V (a-x Ab-z) which is not equal to a[z] A b[z] in general.

We define inductively the property Ar(a) when a has an arity (which may be transfinite).
We have Ar(a) iff

1. either -z = a for all z in X or

'The proof in [5] uses the finite version of Ramsey’s Theorem.



2. Ar(a-x) for all z in X.

In the case of the lattice L, it is direct by induction on n that Ar(R) for any n-ary relation
R. In this case, another way to state the base case, that A -z = A for all x, is that we have

A(o) < A() for any o.
We define next when the element a is almost-full: we have AF(a) iff

1. either 1 = a or

2. AF(alz]) for all z in X.

Intuitively, for the lattice L, this means that for any infinite sequence x1,z9,... we can find
i1 < ... < such that A(z;, ...z;,0) holds for all 0.
Let a,b, 7, s be given elements of D.

Lemma 0.1 If we have a < b then AF(a) implies AF(b).

Proof. By induction on the proof of AF(a), using the fact that a < b implies a[z] < b[x]. O

Lemma 0.2 If we have 1 = a V r then AF(bV s) implies AF(aV bV (r A s)).

Proof. By induction on the proof of AF(bV s). If we have 1 = bV s then we have 1 = aVbV (rAs).
If we have AF(b[z] V s[z]) for all x then we have AF(a V blx] V (r A s[z])) by induction. Since
a-xzVr-z=1wehaverAs-z<a-zV(r-zAs-z)andso

aVblz]V(rAsz]) <(aVbV(rAs))z]
Usin Lemma 0.1, we get AF((a VbV (r A s))[z]) for all z, hence the result. O

Lemma 0.3 Ifwe haver-x = r for all x in X then AF(aVr) and AF(bVs) imply AF(aVbV(rAs)).

Proof. By induction on the proof of AF(a V r). Lemma 0.2 deals with the base case where
1 =aVr. If we have AF((a V r)[z]) for all 2 then we have by induction AF(alz]V bV (r[x] A 's))
and so AF(alz] VbV (r A s)) since r[z] = r. We have

alr] VOV (rAs)<(aVbV(rAs))z]
and using Lemma 0.1 we get that AF((a VbV (r A s))[z]) for all x, hence the result. O

Theorem 0.4 If we have Ar(r) and Ar(s) then AF(aVr) and AF(bV s) imply AF(aVbV (rAs)).

Proof. By induction first on the proof of Ar(r) and Ar(s) and then on the proof of AF(a V 1)
and AF(bV s). Lemma 0.3 deals with the case where we have r-x =r forall z or s -z = s
for all z. Lemma 0.2 deals with the case where 1 = aV r or 1 = bV s. The remaining case
is when Ar(r - z) and Ar(s - z) and AF(a[z] V r[z]) and AF(b[x] V s[z]) for all z. By induction
we get AF(a[z] VbV (r[z] A's)) and AF(a Vv b[z] V (r A s[z])) for all z. Using Lemma 0.1 this
implies AF(a[z] V b[z] V (r A's) Vr-x) and AF(alz] V b[z] V (r A s) V s-x). By induction we get
AF(alz]Vb[z]V (rAs)V (r-zAs-z)) and so AF((aVbV (rAs))[z]) for all z, hence the result. [

Corollary 0.5 If we have Ar(r) and Ar(s) then AF(r) and AF(s) implies AF(r A s).



Comments

Classically, this result implies directly the usual version of Ramsey Theorem. For instance, if
we have a 2-coloring x : Nx N — {0, 1} of N, and we define R;(n,m) to be n = mV x(n,m) =1
then Ry N Ry is the empty relation, so it is not almost-full, and so Ry or R; is not almost-full,
which gives an infinite monochromatic subset.

This argument is quite similar to the argument proving the so-called clopen version of
Ramsey’s Theorem in [2] (W. Veldman had independently found an intuitionistic proof of this
result), and is also similar to the argument presented in [6] (but without explicit mention to
choice sequences). Classically, the clopen version implies the usual infinite Ramsey’s Theo-
rem. Intuitionistically, this implication does not seem to hold and the argument presented here
is a common generalization of both the clopen version and Veldman’s intuitionistic Ramsey
Theorem.

We end by the following conjecture, inspired by Hindman’s Theorem [3], as generalized by
Milliken [4]. If X is furthermore a commutative monoid, and we have another action r + x on
D, satisfying

(r+z)+y=r+(x+y) (r+z)-y=r-(z+vy)

and if we redefine AF(r) as either 1 =7 or AF(r V (r-x) V (r 4+ z)) for all x, we still have then
that the elements satisfying both Ar and AF are closed under the meet operation.
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