A category of cubical sets

Introduction

This note presents a notion of cubical set and the notion of composition structure that one can associate to these cubical sets. Any cubical set with a composition structure is fibrant. This universe is closed by dependent product and sum, identity types and data types. Furthermore, it is univalent, and has itself a composition structure.

Cubical sets

Base category

The base category C is the full subcategory of the category of posets having for objects finite power of the poset $0 \leqslant 1$. We write [1] the poset $0 \leqslant 1$. We write I, J, K, \ldots the object of C and $1_{I}: I \rightarrow I$ the identity map of I. If $f: J \rightarrow I$ and $g: K \rightarrow J$ we write $f g: K \rightarrow I$ their composition. If I is an object of C , we have two constant maps $c_{0}: I \rightarrow[1]$ and $c_{1}: I \rightarrow[1]$. We write $\pi_{1}: I \times[1] \rightarrow I$ and $\pi_{2}: I \times J \rightarrow[1]$ the projection maps and if $f: I \rightarrow J$ and $g: I \rightarrow[1]$ we write $(f, g): I \rightarrow J \times[1]$ the pairing map. For any object I we define $e_{0}=\left(1_{I}, c_{0}\right): I \rightarrow I \times[1]$ and $e_{1}=\left(1_{I}, c_{1}\right): I \rightarrow I \times[1]$. We may write I^{+}instead of $I \times[1]$ and $f^{+}: J^{+} \rightarrow I^{+}$the map $f^{+}(j, b)=(f j, b)$. We have the lattice operations $\wedge, \vee:[1]^{2} \rightarrow[1]$.

Cubical sets

A cubical set X is a presheaf on C. It is given by a family of sets $X(I)$ together with restriction maps $X(I) \rightarrow X(J), u \longmapsto u f$ such that $u 1_{I}=u$ and $(u f) g=u(f g)$ for $f: J \rightarrow I$ and $g: K \rightarrow J$. (We write $u f$ for what is usually written $X(f)(u)$.)

Sieves

If I is an object of C, a sieve L on I is a set of maps $\alpha: J \rightarrow I$ of codomain I such that αg is in L whenever α is in L for $\alpha: J \rightarrow I$ and $g: K \rightarrow J$. If L is a sieve on I and $f: J \rightarrow I$ we define the sieve $L f$ on J to be the set of maps $\beta: K \rightarrow J$ such that $f \beta$ is in L.

We define $\Omega(I)$ to be the set of sieves on I. This defines a cubical set (which is the subobject classifier of the topos of presheaves).

Definition 0.1 If L is in $\Omega(I \times[1])$ we define $\forall L$ in $\Omega(I)$ to be the sieve of maps $\alpha: J \rightarrow I$ such that α^{+}is in L.

If L is a sieve on I and X is a cubical set, we define the set $X(L)$ to be the set of families u_{α} in $X(J)$ for α in L, such that $u_{\alpha} g=u_{\alpha g}$ if $g: K \rightarrow J$. If u is an element of $X(L)$ and $f: J \rightarrow I$, we define $u f$ element of $X(L f)$ by $u f_{\beta}=u_{f \beta}$.

Each element $f: I \rightarrow[1]$ determines a sieve $[f=0]$ on I of maps $g: J \rightarrow I$ such that $f g=c_{0}$, and a sieve $[f=1]$ of maps $g: J \rightarrow I$ such that $f g=c_{1}$. We define the subpresheaf \mathbb{F} of Ω by taking $\mathbb{F}(I)$ to be the set of finite union of sieves of the form $[f=0] \cap[g=1]$.

Lemma 0.2 If L is in $\mathbb{F}(I \times[1])$ then $\forall(L)$ is in $\mathbb{F}(I)$.
Informal comment: I am not yet sure how to best present the proof of this Lemma, There is a natural notion of face maps in the base category. A face map is a map e_{0}, e_{1} and if f is a face map then so is $f+$. One can then show that a sieve is in $\mathbb{F}(I)$ if and only if it is generated by face maps of codomain I.

Composition structure on a cubical set

If X is a cubical set, we define what is a composition structure c_{X} for X.
It is given by an operation $c_{X}\left(I, L, u, a_{0}\right)$ producing an element in $X(I)$ and taking as arguments

1. an object I
2. a sieve L in $\mathbb{F}(I)$
3. a family $u_{\alpha} \in X(J \times[1])$ for $\alpha: J \rightarrow I$ in L such that $u_{\alpha} g=u_{\alpha g^{+}}$if $g: K \rightarrow J$
4. an element a_{0} in $X(I)$ such that $a_{0} \alpha=u_{\alpha} e_{0}$ in $X(J)$ for $\alpha: J \rightarrow I$ in L.

The element $a_{1}=c_{X}\left(I, L, u, a_{0}\right)$ should be such that $a_{1} \alpha=u_{\alpha} e_{1}$.
Furthermore, we have the uniformity condition $c_{X}\left(I, L, u, a_{0}\right) f=c_{X}\left(J, L f, u f, a_{0} f\right)$ in $X(J)$ for $f: J \rightarrow I$ where $u f_{\beta}=u_{f \beta}$ for β in $L f$.
(Intuitively, the family u and the element a_{0} defines an open box, and this operation build the missing lid of an open box in X. We recover the usual Kan composition operation in the special case where L is the boundary of I.)

We also require a similar family of operations where we swap 0 and 1 .

Fibrant cubical sets

If X is a cubical set we say that X is fibrant if we can "fill any open box of X ": we have an operation fill $\left(I, L, u, a_{0}\right)$ producing an element in $X(I \times[1])$ such that fill $\left(I, L, u, a_{0}\right) e_{0}=a_{0}$ in $X(I)$ and fill $\left(I, L, u, a_{0}\right) \alpha^{+}=u_{\alpha}$ in $X(J \times[1])$ for $\alpha: J \rightarrow I$ in L.

Proposition 0.3 If X has a composition structure, then X is fibrant. We have an operation fill (I, L, u, a_{0}) such that fill $\left(I, L, u, a_{0}\right) e_{0}=a_{0}$ and fill $\left(I, L, u, a_{0}\right) e_{1}=\operatorname{comp}\left(I, L, u, a_{0}\right)$ in $X(I)$. This operation is furthermore uniform, in the sense that we have fill $\left(I, L, u, a_{0}\right) f^{+}=\operatorname{fill}\left(J, L f, u f, a_{0} f\right)$ if $f: J \rightarrow I$.

Proof. We define fill $\left(I, L, u, a_{0}\right)$ to be $\operatorname{comp}\left(I \times[1], L^{\prime}, u^{\prime}, a_{0}^{\prime}\right)$ where L^{\prime} is in $\mathbb{F}(I \times[1])$ and u_{β}^{\prime} in $X(J \times[1])$ for $\beta: J \rightarrow I \times[1]$ in L^{\prime} and $a_{0}^{\prime}=a_{0} \pi_{1}$ in $X(I \times[1])$. We define L^{\prime} to be the set of maps $\beta: J \rightarrow I \times[1]$ such that $\pi_{1} \beta$ is in L or $\pi_{2} \beta=c_{0}$. We define then u_{β}^{\prime} by case:

1. if $\beta=(\alpha, \omega)$ with α in L, then we have to define u_{β}^{\prime} in $X(J \times[1])$. We have u_{α} in $X(J \times[1])$ and we take $u_{\beta}^{\prime}=u_{\alpha}\left(1_{J}, \delta\right)$ with $\delta: J \times[1] \rightarrow[1]$ is defined by $\delta(j, b)=\omega(j) \wedge b$
2. if $\beta=\left(g, c_{0}\right)$ we define $u_{\beta}^{\prime}=a_{0} g \pi_{1}$ in $X(J \times[1])$

This definition is coherent since if $\beta=\left(\alpha, c_{0}\right)$ then $u_{\beta}^{\prime}=u_{\alpha} e_{0} \pi_{1}=a_{0} \alpha \pi_{1}$.
We have $u_{\beta}^{\prime} e_{0}=a_{0}^{\prime} \beta$ in both cases. If $\beta=(\alpha, \omega)$ then $u_{\beta}^{\prime} e_{0}=u_{\alpha} \delta e_{0}=u_{\alpha} e_{0}=a_{0} \alpha=a_{0} \pi_{1} \beta=a_{0}^{\prime} \beta$. If $\beta=\left(g, c_{0}\right)$ then $u_{\beta}^{\prime} e_{0}=a_{0} g \pi_{1} e_{0}=a_{0} g=a_{0} \pi_{1} \beta=a_{0}^{\prime} \beta$.

We can then compute $\operatorname{comp}\left(I \times[1], L^{\prime}, u^{\prime}, a_{0}^{\prime}\right) e_{0}=u_{e_{0}}^{\prime} e_{0}=a_{0}$ and, by uniformity

$$
\operatorname{comp}\left(I \times[1], L^{\prime}, u^{\prime}, a_{0}^{\prime}\right) e_{1}=\operatorname{comp}\left(I, L^{\prime} e_{1}, u^{\prime} e_{1}, a_{0}\right)=\operatorname{comp}\left(I, L, u, a_{0}\right)
$$

since $L^{\prime} e_{1}=L$ and $u^{\prime} e_{1}=u$.
This operation is uniform. Indeed if $f: J \rightarrow I$ we have

$$
\left(a_{0} f\right)^{\prime}=a_{0} f^{+} \quad(L f)^{\prime}=L^{\prime} f^{+} \quad(u f)^{\prime}=u^{\prime} f^{+}
$$

The first equality follows from $f \pi_{1}=\pi_{1} f^{+}$. For the second equality, if $\gamma: K \rightarrow J \times[1]$ we have γ in $(L f)^{\prime}$ if, and only if, $\pi_{1} \gamma$ is in $L f$, which is equivalent to $f \pi_{1} \gamma=\pi_{1} f^{+} \gamma$ in L i.e. γ in $L f^{+}$, or $\pi_{2} \gamma=c_{0}$, which is equivalent to $\pi_{2} f^{+} \gamma=c_{0}$. Finally, we check that we have $(u f)^{\prime}=u^{\prime} f^{+}$in $X(K \times[1])$. Given $\gamma=(\alpha, \omega): K \rightarrow J \times[1]$ the element $(u f)_{\gamma}^{\prime}$ is defined by case. If α is in $L f$ then it is $u f_{\alpha} \delta e_{0}=u_{f \alpha} \delta e_{0}$. In this case, we also have

$$
\left(u^{\prime} f^{+}\right)_{\gamma}=u_{f+\gamma}^{\prime}=u_{(f \alpha, \omega)}^{\prime}=u_{f \alpha} \delta e_{0}
$$

In the case where $\omega=c_{0}$ we have $(u f)_{\gamma}^{\prime}=a_{0} f \alpha \pi_{1}$ which is equal to $\left(u^{\prime} f^{+}\right)_{\gamma}=u_{(f \alpha, \omega)}^{\prime}=a_{0} f \alpha \pi_{1}$.

Universe of cubical sets

We fix a Grothendieck universe \mathcal{U}.
If I is an object of C , we define $U(I)$ to be the collection of all presheaves $(\mathrm{C} / I)^{o p} \rightarrow \mathcal{U}$. An element A of $U(I)$ is given by a family of \mathcal{U}-sets A_{f}, for $f: J \rightarrow I$, together with restriction maps $A_{f} \rightarrow A_{f g}, u \longmapsto u g$ for $g: K \rightarrow J$, such that $u 1_{J}=u$ and $(u g) h=u(g h)$ if $h: L \rightarrow K$.

If A is an element of $U(I)$ and $f: J \rightarrow I$ we can consider the element $A f$ of $U(J)$ defined by $A f_{g}=A_{f g}$. We have $A 1_{I}=A$ and $(A f) g=A(f g)$ if $g: K \rightarrow J$.

If A and B are in $U(I)$ we define a map $\sigma: A \rightarrow B$ to be a family of set-theoretic maps $\sigma_{f}: A_{f} \rightarrow B_{f}$ for $f: J \rightarrow I$ satisfying the naturality condition $\left(\sigma_{f} u\right) g=\sigma_{f g}(u g)$ if $g: K \rightarrow J$ and u is in A_{f}. We may write simply $\sigma: A_{f} \rightarrow B_{f}$ and the naturality condition becomes $(\sigma u) g=\sigma(u g)$.

Composition structure

If A is an element of $U(I)$ we define what is a composition structure c_{A} for A. It is given by an operation $c_{A}\left(f, L, u, a_{0}\right)$ producing an element in $A_{f e_{1}}$ and taking as arguments

1. a map $f: J \times[1] \rightarrow I$
2. an element L in $\mathbb{F}(J)$
3. a family $u_{\alpha} \in A_{f \alpha^{+}}$such that $u_{\alpha} g^{+}=u_{\alpha g}$ if $\alpha: K \rightarrow J$ in L and $g: H \rightarrow K$
4. an element a_{0} in $A_{f e_{0}}$ such that $a_{0} \alpha=u_{\alpha} e_{0}$ in $A_{f e_{0} \alpha}$.

The element $a_{1}=c_{A}\left(f, L, u, a_{0}\right)$ should satisfy $a_{1} \alpha=u_{\alpha} e_{1}$.
Furthermore, we have the uniformity condition $c_{A}\left(f, L, u, a_{0}\right) g=c_{A}\left(f g^{+}, L g, u g, a_{0} g\right)$ in $A_{f e_{1} g}$ if $g: K \rightarrow J$.

We also require a similar family of operations where we swap 0 and 1 .
We write $C S(A)$ the set of composition structure on A.
If c_{A} is an element of $C S(A)$ and $f: J \rightarrow I$ we can define a composition structure $c_{A} f$ on $C S(A f)$ by taking $c_{A} f\left(g, L, u, a_{0}\right)=c_{A}\left(f g, L, u, a_{0}\right)$.

Lemma 0.4 If c_{A} is in $C S(A)$ then $c_{A} f$ is in $C S(A f)$, and we have $c_{A} 1_{I}=c_{A}$ and $\left(c_{A} f\right) g=c_{A}(f g)$ if $g: K \rightarrow J$.

Fibrant objects

If A is an element in $U(I)$ we say that A is fibrant if we can fill any open box of A : we have an operation fill $\left(f, L, u, a_{0}\right)$ producing an element in A_{f} such that fill $\left(f, L, u, a_{0}\right) e_{0}=a_{0}$ and fill $\left(f, L, u, a_{0}\right) \alpha^{+}=u_{\alpha}$.

Proposition 0.5 If A in $U(I)$ has a composition structure, then A is fibrant. More precisely, we have an operation fill $\left(c_{A}, f, L, u, a_{0}\right)$ producing an element in A_{f} such that fill $\left(c_{A}, f, L, u, a_{0}\right) e_{0}=a_{0}$ and fill $\left(c_{A}, f, L, u, a_{0}\right) e_{1}=c_{A}\left(f, L, u, a_{0}\right)$. This operation is furthermore uniform, in the sense that we have fill $\left(c_{A}, f, L, u, a_{0}\right) g^{+}=\operatorname{fill}\left(c_{A}, f g^{+}, L g, u g, a_{0} g\right)$ if $g: K \rightarrow J$.

Glueing operation

If M is in $\mathbb{F}(I)$ we define $U(M)$ to be the collection of families T of sets T_{α}, for α in M, such that $u 1_{J}=u$ if u is in T_{α} and $u g$ is in $T_{\alpha g}$ if u is in T_{α} and $g: K \rightarrow J$. If T is in $U(M)$ and $f: J \rightarrow I$ we define $T f$ by $T f_{\alpha}=T_{f \alpha}$ if α is in $M f$.

For M in $\mathbb{F}(I)$, the glueing operation takes as argument A in $U(I)$, and T in $U(M)$, and a family σ of maps $\sigma_{\alpha}: T_{\alpha} \rightarrow A_{\alpha}$ for α in M. This family has to be uniform: $\left(\sigma_{\alpha} t\right) g=\sigma_{\alpha g}(t g)$ if $g: K \rightarrow J$. If $f: J \rightarrow I$ we define σf by $\sigma f_{\alpha}=\sigma_{f \alpha}$ for α in $M f$. The result of this operation glue (A, T, σ) is then an element in $U(I)$ such that glue $(A, T, \sigma) f=T f$ if f is in M.

For $f: J \rightarrow I$ we define the set glue $(A, T, \sigma)_{f}$ by (decidable) case

1. if f is in M we take glue $(A, T, \sigma)_{f}=T_{f}$
2. otherwise glue $(A, T, \sigma)_{f}$ is the set of element (u, t) where u is in A_{f} and t is a family t_{β} in $T_{f \beta}$ for $\beta: K \rightarrow J$ in $M f$ and $\sigma_{f \beta} t_{\beta}=u \beta$ and $t_{\beta} h=t_{\beta h}$ for $h: L \rightarrow K$.

We then define, for $g: K \rightarrow J$, the element $(u, t) g$ by case. If $f g$ is in M, we take t_{g}. Otherwise we take ($u g, t g$) with $t g_{\gamma}=t_{g \gamma}$ for γ in $M f g$.

This defines an element glue (A, T, σ) in $U(I)$.
Lemma 0.6 The map $\sigma: T \rightarrow A$ can be extended to a map $\delta: B \rightarrow A$
Proof. Given $f: J \rightarrow I$ we have to define a set-theoretic map $\delta: B_{f} \rightarrow A_{f}$. If f is in M we have $B_{f}=T_{f}$ and we take $\delta=\sigma$. If f is not in M then v in B_{f} is a pair (a, t) with a in A_{f} and we take $\delta(a, t)=a$. We have to verify that $(\delta v) g=\delta(v g)$ for $g: K \rightarrow J$. If f is in M then v is in T_{f} and $(\delta v) g=(\sigma v) g=\sigma(v g)=\delta(v g)$. If f is not in M there are two cases. If $f g$ is in M then $(\delta v) g=a g$ and $v g=t_{g}$ with $\sigma t_{g}=\delta t_{g}=a g$. If $f g$ is not in M then $v g=(a g, t g)$ and $\delta(v g)=a g$.

Equivalence structure

An equivalence structure on σ is given by two operations $q_{\sigma}^{1}(f, L, u, b)$ in A_{f} and $q_{\sigma}^{2}(f, L, u, b)$ in $B_{f \pi_{1}}$ and taking as arguments

1. $f: J \rightarrow I$
2. L in $\mathbb{F}(J)$
3. a family of elements u_{α} in $A_{f \alpha}$ for $\alpha: K \rightarrow J$ in L such that $u_{\alpha} g=u_{\alpha g}$ in $A_{f \alpha g}$ if $g: H \rightarrow K$
4. an element b in B_{f} such that $b \alpha=\sigma u_{\alpha}$ in $B_{f \alpha}$ if α is in L

We should have

$$
q_{\sigma}^{1}(f, L, u, b) \alpha=u_{\alpha} \quad q_{\sigma}^{2}(f, L, u, b) e_{0}=\sigma q_{\sigma}^{1}(f, L, u, b) \quad q_{\sigma}^{2}(f, L, u, b) e_{1}=b
$$

Furthermore we have the uniformity conditions

$$
q_{\sigma}^{1}(f, L, u, b) g=q_{\sigma}^{1}(f g, L g, u g, b g) \quad q_{\sigma}^{2}(f, L, u, b) g^{+}=q_{\sigma}^{2}(f g, L g, u g, b g)
$$

if $g: K \rightarrow J$.
If $\sigma: A \rightarrow B$ and $f: J \rightarrow I$ we can define $\sigma f: A f \rightarrow B f$ by taking $(\sigma f)_{g}=\sigma_{f g}$ and if $q_{\sigma}^{1}, q_{\sigma}^{2}$ is an equivalence structure on σ we define $q_{\sigma}^{1} f, q_{\sigma}^{2} f$ equivalence structure on σf by taking $q_{\sigma}^{i} f(g, L, u, b)=$ $q_{\sigma}^{i}(f g, L, u, b)$ if $g: K \rightarrow J$.

Lemma 0.7 Given A, T in $U(I)$, and $c_{A}\left(\right.$ resp. $\left.c_{T}\right)$ a comsposition structure on A (resp. T). Let σ be a map $T \rightarrow A$. Assume furthermore given

1. a map $f: J \times[1] \rightarrow I$
2. an element L in $\mathbb{F}(J)$
3. a family $v_{\alpha} \in T_{f \alpha^{+}}$such that $v_{\alpha} g^{+}=v_{\alpha g}$ if $\alpha: K \rightarrow J$ in L and $g: H \rightarrow K$
4. an element t_{0} in $T_{f e_{0}}$ such that $t_{0} \alpha=v_{\alpha} e_{0}$ in $T_{f e_{0} \alpha}$.

We can build $u=\operatorname{pres}\left(c_{A}, c_{T}, L, v, t_{0}\right)$ in A_{f} such that

$$
u e_{0}=c_{A}\left(f, L, \sigma v, \sigma t_{0}\right) \quad u e_{1}=\sigma c_{T}\left(f, L, v, t_{0}\right) \quad u \alpha^{+}=\sigma v_{\alpha} e_{1} \pi_{1}
$$

Furthermore, $\operatorname{pres}\left(c_{A}, c_{T}, L, v, t_{0}\right) g^{+}=\operatorname{pres}\left(c_{A} g, c_{T} g, L g, v g, t_{0} g\right)$ if $g: K \rightarrow J$.
If L is in $\mathbb{F}(I)$, we can generalize the notion of composition structure for an element of $U(L)$ and the notion of equivalence structure for a map between two elements of $U(L)$. We can now refine the operation of glueing in the following way.

Theorem 0.8 Given L in $\mathbb{F}(I), A$ in $U(I)$, and T in $U(L)$, and a map σ between T and A, we can build a composition structure glue $\left(c_{A}, c_{T}, q_{\sigma}\right)$ on glue (A, T, σ) given a composition structure c_{A} on A and a composition structure c_{T} on T and an equivalence structure q_{σ} on σ in such a way that we have glue $\left(c_{A}, c_{T}, q_{\sigma}\right) \alpha=c_{T} \alpha$ if α is in L

If L is in $\mathbb{F}(I)$ and T, A are in $U(L)$ and σ is a map $T \rightarrow A$ then for each $f: J \rightarrow I$ in L we can consider $T f, A f$ in $U(J)$ and the map $\sigma f: T f \rightarrow A f$.

Proof of the main Theorem

The goal of this section is to prove Theorem 0.8 . We write $B=\operatorname{glue}(A, T, \sigma)$ and want to define a composition structure c_{B} on B.

Using Lemma 0.6 , the map $\sigma: T \rightarrow A$ extends to a map $\delta: B \rightarrow A$.
We give $f: J \times[1] \rightarrow I$ and M in $\mathbb{F}(J)$ and v_{α} in $B_{f \alpha^{+}}$for α in M and b_{0} in $B_{f e_{0}}$ such that $b_{0} \alpha=v_{\alpha} e_{0}$ for α in M. We want to compute $b_{1}=c_{B}\left(f, M, v, b_{0}\right)$ in $B_{f e_{1}}$ such that $b_{1} \alpha=v_{\alpha} e_{1}$ for α in M.

We define $a_{0}=\delta b_{0}$ and $u_{\alpha}=\delta v_{\alpha}$. Since δ is a map $B \rightarrow A$ we have $a_{0} \alpha=u_{\alpha} e_{0}$. We can then form $a_{1}^{\prime}=c_{A}\left(f, M, u, a_{0}\right)$ which satisfies $a_{1}^{\prime} \alpha=u_{\alpha} e_{1}$ for α in M.

We can consider three sieves on J. One is the given sieve M. From the sieve $L f$ on $J \times[1]$ we can derive the sieve $L f e_{1}$ in $\mathbb{F}(J)$. We can also define the sieve $N=\forall(L f)$ of maps $\beta: K \rightarrow J$ such that β^{+} is in $L f$. Notice that N is a subsieve of $L f e_{1}$: if $f \beta^{+}$is in L then so is $f \beta^{+} e_{1}=f e_{1} \beta$. By Lemma 0.2 we know that N is in $\mathbb{F}(J)$.

The universe of types

If I is an object of C we let $U_{F}(I)$ be the set of element $\left(A, c_{A}\right)$ where A is in $U(I)$ and c_{A} is in $C S(A)$. If $f: J \rightarrow I$ we define $\left(A, c_{A}\right) f=\left(A f, c_{A} f\right)$ which is an element of $U_{F}(J)$ by Lemma 0.4 . In this way we define a new cubical set U_{F}.

Lemma 0.9 Given E in $U(I \times[1])$ and a composition structure c_{E} on E we can define $A=E e_{0}, B=E e_{1}$ in $U(I)$ and $c_{E} e_{0}$ is in $C S(A)$ and $c_{E} e_{1}$ is in $C S(B)$. We can also define a map $\sigma: A \rightarrow B$ by $\sigma a=\operatorname{comp}(f, \emptyset, \emptyset, a)$ in B_{f} for a in A_{f} and $f: J \rightarrow I$ and σ has an equivalence structure.

Notice that if E is of the form $A \pi_{1}$ with A in $U(I)$ then $B=E e_{1}=A$ and this map $\sigma: A \rightarrow A$ does not need to be the identity map.

We can use Theorem 0.8 and Lemma 0.9 to prove the following result.
Theorem 0.10 The cubical set U_{F} has a composition operation.

References

[1] V. Voevodsky. Notes on type systems. github.com/vladimirias/old_notes_on_type_systems, 2009-2012.

