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Abstra
t

This paper illustrates how Haskell's type 
lass system 
an be used

to express 
omputations. Sin
e 
omputations on the type level are

performed by the type 
he
ker, these 
omputations are stati
 (i.e.,

performed at 
ompile-time), and, sin
e the type system is de
idable,

they always terminate. Haskell thus provides a means to express stati



omputations, and has a 
lear distin
tion between stati
 and dynami



omputations.

Instan
e de
larations de�ne predi
ates over types, or in the 
ase

of multi-parameter 
lasses, relations between types. With fun
tional

dependen
ies, multi-parameter 
lasses dire
tly spe
ify fun
tions, and

thanks to them you 
an get the type 
he
ker to 
ompute the values of

fun
tion appli
ations, rather than just 
he
king that the result of an

appli
ation is what you say it is.

This way of expressing 
omputation gives us the power of a small,

�rst-order fun
tional programming language, with pattern mat
hing

and stru
tural re
ursion. We 
an easily de�ne things like booleans,

natural numbers, lists, and fun
tions over these types. We give some

examples of 
ompletely stati
 
omputations, the most elaborate one

being an implementation of insertion sort. We also give examples where

stati
 and dynami
 
omputations are mixed.

1 Introdu
tion

Con
epts, su
h as programs, programming languages, 
omputations, values

and types, are probably familiar to most readers of this paper. But, to make

a long story short, programming languages are used to express 
omputa-

tions. Computations manipulate values. Typed programming languages

distinguish between types and values. Types are related to values by a typ-

ing relation that says what values belong to what types, so one usually think

of types as sets of values. Expressions, and other program parts, 
an be

assigned types too, to indi
ate what kind of values the produ
e or manipu-

late. Types 
an thus be used do do
ument programs (to 
larify what kind



of values are involved in a 
ertain part of the program) and to help dete
t

programmer mistakes.

In stati
ally typed languages, the types are not seen as something that

take part in 
omputations, but rather something that allows a 
ompiler to


he
k that a program is type 
orre
t without a
tually running the program.

Seeing types as a way to organize values, one 
an ask the question if it

would be meaningful to have a similar way to organize types? The answer

is yes, and di�erent programming languages have di�erent ways to organize

types. Most widely known is probably the way types are organized in 
lass

hierar
hies in obje
t oriented programming languages.

Haskell [Pet97℄ also has a 
lass system [WB89℄ to organize types, orig-

inally introdu
ed to allow a systemati
 treatment of overloading. Haskell


lasses are not quite like 
lasses in obje
t oriented languages: the relation

between types and 
lasses is similar to the relation between values and types,

i.e., types 
an belong to 
lasses. For example, the 
lass Eq is used to group

types that allow their values to be tested for equality and the Show 
lass


ontain types whose values 
an be 
onverted to strings.

The interesting observation for the following is that in Haskell we have

three levels on whi
h things are des
ribed. On the ground level we have val-

ues. The values belong to types, whi
h form the se
ond level, and the types

belong to 
lasses, whi
h form the third level. We thus have two relations,

one between values and types and one between types and 
lasses. In the

next se
tion, we make some re
e
tions on the similarities and di�eren
es

between these two relations.

2 Values and types vs types and 
lasses

Haskell has, unsurprisingly, ways to introdu
e values, types and 
lasses, and

to 
reate relations between them.

Values and types are introdu
ed together in data-type de
larations. For

example, the de�nition

data Bool = False | True

simultaneously introdu
es the values False and True, the type Bool and

states that False and True belong to the type Bool.

Classes and their relations to types are introdu
ed in a slightly di�erent

way. Classes are introdu
es by stating their names and parameters and

giving the types of the overloaded operations that types belonging to the


lass should support. As an example, a 
lass for types that support equality


ould be introdu
ed with the following de
laration:


lass Eq a where (==) :: a -> a -> Bool



Types are de
lared as belonging to a 
lass, often referred to as being an

instan
e of the 
lass, in separate instan
e de
larations. This means that the

de�nition of what types belong to a parti
ular 
lass is left open, allowing a


lass to be extended with new instan
es at arbitrary points in the program.

In 
ontrast, data-type de�nitions are 
losed.

To de
lare that booleans 
an be tested for equality we would give the

following de
laration:

instan
e Eq Bool where (==) = ...

where ... is a suitable implementation of equality for booleans.

Type de�nitions 
an be parameterized. A typi
al example is the de�ni-

tion of the list type, where the type parameter give the type of the elements

of a list:

data List a = Nil | Cons a (List a)

When parameterized types are de
lared as instan
es of 
lasses, it is often

useful to make some assumptions about the parameter types. For example,

to de�ne how lists are tested for equality, we need to refer to the equality

test for the elements of the list. Instan
e de
larations of this kind look like

this:

instan
e (Eq a) => Eq (List a) where (==) = ...

An instan
e relation like this 
an be seen as a 
omputation rule, that

given an equality test for an arbitrary type, for example Bool, gives us an

equality test for lists 
ontaining values of that type, for example List Bool.

As we will see later, this gives us a way to express 
omputations on the type

level.

3 Computations

3.1 Dynami
 
omputation

In Haskell, 
omputations are usually expressed as fun
tions from values to

values. For example, if we de�ne natural numbers (and an abbreviation for

a sample number) as

data Nat = Zero | Su

 Nat

three = Su

 (Su

 (Su

 Zero))

we 
an de�ne fun
tions that tell if a number is even or odd as follows:



even Zero = True

even (Su

 n) = odd n

odd Zero = False

odd (Su

 n) = even n

In an intera
tive Haskell system, su
h as Hugs [Jon00a℄, we 
an then ask

for expressions to be 
omputed:

> odd three

True

3.2 Stati
 
omputation

As mentioned earlier, some instan
e de
larations in Haskell 
an be seen

as 
omputation rules. Sin
e Haskell is stati
ally typed, the 
omputations

expressed in this way will be stati
, i.e., performed at 
ompile-time.

3.2.1 Predi
ates

To de�ne what even and odd numbers are, a Prolog programmer 
ould de�ne

the following predi
ates:

even(zero).

even(su

(N)):-odd(N).

odd(su

(N)):-even(N).

where names beginning with lower
ase letter denote 
onstants, whi
h need

not be de
lared before they are used. We 
an make a rather dire
t trans
rip-

tion of this program using Haskell type 
lasses, but we �rst need to de
lare

the 
onstants involved:

data Zero

data Su

 n

type Three = Su

 (Su

 (Su

 Zero)) -- Just a sample number.


lass Even n


lass Odd n

Note that the Prolog 
onstants and predi
ates be
ome types and 
lasses,

respe
tively. (Here, sin
e we are not interested in values, but only types and


lasses, we have de�ned data types without any 
onstru
tors and 
lasses

without any overloaded operations.) We then de�ne the predi
ates using

instan
e de
larations:



instan
e Even Zero

instan
e Odd n => Even (Su

 n)

instan
e Even n => Odd (Su

 n)

The question now is: how do we ask the Haskell system to 
he
k if a

number is even? The 
omputations are performed by the type 
he
ker, and

in Hugs, the only way to make the type 
he
ker work for us is to ask it

to 
ompute the type of an expression, or to 
he
k that an expression has a

given type. Although the de�nitions given above are enough to express the

desired 
omputation, for pra
ti
al reasons we have to make a small addition

to them:


lass Even n where isEven :: n


lass Odd n where isOdd :: n

We are now saying that, if n is a type representing an even number, then

there is an element of n, whi
h 
an be referred to by the name isEven. The

instan
e de
larations 
an be left un
hanged.

We 
an now ask Hugs to 
he
k if a number is even or odd:

> :type isEven :: Three

ERROR: Illegal Haskell 98 
lass 
onstraint in inferred type

*** Expression : isEven

*** Type : Odd Zero => Three

We got a type error be
ause three is not an even number. An interpre-

tation of the last line is that if zero were odd, then three would be even.

> :type isOdd :: Three

isOdd :: Three

The absen
e of a type error means that three is an odd number.

3.2.2 Relations

If a Prolog programmer wanted to de�ne a relation 
orresponding more di-

re
tly to the fun
tions even and odd in se
tion 3.1, the result would probably

be the following:

even(zero,true).

even(su

(N),B):-odd(N,B).

odd(zero,false).

odd(su

(N),B):-even(N,B).

Usingmulti-parameter 
lasses [JJM97℄ we 
an again make a rather dire
t

Haskell trans
ription. We start by de
laring the 
onstants we haven't used

before:



data True

data False


lass Even n b where even :: n -> b


lass Odd n b where odd :: n -> b

And again, for pra
ti
al reasons, we have in
luded overloaded operations

in the 
lasses, although we are only interested in the types.

The Prolog relations 
an now be trans
ribed as:

instan
e Even Zero True

instan
e Odd n b => Even (Su

 n) b

instan
e Odd Zero False

instan
e Even n b => Odd (Su

 n) b

and we 
an ask Hugs to 
he
k if a number is even or odd:

> :type odd (undefined::Three) :: True

odd undefined :: True

> :type odd (undefined::Three) :: False

odd undefined :: Odd (Su

 (Su

 (Su

 Zero))) False => False

> :type even (undefined::Three) :: False

even undefined :: False

The queries now look a bit more 
ompli
ated. In the �rst example, we

asked if Three is related to True by the relation Odd, and Hugs replied that,

indeed, that is the 
ase. In the se
ond example, we ask in the same way if

three is false, and Hugs says that this would have be the 
ase, if the program

had 
ontained an instan
e de
laration like

instan
e Odd (Su

 (Su

 (Su

 Zero))) False

but the program doesn't. There is nothing that prevent us from adding

su
h an instan
e, but then Even and Odd would no longer 
orrespond to the

fun
tions even and odd in se
tion 3.1. In fa
t, they would not be fun
tions

anymore, but some other kind of relations.

Can we ask Hugs to 
ompute fun
tion appli
ations? We 
an try:

> :type odd (undefined::Three)

odd undefined :: Odd (Su

 (Su

 (Su

 Zero))) a => a

Hugs' reply means that the result of applying Odd to Three 
an be any

type a, provided the program 
ontains instan
e de
larations allowing us to

derive that Odd (Su

 (Su

 (Su

 Zero))) a holds. Hugs does not try

to enumerate possible values of a, like a Prolog system would. With the

given instan
e de
larations, the only possible value for a is True, but sin
e

the instan
e relation is open, it is seen as a premature 
ommitment to say

that a must be True.



3.2.3 Fun
tions

With the de�nitions given in the previous se
tion, Hugs has no idea that

we intend for Even and Odd to be fun
tions, rather than arbitrary relations.

However, re
ent work has added the possibility to de
lare fun
tional depen-

den
ies between the parameters of a multi-parameter 
lass [Jon00b℄. We


an rede�ne Even and Odd as follows:


lass Even n b | n -> b where even :: n -> b


lass Odd n b | n -> b where odd :: n -> b

This says that the relation Even n b is a
tually a fun
tion from n to b.

This prevents us from at the same time de
laring both Even Zero True and

Even Zero False, and allows b to be 
omputed if n is a known number:

> :type even (undefined::Three)

even undefined :: False

> :type odd (undefined::Three)

odd undefined :: True

Now, having seen that these strange looking de�nitions a
tually 
an be

used to 
ompute something, we perhaps feel more motivated to go on and

de�ne some more fun
tions on natural numbers. The following dynami


ones,

add Zero b = b

add (Su

 a) b = Su

 (add a b)

mul Zero b = Zero

mul (Su

 a) b = add b (mul a b)

have the following stati
 
ounterparts:


lass Add a b 
 | a b -> 
 where add :: a -> b -> 


instan
e Add Zero b b

instan
e Add a b 
 => Add (Su

 a) b (Su

 
)


lass Mul a b 
 | a b -> 
 where mul :: a -> b -> 


instan
e Mul Zero b Zero

instan
e (Mul a b 
,Add b 
 d) => Mul (Su

 a) b d

u=undefined

Note that we also introdu
ed u as a 
onvenient abbreviation of undefined.

We 
an try some stati
 additions and multipli
ations:



> :type add (u::Three) (u::Three)

add u u :: Su

 (Su

 (Su

 (Su

 (Su

 (Su

 Zero)))))

> :type mul (u::Three) (u::Three)

mul u u :: Su

 (Su

 (Su

 (Su

 (Su

 (Su

 (Su

 (Su

 (Su



Zero))))))))

Note that the 
ommand :type asks Hugs to just infer the type of an

expression, not to 
ompute its value. No ordinary, dynami
 Haskell 
ompu-

tations are performed in the above examples.

3.3 Mixing stati
 and dynami
 
omputations

We have now seen that Haskell allows us to de�ne dynami
 fun
tions (se
tion

3.1), i.e., 
omputations to be performed at run-time, and stati
 fun
tions

(se
tion 3.2.3), i.e., 
omputations to be performed at 
ompile-time. Can we

mix the two, and de�ne fun
tions that are 
omputed partly at 
ompile-time,

partly at run-time? The answer is: yes, de�nitely. It a
tually happens all

the time, when overloaded fun
tions are used in ordinary Haskell programs.

Or, to be more pre
ise, the 
ompiler has the opportunity to perform some


omputations at 
ompile-time, but 
an also 
hoose to delay most of the work

until run-time [Jon94℄.

A 
ommon example used to illustrate stati
 vs dynami
 
omputations is

the power fun
tion. The dynami
 version 
ould be de�ned as

pow b Zero = one

pow b (Su

 n) = mul b (pow b n)

and a 
ompletely stati
 version 
ould be de�ned as

type One = Su

 Zero


lass Pow a b 
 | a b -> 
 where pow :: a -> b -> 


instan
e Pow a Zero One

instan
e (Pow a b 
,Mul a 
 d) => Pow a (Su

 b) d

Using the Haskell type Int for the dynami
 part of the 
omputation, we


an de�ne a version of the power fun
tion, where the base is dynami
 and

the exponent is stati
, as follows:


lass Pred a b | a -> b where pred :: a->b

instan
e Pred (Su

 n) n


lass Power n where power::Int->n->Int

instan
e Power Zero where power _ _ = 1

instan
e Power n => Power (Su

 n) where

power x n = x*power x (pred n)



An example 
omputation is

> power 2 (mul (u::Three) (u::Three))

512

This simple example might seem a bit pointless in an intera
tive environ-

ment where 
ompile-time and run-time 
oin
ide. The 
omputation pro
eeds

roughly as follows:

� The type 
he
ker 
omputes nine from three times three.

� The appli
ation of Power to nine is redu
ed by the type 
he
ker, gen-

erating a version of power that for a given n 
omputes n

9

.

� Finally the dynami
 fun
tion is applied to 2, and the result 2

9

is 
om-

puted by the interpreter.

With an optimizing 
ompiler, and the same fun
tion is used repeatedly,

the possibility to move 
omputations to 
ompile-time 
ould of 
ourse give a


onsiderable speed-up.

3.4 A larger example of stati
 
omputation

In the above se
tions we have presented a way to express stati
 
omputations

in Haskell, using the 
lass system. We now show that this way of expressing

stati
 
omputations is not limited to the rather simple algorithms we have

seen so far. We start with a representation of lists and 
on
lude with an

implementation of insertion sort.

First, the 
onstru
tors of the list type:

data Nil = Nil

data Cons x xs = Cons

Generating a des
ending sequen
e of numbers:


lass DownFrom n xs | n -> xs where downfrom :: n -> xs

instan
e DownFrom Zero Nil

instan
e DownFrom n xs => DownFrom (Su

 n) (Cons n xs)

Comparing numbers:


lass Lte a b 
 | a b -> 
 where lte :: a -> b -> 


instan
e Lte Zero b T

instan
e Lte (Su

 n) Zero F

instan
e Lte a b 
 => Lte (Su

 a) (Su

 b) 


Insertion sort:




lass Insert x xs ys | x xs -> ys where insert :: x -> xs -> ys

instan
e Insert x Nil (Singleton x)

instan
e (Lte x y b, InsertCons b x y ys) => Insert x (Cons y ys) r


lass InsertCons b x1 x2 xs ys | b x1 x2 xs -> ys

instan
e InsertCons T x1 x2 xs (Cons x1 (Cons x2 xs))

instan
e Insert x1 xs ys => InsertCons F x1 x2 xs (Cons x2 ys)


lass Sort xs ys | xs -> ys where sort :: xs -> ys

instan
e Sort Nil Nil

instan
e (Sort xs ys,Insert x ys zs) => Sort (Cons x xs) zs

To test the above de�nition we de�ne

l1 = downfrom (u::Three)

and make some tests in Hugs:

> :type l1

l1 :: Cons (Su

 (Su

 Zero)) (Cons (Su

 Zero) (Cons Zero Nil))

> :type sort l1

sort l1 :: Sort (Cons (Su

 (Su

 Zero)) (Cons (Su

 Zero) (Cons

Zero Nil))) (Cons Zero a) => Cons Zero a

> sort l1

ERROR: Unresolved overloading

*** Type : (Sort Nil a, Insert Zero a b, Insert (Su

 Zero) b


, Insert (Su

 (Su

 Zero)) 
 (Cons Zero d)) => Cons Zero d

*** Expression : sort l1

Unfortunately, Hugs' type 
he
ker doesn't redu
e the types as far as

expe
ted. The reason for this is at the time of this writing unknown...

4 Con
luding remarks

The parti
ular use of type 
lasses explored in this paper are perhaps of the

more esoteri
 kind, and probably not what they were intended for. But,

as many people have already dis
overed, multi-parameter 
lasses with fun
-

tional dependen
ies 
an be very useful for more 
onventional programming

tasks as well.

Haskell 98 [JHe

+

99℄, the most re
ent version of Haskell, does not in-


lude multi-parameter 
lasses and fun
tional dependen
ies. GHC [gh
00℄

and Hugs [Jon00a℄ support these extensions to varying degree, though.

It appears that the limits of what 
an be done within Haskell-like type

systems are yet to be found. Two re
ent examples of other tri
ks that seem

to stret
h the limits are [Oka99℄ and [Wei00℄.
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