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Introduction

The infinite version of Ramsey’s Theorem is clearly not valid intuitionistically: even in the
simple case where we color N in two colors in a recursive way, one cannot decide which color
will appear infinitely often, and even less enumerate an infinite monochromatic subset. However,
W. Veldman [5] found an elegant version of Ramsey’s Theorem, directly equivalent classically to
the infinite version, which is valid intuitionistically. Define a n-ary relation R to be almost-full
iff for any infinite subset x1, x2, . . . we can find i1 < . . . < ik such that R(xi1 , . . . , xik). The
intuitionistic Ramsey’s Theorem states that the intersection of two almost-full relations is almost
full (this can be seen as a generalisation of Dickson’s Lemma). This is valid intuitionistically
using Brouwer’s thesis [5]1 and implies another intuitionistically valid statement of Ramsey’s
Theorem [1] which can be seen as a generalisation of Paris-Harrigton’s Theorem. The goal of
this note is to present a simple direct proof of the intuitionistic Ramsey’s Theorem. Indeed, this
can be seen as a simple proof of the usual version of Ramsey’s Theorem. Our version generalizes
both Veldman’s and the clopen version of Ramsey Theorem [2].

Intuitionistic Ramsey Theorem

We consider an arbitrary set X, and the set Σ of finite sequences of elements in X. An element
of Σ is either the empty sequence () or of the form xσ for a sequence σ and x element of X.
The predicates on Σ form a distributive lattice L for the operation (A ∧ B)(σ) = A(σ) ∧ B(σ)
and (A ∨ B)(σ) = A(σ) ∨ B(σ). We write A 6 B to mean that A(σ) implies B(σ) for all σ. If
A is a predicate on Σ and x an element of X we write A ·x for the predicate (A ·x)(σ) = A(xσ)
and A[x] for the predicate A ∨ A · x. To any k-ary relation R on X we associate the predicate
R on Σ defined as follows: R(x1 . . . xn) holds iff n > k and R(x1, . . . , xk) holds. If there is no
confusion, we may write simply R for R. We write 1 the predicate on Σ such that 1(σ) holds
for all σ. For two predicates A,B on Σ we have A = B iff A(σ)↔ B(σ) for all σ.

We formulate the results in a more general setting. Let D be a distributive lattice with a
top element 1 and an action of X over D, written a · x, so that we have

(a ∨ b) · x = a · x ∨ b · x (a ∧ b) · x = a · x ∧ b · x 1 · x = 1

We define a[x] = a ∨ a · x. Notice that we have (a ∨ b)[x] = a[x] ∨ b[x] but we have (a ∧ b)[x] =
(a ∧ b) ∨ (a · x ∧ b · x) which is not equal to a[x] ∧ b[x] in general.

We define inductively the property Ar(a) when a has an arity (which may be transfinite).
We have Ar(a) iff

1. either a · x = a for all x in X or
1The proof in [5] uses the finite version of Ramsey’s Theorem.
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2. Ar(a · x) for all x in X.

In the case of the lattice L, it is direct by induction on n that Ar(R) for any n-ary relation
R. In this case, another way to state the base case, that A · x = A for all x, is that we have
A(σ)↔ A() for any σ.

We define next when the element a is almost-full: we have AF(a) iff

1. either 1 = a or

2. AF(a[x]) for all x in X.

Intuitively, for the lattice L, this means that for any infinite sequence x1, x2, . . . we can find
i1 < . . . < ik such that A(xi1 . . . xikσ) holds for all σ.

Let a, b, r, s be given elements of D.

Lemma 0.1 If we have a 6 b then AF(a) implies AF(b).

Proof. By induction on the proof of AF(a), using the fact that a 6 b implies a[x] 6 b[x].

Lemma 0.2 If we have 1 = a ∨ r then AF(b ∨ s) implies AF(a ∨ b ∨ (r ∧ s)).

Proof. By induction on the proof of AF(b∨s). If we have 1 = b∨s then we have 1 = a∨b∨(r∧s).
If we have AF(b[x] ∨ s[x]) for all x then we have AF(a ∨ b[x] ∨ (r ∧ s[x])) by induction. Since
a · x ∨ r · x = 1 we have r ∧ s · x 6 a · x ∨ (r · x ∧ s · x) and so

a ∨ b[x] ∨ (r ∧ s[x]) 6 (a ∨ b ∨ (r ∧ s))[x].

Usin Lemma 0.1, we get AF((a ∨ b ∨ (r ∧ s))[x]) for all x, hence the result.

Lemma 0.3 If we have r·x = r for all x inX then AF(a∨r) and AF(b∨s) imply AF(a∨b∨(r∧s)).

Proof. By induction on the proof of AF(a ∨ r). Lemma 0.2 deals with the base case where
1 = a∨ r. If we have AF((a∨ r)[x]) for all x then we have by induction AF(a[x]∨ b∨ (r[x]∧ s))
and so AF(a[x] ∨ b ∨ (r ∧ s)) since r[x] = r. We have

a[x] ∨ b ∨ (r ∧ s) 6 (a ∨ b ∨ (r ∧ s))[x]

and using Lemma 0.1 we get that AF((a ∨ b ∨ (r ∧ s))[x]) for all x, hence the result.

Theorem 0.4 If we have Ar(r) and Ar(s) then AF(a∨r) and AF(b∨s) imply AF(a∨b∨ (r∧s)).

Proof. By induction first on the proof of Ar(r) and Ar(s) and then on the proof of AF(a ∨ r)
and AF(b ∨ s). Lemma 0.3 deals with the case where we have r · x = r for all x or s · x = s
for all x. Lemma 0.2 deals with the case where 1 = a ∨ r or 1 = b ∨ s. The remaining case
is when Ar(r · x) and Ar(s · x) and AF(a[x] ∨ r[x]) and AF(b[x] ∨ s[x]) for all x. By induction
we get AF(a[x] ∨ b ∨ (r[x] ∧ s)) and AF(a ∨ b[x] ∨ (r ∧ s[x])) for all x. Using Lemma 0.1 this
implies AF(a[x] ∨ b[x] ∨ (r ∧ s) ∨ r · x) and AF(a[x] ∨ b[x] ∨ (r ∧ s) ∨ s · x). By induction we get
AF(a[x]∨ b[x]∨ (r∧s)∨ (r ·x∧s ·x)) and so AF((a∨ b∨ (r∧s))[x]) for all x, hence the result.

Corollary 0.5 If we have Ar(r) and Ar(s) then AF(r) and AF(s) implies AF(r ∧ s).
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Comments

Classically, this result implies directly the usual version of Ramsey Theorem. For instance, if
we have a 2-coloring χ : N×N→ {0, 1} of N, and we define Ri(n,m) to be n = m∨χ(n,m) = i
then R0 ∩R1 is the empty relation, so it is not almost-full, and so R0 or R1 is not almost-full,
which gives an infinite monochromatic subset.

This argument is quite similar to the argument proving the so-called clopen version of
Ramsey’s Theorem in [2] (W. Veldman had independently found an intuitionistic proof of this
result), and is also similar to the argument presented in [6] (but without explicit mention to
choice sequences). Classically, the clopen version implies the usual infinite Ramsey’s Theo-
rem. Intuitionistically, this implication does not seem to hold and the argument presented here
is a common generalization of both the clopen version and Veldman’s intuitionistic Ramsey
Theorem.

We end by the following conjecture, inspired by Hindman’s Theorem [3], as generalized by
Milliken [4]. If X is furthermore a commutative monoid, and we have another action r + x on
D, satisfying

(r + x) + y = r + (x+ y) (r + x) · y = r · (x+ y)

and if we redefine AF(r) as either 1 = r or AF(r ∨ (r · x) ∨ (r + x)) for all x, we still have then
that the elements satisfying both Ar and AF are closed under the meet operation.

References

[1] Th. Coquand. An analysis of Ramsey’s Theorem. Information and Computation 110(2), p.
297-304, 1994.

[2] Th. Coquand. A Boolean model of ultrafilers. Annals of Pure and Applied Logic, Vol. 99,
p. 231-239, 1999.

[3] N. Hindman. Finite sums from sequences within cells of a partition of N . Journal of
Combinatorial Theory (A), vol. 17, p. 1-11, 1974.

[4] K.R. Milliken. Ramsey’s Theorem with Sums of Unions. Journal of Combinatorial Theory
(A), vol. 18, p. 276-290, 1975.

[5] W. Veldman and M. Bezem. Ramsey’s Theorem and the Pigeonhole Principle in Intuition-
istic Mathematics. Journal of the London Mathematical Society (2), 47:193-211, 1993.

[6] W. Veldman. An intuitionistic proof of Kruskal’s theorem. Arch. Math. Logic 43, 215-264
(2004).

3


