458

PLAN
A New Formulation

1) Locat
of and i

: (unde
Constructive Type Theory

2) Skete
overc

3) Some
trans

David Turner |

University of Kent [Note - 1
England | develop
language

ory

2592

1) Locate constructive type theory
and identify a problem
(undecidability of well-typing)

2) Sketch of new theory
overcoming problem

3) Some remarks about referential
transparency

[Note - underlying motivation is to
develop practical programming
language based on ctt]

260

The constructive theory of types
(Martin-L6f 1982) is a collection

of judgements

p:P |
(main form of judgement, there are |
others) |
Admits of two readings
1) proof : PROPOSITION
2) element : TYPE
Elements are always computable,

so CTT 1is also a programming
language

of types
ollection

there are

iputable,
ramming

6/
Example of a judgement
(Ug is universe of types,alias

propositions)

AMA:Ug)a(x:A) x : V(A:Ug) A-> A

This can be read as either

1) a typing for the polymorphic
identity function

or

2) a proof of the (2nd order)
proposition that every first
order proposition implies itself

a62
CTT is two things simultaneously

1) A system of (intuitionist) logic
with a notation for proofs as
well as propositions

2) A strongly typed functional
programming language with the i
unusual property that all |
programs terminate.
(= hereditary totality)

CTT is a theory of a fundamentally
new kind, providing a single
integrated framework for programs
and proofs.

 the

ntally
iingle
grams

a3
The isomorphism between

propositions and types

CTT is based on a discovery made
by H. B. Curry in 1958, of a funny
coincidence between simple typed
lambda calculus and (intuitionist)
propositional calculus.
I1lustration:-

A-A is a tautology

A-B is not a tautology

exists a closed A expression of type A->A

not exists closed A expression of type A-B

DOES THIS ALWAYS WORK 7

YES | |

2%y
Howard showed that this can be
extended to include all the
connectives of (intuitionist)
propositional calculus.

connective logic reading type reading
- 1mp11catioh function space |
& conjunction cartesian product |
v disjunc'tfon disjoint union
1 absurdity empty type

RESULT (Curry/Howard circa 1960)
F is a tautology of intuitionist
propositional calculus iff there is
a closed A expression whose type
can be written as F

(there is a second result relating
normalisability to cut-elimination)

can be
1 the
onist)

ading

) space
Y product

union

ype€

1960)
.fonist
ere is
e type

rlating
yation)

28

The original Curry/Howard
isomorphism is between simple
typed A calculus and intuitionist
propositional calculus, but it is
part of a much more general
relationship between 1logic and
programming.

CTT of Martin-L6f extends the
isomorphism to include both
quantifiers, and higher order forms

(CTT is an w order logic).

In fact the Curry/Howard
isomorphism is the root of a whole
family of theories of which CTT is
only one.

24t
Some of the theories based on the

Curry Howard isomorphism

[1] Howard 1980

“The formulae-as-types notion of construction”
in "To H B Curry, Essays on formalism"”
Academic Press 1980

THE ORIGINAL THEORY OF CURRY AND HOWARD

[2] Martin-L6f 1973

"An intuitionist theory of types - predicative
part” in Logic Collogquium 73 (North Holland)

AN EARLIER VERSION OF CTT

[3] Coaquand and Huet 1985

"A Theory of Constructions” International
Symposium on Semantics of Data Types, Sophia
Antipolis, 1985.

A NEW, IMPREDICATIVE THEORY

[4] Martin-L6f 1982
"Constructive mathematics and computer
programming” reprinted in Mathematical Logic

& Programming Languages, Prentice Hall 1985.
THE NOW STANDARD VERSION OF CTT

Actually [4] is very odd, compared
with the others.

n the

~uction"”
1alism”

WARD

icative
nd)

ational
Sophia

nputer
1 Logic
1985.

yared

267

Theories [1], [2], [3] and others all
have:—

W The : judgement is decidable
B Unicity of type

B Strongly Church-Rosser
(strong normalisability)

BUT all these theories lack an
extensional concept of equality.

e.g. cannot prove within the theory

AMxN)x+1 = AMx:N)1 +x

248
[4] alone has extensional equality

Vx.fx=gx

f =g

this is a fundamental requirement
for reasoning about functions - Per
Martin-LOf abandoned the earlier
version of CTT because it lacked
this rule.

BUT in [4] (the now standard
version of CTT)

B The : judgement is undecidable
B Unicity of type is lost

B Normal forms do not exist
(in general)

THE PRICE OF EXTENSIONALITY ?

ality

~ement
5 - Per
earlier
lacked

andard

jable

Y 7

bIA]

NEW THEORY [Turner 88, full
account in preparation] has

W The : judgement is decidable
B Unicity of type
W Strongly Church-Rosser
B Extensional equality
It is actually rather close to the
old version of CTT [Martin-L6f 73],

but introduces extensional equality
by a different method from that

used in [Martin-L6f 82]

The key step is, equality is a
proposition only, not a judgement.

210

NTT (= new type theory) is a
collection of closed sentences of
the form

p:P

This is the sole form of judgement
- it has the usual two readings

The type operators are |

V 3 v NN NW U =

All bound variables are annotated
with their types (requires some
extra type info to be inserted)

is a
es of

sment

tated
some

2

Judgements are generated by using
two sorts of rules

B Natural deduction rules
written

premise F conclusion
or equivalently

premise

conclusion

B Computation rules
written a -»>> a’
e.g. B, n reduction rules

-»> is strongly Church-Rosser and
preserves validity of judgement

(on both sides of ":")

[Aside:-
so there is a decidable relation

<<->> of definitional equivalence]

UNIVERSES

Ug is collection of all (first order)
propositions or types. |

There is a hierarchy of universes
Ug. Uy, Uy, ... (ramified theory)

Each type belongs to exactly one
universe. Examples

N : UO
(N->N)-((N-N)-=(N-N)) : Ug

UO_’UO:UI

The rule of universe formation is

[U]'F] Ui 3 Ui+1 i20

order)
rses

eory)

ly one

nis

L5

Y formation

If A is a type and B is a family of
types containing zero or more free
occurrences of a variable x of type
A, then V(x:A) B

is the type of dependent functions
from A to B. As proposition means
universally quantified statement

[VF] A:U; , x:A b B:U]—

V(x:A)B : Umax(i,j)

If B does not contain x free, then
V(x:A)B
can be abbreviated to
A->B
the usual function type, which as
proposition means implication.

K52
Y _introduction

X:AFDb:B

AMx:A)b : V(x:A)B

YV elimination
f:V(x:A)B,a: A

f a:Bla/x]

Y computation rules
[B] (A(x:A)b) a ->> bla/x]

[n] Ax:A)x ->» f

(if x not free in f)

| f

)B

Ficl

d formation

If A is a type and B a type formula
containing zero or more free

occurrences of a variable x of type
A, then 3(x:A)B is the type
of dependent pairs (a,b), ..

As proposition means existential.

[3F] AU, x:A b B:U;

A(x:A)B : Upax(i,j)

If x not free in B then
3(x:A)B

may be abbreviated to
A&B

the ordinary pair type.

As proposition means conjunction.

2%

J introduction
a:A , b : Bla/x]

- 3(x:A)B

3(x:A)B °

(a,b)

3 elimination rules

1) p : 3(x:A)B
fst(p) : A
2) p : 3(x:A)B

snd(p) : Blfst(p)/x]

3 computation rules

fst(a,b)T -» a

snd(a,b) ->» b

:A)B

y)/x]

¥

Also straightforward, and
essentially the same as CTT
(except for some extra type
witnessing)

A v B disjunction alias disjoint
union
(introduces conditional branching)

Ny finite type with k members

(introduces case switch)
Special case N is absurdity

alias the empty type

N natural numbers
(introduces primitive recursion
alias mathematical induction)

W(x:A)B general inductive type
gives arbitrary well-founded trees

and transfinite recursion

298
Equality formation

a=Db is proposition expressing the
thought that a, b denote the same

abstract object. Not well formed
unless a, b have the same type.

Since we have unicity of type, we
do not need to writea =) b

an important difference from CTT

[=F] a:A , b:A, A:U;

sing the
e same
formed

/PE.

.ype, we

mCTT

A1
= introduction rules

1) a:A

selfid(a): a = a

2) e:V(x:A) by =b,

ext(e) : A(x:A)b =A(x:A)b,

= elimination (slightly simplified)

e : a=b , p : Pla/x]

subst(e,P,p) : P[b/x]

This is Leibnitz's law
aka the rule of referential
transparency

280

Equality computation rules

1) ext(A(x:A)selfid(b))
->> selfid(A(x:A)b)

2) subst(selfid(a),P,p) -» p
These are needed to ensure that

there is only one proof that an
expression is equal to itself

‘e that
hat an

281

Example of an equality proof

ext(A(n:N)
primrec(n,
selfid(0),
<ind>
)

) : AMn:N)n+0 = A(n:N)n

<ind> is a proof of the proposition
n+0 = n -» suc(n)+0 = suc(n)
here omitted for brevity.

Note that in CTT the whole proof
would be written as just

T A(n:N)n+0 = A(n:N)n

In CTT every true equation has the
same proof, namely the atom r.

In NTT equality proofs have an
internal structure recording how
the equation was proved.

482

A proof of the induction step

Ale:n+0=n)
subst(e,

A(z:N)suc(z)=suc(n),
selfid(suc(n))
)

- D+0=n > suc(n)+0=suc(n)

(n),

suc(n)

283

overall comparison

CTT:i 4 forms of judgement
8 type constructors
128 rules of inference
judgement undecidable

NTT:- 1 form of judgement
8 type constructors
32 rules of inference
judgement decidable

The key advantage of NTT is the
existence of a decision procedure
for well typing

NTT has a finer type structure, so
less judgements are valid. |
However, | believe that the |
propositional consequences are

essentially the same (i.e. no loss

of power in going from NTT to CTT)

28y
Remarks on referential transparency
We are familiar with the principle
of referential transparency - that
in a proposition we may substitute
equals for equals

a=>b, Pla]

P[b]

However in an intuitionist theory

we have not only propositions P,
but also JUDGEMENTS

p:P
Question: Does the principle of ref.
transparency apply to judgements
also?

According to Martin-L6f's CTT,
"yes”.

But is this right?

rency

inciple

- that
stitute

theory
ons P,

of ref,
ments

CTT,

So in NTT judgements are

295

How referential transparency
works in NTT

Suppose we have a proof e of a=b
and suppose we have for some
predicate P, a proof of P[al]

p : P[a]
then by equality elimination we get
subst(e,P,p) : P[b]
S0 propositions are referentially

transparent - but judgements are
not, for we do NOT (usually) have

p : P[b]

referentially opaque

[Compare - in CTT judgement is
referentially transparent. This
makes judgement undecidable,

because equality is undecidable]

a8t
What, technically, is the

difference between proposition and
judgement?

My claim is that there are just two
rules to follow

1) judgement is decidable

2) propositions are ref. transparent

wWhen mathematics reaches the
level that equality becomes
undecidable (functions as values)
it follows inevitably that

1a) judgement is ref. opaque
2a) propositions are undecidable

CLAIM:- CTT went wrong because
Martin-L6f tried to keep judgement
referentially transparent while

introducing an extensional equality

on and

st two

darent

s the
omes
alues)

287
UMMARY OF NTT POSITION

Propositions substitutive under =
but judgements not (because proofs
are not).

However, judgements are fully
substitutive under <<->>, which is a
kind of "syntactic equality”
[Explanation:-

A proposition is a relationship
between abstract objects.

A judgement is a relationship
between syntactic objects.

]

Discussion after David Turner’s talk

David Turner: Ok, that turns out to be more complicated than I first
thought. One computation rule you must have obviously is that a
Subst and a Selfid cancel out. If you have a Selfid in the e-position
in Subsi(e, P,p) ... But you want to know what happens if there is
an = here? It gets quite complicated. It turns out, you have to read
inside and do actual substitution, so you have to have rules for pushing
Subst through formulae, which is not unreasonable because ... when
you compute with it, you end up doing substitutions. It adds a lot of
extra rules because for every constant, you have to have a rule that
says how you push a Subst through it, i.e. push a Subst through a cons
etc.

Per Martin-Lo6f: I just want to say about these equality rules: this is the
same identity rule as I use.

David Turner: Yes, I know.

Per Martin-Lo6f: And I have an elimination operator which is more general
than this Subst and which contains Subst as a special case. They will
compute, if I remember it correctly, the way you’ve just said. The real
important point is this one, the extensionality rule.

David Turner: Right, that’s the thing which is different.

P. Martin-L6f: What you want is apparently what I would call an exten-
sional version of type theory which has at least this extensionality ax-
iom because you may think of other extensions I suppose in addition
to this one.

David Turner: Yes, for example, if you want quotient types then more
things will come in.

Per Martin-Lof: Then my attitude is that you can make perfectly good
sense of these axioms, but you will do that in a way which is analogous
to what I think Gandy was the first to give: an interpretation of ex-
tensional simple type theory into the intensional version of simple type
theory. And Takeuti did later and independently. Something similar

ed than I first
susly is that a
the e-position
»ens if there is
u have to read
iles for pushing
cause ... when
[t adds a lot of
we a rule that
through a cons

tles: this is the

is more general
ase. They will
said. The real

call an exten-
ensionality ax-
»se in addition

>es then more

perfectly good
h is analogous
retation of ex-
of simple type
ething similar

to that can also be done for my type theory i.e. you can formulate an
extensional version of type theory and make sense of it by giving a
formal interpretation into the intensional version.

David Turner: Will that mean that the extensional version will be consis-
tent if the intensional version is?

Per Martin-Lof: Yes, and much more by making precise sense to those
extensional equalities. In that sense you may succeed in making sense
of this. But I don’t think you can claim that it is obvious as it stands.

David Turner: It depends on what you think a function is. If you think a
function is a rule or method than it is not obviously true, if you think
a function is charactarized by its graph then you want that to be true.

Per Martin-L&f: Yes, you want that to be true and so you must clarify this
notion of a function as a graph and that’s precisely what this axiom
does.

David Turner: In the end there is a practical reason. Why I want to think
of functions as characterized by their graphs is that if I write a func-
tional program and there are two ways to define a certain function and
say one of them is more efficient than the other, so I develope my pro-
gram using f. I later want to prove that f is extensionally equal to g.
] want a general principle that tells me I can unplug f and plug in g in
the program and it will still be right, no matter what the program was
doing with f, whether it was applying it or passing it as a parameter
or proving things about it. So that’s why I for quite practical reasons
want to have a rule like this. Because that’s one appeal of functional
programming, that you can code a function in two different ways and
know that they are interchangable in all contexts.

Per Martin-Lf: Two possibilities: either work within the intensional the-
ory and prove that the particular context in which you want to make
the replacement is actually extensional or else work all the time in
an extensional theory but then of course you must remember that the
meaning of everything is rather indirect. You must convince yourself
of the validity of the axioms.

David Turner: Yes, I must be an uninformed classical thinker and deep
down inside I believe that functions are characterized by their graphs.
What I want to say is: if you don’t know this rule then you don’t know
what a function is. If we don’t have this rule we are not talking about
functions, we are talking about algorithms.

Per Martin-Lof: Rather I think you should say that if you haven’t seen
that rule, you don’t know what extensional equality between functions

means. It’s part of the nature of being a function, that the appropriate
kind of equality between functions is extensional.

N.G. de Brujin: Completely independent of this question, you should be
aware of the fact that what you tell here is exactly AUTOMATH in
1968 - and at that moment we knew very well that otherwise the thing
would not be decidable. Well we had some options, we needed to write
all these things as axioms. But I think in this form it was written up
in Jutting’s version of Landau.

David Turner: I can believe that you would have the same proof rules, but

you wouldn’t presumably have the isomorphism between programs and
proofs.

N.G. de Brujin: Well, one was not talking about programs at that moment
, — but mathematics. We still had that possibility, that’s no problem -
but two different equalities: the definitional equality and ...

David Turner: ... you had that distinction ...

N.G. de Brujin: ... and these equalities were only introduced in the book,
they were not in the language-definition at all. In the book you could
choose this treatment, you could also do it in other ways.

David Turner: Which, if any, of the equalities was built into the language?
N.G. de Brujin: Definitional equality.

David Turner: OK and then you just defined the extensional equality from
it.

N.G. de Brujin: You can define it, you can also take it as an axiom.

inker and deep
vy their graphs.
you don’t know
t talking about

u haven’t seen
ween functions
he appropriate

you should be
JTOMATH in
‘wise the thing
eeded to write
vas written up

roof rules, but
programs and

: that moment
no problem -
1 in the book,

ok you could

he language?

2quality from

axiom.

David Turner: So this is more like the position in Martin-Lf’s system that
extensional equality is not basical.

N.G. de Brujin: Martin-Lof did not take that over and you have just
pushed it back again.

Gérard Huet: Don’t you want in your logic of programs to be able to write
a statement such as Quicksort is a better algorithm than Bubblesort?

David Turner: I believe that Quicksort is a better algorithm than Bubble-
sort but I'm not sure that’s the sort of thing you want to say in the
logic. That’s part of the complexity theory. The logic is just going to
tell you that they compute the same function and that is what you want
to know. Logic is not supposed to answer questions about efficiency, is
it?

Bengt Nordstrom: When I see the requirements on your judgements, it’s
like the things to the left of the epsilon are derivations.

David Turner: I suppose it is. The proof object recapitulates the deriva-
tion. I think that’s part of the Curry-Howard isomorphism. This is
true in the theory of constructions as well and it’s true in the original
theory of Howard.

Bengt Nordstrém: But if you have that view, this extensionality require-
ment doesn’t make sense.

David Turner: It’s a requirement on propositions.
q

Bengt Nordstrom: But you’re treating two functions as equal if they are
extensionally equal and the two functions are functions between deriva-
tions ...

David Turner: ... Are you saying that it is inconsistent?

Bengt Nordstrom: No, no. I'm just saying that your motivation behind
this extensionality doesn’t seem to fit with your view of elements as
derivations.

David Turner: ... There are judgements which are about syntax and there
are judgements which are about abstract objects, and there’s a dif-
ferent kind of equality in the two rules and different ways referential
transparency is working in the two rules.

N.G. de Brujin: You can still use the definitional equality of functions as
a notion and work on that and prove theorems about it ... anyway,
that’s how we descibe algorithms in AUTOMATH.

David Turner: Presumably we all agree that there is an interesting rela-
tion on functions, stronger than definitional equality, which is kept as
extensional. What we call that, and how we formalize it, is a different
question, but we’ve got to talk about both things.

Bengt Nordstrom: But my point is that the extensionality view of func-
tions is most interesting when you treat functions as programs, I mean,
your argument about substituting functional programs ...

David Turner: Extensionally equal functions are not interchangable in proofs
— I see what you’re saying, they’re denoting programs. But any propo-
sition I can make about a program is also true about the substituted
program ... If f and g are extensionally equal, I can’t replace f by
g on the left of the colon, because, if it’s a proof, it’s like replacing
stn’z + cos’z = 1 by 1 = 1, which is a silly thing to do. But any
proposition I could make about f, I can make about g, so in particular,
if this program using f is correct, I can make substitution in that and
this program using g is correct. The substitution I want to do is actu-
ally on the right hand side of the colon ... I want to make propositions
about my programs and know they are invariant under substitution of
extensionally equal functions.

Peter Aczel: You have focused on talking about things on the right hand
side of the colon being thought of as propositions, but of course, they
are also to be thought of as types. What’s your story about referential
transparency. Suppose you have an element in a dependent type, de-
pending on some function, and you replace it by an extensionally equal
function, then the element is no longer in the new type. What do you

want to say about that?

atax and there
there’s a dif-
ays referential

f functions as
it ... anyway,

teresting rela-
iich is kept as
, is a different

view of func-
rams, | mean,

ngable in proofs
ut any propo-
1e substituted
replace f by
like replacing
do. But any
in particular,
n in that and
to do is actu-
2 propositions
ubstitution of

1e right hand
i course, they
wut referential
ent type, de-
sionally equal
What do you

|
|
|

293

David Turner: I think what I say is that it is a special case of this : I may
have a : A and A = B, but I’m not going to get a : B ... My kind
of types is not extensional because equal types don’t have the same
members. What’s true is there’s going to be an @ : B. So they’re
isomorphic. But they don’t behave extensionally and that’s why I
think, for example, it would be quite wrong to call them sets. They’re
not types. Membership is intensional, not extensional.

Per Martin-L6f: What do you mean by the equality there, A = B?

David Turner: It’s generated by the substitution rules from the equality
on terms.

Per Martin-Lo6f: So it just means that, in set theoretic terms, if one is
nonempty then the other is nonempty and vice versa.

David Turner: No, it means more than that. For example, it will mean
that there’s a bijection between their members. How you get it is ...
So that’s a good reason for not writing that sign as epsilon ... don’t
behave like extensional collections.

Michael Hedberg: You said once that your theory has only one form of
judgement, the membership, but computation must take part in for-
mulating the rules, so actually there are more judgement forms.

David Turner: Well, I tend to think of the computation arrow as an aux-
iliary form of judgement ...

Michael Hedberg: But could you formulate the rules of the theory without
using the computation arrow?

David Turner: No, I don’t think so, no. Not enough things would belong
to each other.

Jan Smith: A little comment on the comparision with Martin-Lofs 82-
theory. I think this is not really the extensional equality you have
there, because that was a very strong rule in the sense that it confuses
judgements and propositions.

David Turner: And made membership extensional as well.

Jan Smith: And together with universes that’s something very strong, so I
doubt your conjecture that you could prove the same things.

David Turner: Let me tell you what the conjecture is. Let me leave out
the universes. What I think is true is that if a : A in the 82-theory,
then there exists a’ and A’ so that a’ : A’ in my theory with A = A’
and a = a’' : A in the 82-theory. This is without universes ... I don’t
know how to raise this to the first universe.

Jan Smith: I don’t think it holds.
David Turner: You think it actually doesn’t hold. Why?

Jan Smith: There happens a lot of strange things. For instance, with a
universe and these strong equality rules, you may even write down
programs which have nonterminating parts.

David Turner: I can’t do that. So the claim that the theories have the
same propositional consequences is true only inside the first universe.

