Paradoxes and Definitions

Thierry Coquand

Thanks to Thorsten for so many interesting discussions!

Some discussions with Thorsten

Type theory as total fragment of functional programming, 1995
Talk in Göteborg about extensional equality, November 1997
Discussion about fragment of system F, 2000
Discussion in a plane back from Nara about normalisation, 2005
Question about types not being of hlevel $n, 2013$
Discussions about parametricity, 2013

Inductive types in System F

$T:$ type \rightarrow type \quad mon: $\Pi_{X} Y$:type $(X \rightarrow Y) \rightarrow T X \rightarrow T Y$
If $f: X \rightarrow Y$ we write $T f: T X \rightarrow T Y$ for $\operatorname{mon} f$
Weak initial T-algebra $A=\Pi_{X \text { :type }}(T X \rightarrow X) \rightarrow X$
If $f: T X \rightarrow X$ we have $\iota(f): A \rightarrow X$
$\iota(f) a=a X f$

Inductive types in System F

We can define intro: $T A \rightarrow A$
intro $=\lambda_{u: T} A \lambda_{X: \text { type }} \lambda_{f: T} X_{\rightarrow X} f(T \iota(f) u)$
We have a (strict) map of T-algebras

Inductive types in System F

In particular we get match $=\iota(T$ intro $): A \rightarrow T A$ and commuting diagram

In general $\delta=$ intro \circ match : $A \rightarrow A$ is not strictly the identity function
We need $T \delta=$ match \circ intro to be the identity, i.e. $T A$ as a retract of A

Inductive types in System F

Problem with predecessor in system F
One motivation for introducing inductive definitions as primitive notions
In this case, we have match (intro z) $=z$ as computation rule

Reynolds 1984

Reynolds 1984 considers the particular case $T X=P^{2} X$ with $P X=\Omega^{X}$
One can use $\Omega=$ type to get a new paradox with type : type (Th. C. 1989)
If we work with PERs, we get a type A_{0} isomorphic to $T A_{0}=P^{2} A_{0}$
Since $P A_{0}$ is a retract of $P^{2} A_{0}$ it is then a retract of A_{0}
We can then apply Russell's paradox
Since $\left(A_{0} \rightarrow B\right) \rightarrow B$ and A_{0} are well-known to have different cardinalities, we have a contradiction

Variation of Reynolds/Hurkens

Hurkens used $\Pi_{X \text { :type }}(T X \rightarrow X) \rightarrow T X$ instead of $\Pi_{X: \text { type }}(T X \rightarrow X) \rightarrow X$
But his argument works as well with Reynolds $A=\Pi_{X: \text { type }}(T X \rightarrow X) \rightarrow X$ It only uses that we have a strict weak initial T-algebra

It can be seen as a direct proof that we cannot have $P^{2} A$ retract of A
Don't need to refer to Russell's paradox

Variation of Reynolds/Hurkens

Assume first that match : $A \rightarrow T A$ is a strict retract map via intro:TA A
Consider $p_{0}: P$ and $x_{0}: A=$ intro α_{0} and $C x p=\neg(p x \wedge$ match $x p)$
$p_{0} x=\forall_{p: P A} C x p$
$\alpha_{0} p=\quad \forall_{x: A} C x p \quad=$ match $x_{0} p$
We have $\forall_{x: A} C x p_{0}$ that is match $x_{0} p_{0}$
But also $\forall_{p: P ~}^{A} C x_{0} p$ that is $p_{0} x_{0}$
We get $p_{0} x_{0} \wedge$ match $x_{0} p_{0}$ hence a contradiction

Variation of Reynolds/Hurkens

```
p0 : A -> Set
p0 x = (p : A >> Set) -> p x >> not (match x p)
X0 : T A
X0 p = (x : A) -> p x -> not (match x p)
x0 : A
x0 = intro X0
lem1 : X0 p0
lem1 x h = h p0 h
lem2 : p0 x0
lem2 p h h1 = h1 x0 h h1
loop : abs
loop = lem2 p0 lem2 lem1
```


Variation of Reynolds/Hurkens

The same argument works in general with intro \circ match $=\delta$ using instead
$p_{0} x=\forall_{p: P A \neg(p(\delta x) \wedge \text { match } x p)}$
$\alpha_{0} p=\quad \forall_{x: A} \neg(p x \wedge$ match $x p)$
We use stability of p_{0} and α_{0}
$p_{0} x \rightarrow p_{0}(\delta x)$
$\alpha_{0} p \rightarrow \alpha_{0}(p \circ \delta)$

Variation of Reynolds/Hurkens

This does not look like Burali-Forti??
Because of δ not being the identity the proof of \perp does not reduce to itself

Definitional equality

In order to reason about this paradox, one needs to use "abbreviations"
This is stressed both by Hurkens 1995 and Barendregt 1990
E.g. A : type $=\Pi_{X: \text { type }}(T X \rightarrow X) \rightarrow X$
$p_{0}: A \rightarrow$ type $=\lambda_{x: A} \forall_{p: A \rightarrow \text { type }} \neg(p x \wedge$ match $p x)$
This is definitional equality

Definitional equality

Definitional equality cannot be reduced to abstraction and application
$\left(\lambda_{P: \text { type } \rightarrow \text { type }} \ldots P \ldots P \ldots\right)\left(\lambda_{X: \text { type }} X \rightarrow\right.$ type $)$
Geuvers and Nederpelt system λD Type Theory and Formal Proof
de Bruijn system $\lambda \Delta$
Importance of head linear reduction
This is exactly what is needed to analyse the behavior of paradoxes but more generally of any proof

Head Linear Reduction

```
p0 : Pow A = [z : A][p : Pow A]p (delta z) -> not (match z p)
X0 : T A = [p : Pow A][z : A] p z >> not (match z p) x0 : A = intro X0
stablep0 : [z : A]p0 z -> p0 (delta z) = [z : A][hz : p0 z][p : Pow A]hz (cDelta p)
stableX0 : [p : Pow A]X0 p -> X0 (cDelta p) = [p : Pow A][hp : XO p][z : A]hp (delta z)
lem1 : [p : Pow A]p x0 -> not (X0 p) = [p : Pow A][hp : p x0] [h0 : X0 p]h0 x0 hp (stableX0 p h0)
lem2 : [z : A]p0 z -> not (match z p0) = [z : A][hz : p0 z]hz p0 (stablep0 z hz)
lem3 : [p : Pow A]p (delta x0) -> not (match x0 p) = [p : Pow A]lem1 (cDelta p)
loop : abs = lem1 p0 lem3 lem2
```


Head Linear Reduction

```
loop
lem1 p0 lem3 lem2
lem2 x0 lem3 (stableX0 p0 lem2)
lem3 p0 (stablep0 x0 lem3) (stableX0 p0 lem2)
lem1 (cDelta p0) (stablep0 x0 lem3) (stableX0 p0 lem2)
stableX0 p0 lem2 x0 (stablep0 x0 lem3) (stableX0 (cDelta p0) (stableX0 p0 lem2))
lem2 (delta x0) (stablep0 x0 lem3) (stableX0 (cDelta p0) (stableX0 p0 lem2))
```


Head Linear Reduction

We do need head linear reduction
lem2 x0 lem3 (stableX0 p0 lem2)
lem3 p0 (stablep0 x0 lem3) (stableX0 p0 lem2)

Head Linear Reduction

Analysis of a general argument
We want to be able to analyse a given instantiation of this argument
We can simplify some lemmas in this special case, find some variations
We may then want to generalise this special case

How to Implement Definitions?

Should already be interesting to re-investigate even without data types
Cf. András Kovács
For executing functional programs, the standard practice is to have
-Immutable program code, which may be machine code or interpreted code.
-Runtime objects, consisting of constructors and closures.
The basic idea is to use the above setup during elaboration, with some extensions.

How to Implement Definitions?

Problem with definitions
[x : Bool] [y : Bool = x] [x : Nat]

What is the value of y at this point?
Hiding some definitions?
On going work with D. Grätzer, J. Sterling, C. Anguili, L. Birkedal
Use extension types

