
Introduction
Not Yet Features

Features
Conclusions

Agda II – Take One

Ulf Norell

May 10, 2006

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Motivation
The Basics
Features and Not

1 Introduction
Motivation
The Basics
Features and Not

2 Not Yet Features
Pi in Set
Signatures and Structures
Inductive Families

3 Features
Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

4 Conclusions

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Motivation
The Basics
Features and Not

What’s the point?

of Agda II
Solid theoretical foundation (lacking in Agda)

Small well-defined core language with nice metatheory.
Transparent translation from the full language to the core
language.

of this talk
Present the (full) language from a user’s perspective.

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Motivation
The Basics
Features and Not

The Logical Framework

The Basic Language

(Terms) s, t F x | c | f | s t | λx → t | λ(x : A)→ t
(Types) A ,B F (x : A)→ B | A → B | t | α
(Sorts) α, β F Seti | Set | Prop

Note: Set , Prop.

Example: polymorphic identity

id : (A : Set)→ A → A
id = λ(A : Set)(x : A)→ x

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Motivation
The Basics
Features and Not

What’s there and what’s not

Features
Inductive datatypes
Functions by pattern matching
Implicit arguments
Module system

Not Yet Features
Π in Set
Signatures and structures
Inductive families

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Pi in Set
Signatures and Structures
Inductive Families

Π in Set

What does it mean?

We don’t have
Γ ` A : Set Γ, x : A ` B : Set
Γ ` (x : A)→ B : Set

Consequences:

We can’t do

Rel A = A → A → Prop
apply : List (Nat → Nat)→ List Nat → List Nat

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Pi in Set
Signatures and Structures
Inductive Families

Π in Set

Why don’t we have it?
Ask Thierry... (The metatheory gets tricky when you
combine η-equality and Π in Set .)

What to do about it:
Get the metatheory straightened out (e.g. η-equality for
datatypes).
Abandon η-equality.
Abandon Π in Set .

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Pi in Set
Signatures and Structures
Inductive Families

Signatures and Structures

What does it mean?
In Agda you can say (something like)

Pair A B = sig fst : A
snd : B

p : Pair Nat Nat
p = struct fst = 3

snd = 7
three = p.fst

Why don’t we have it?
We want to start simple.
Signatures and structures will appear in Agda II – Take Two
(but probably not in the same form as in Agda).

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Pi in Set
Signatures and Structures
Inductive Families

Inductive Families

What does it mean?
For instance:

data Vec (A : Set) : Nat → Set where
vnil : Vec A zero
vcons : (n : Nat)→ A → Vec A n→ Vec A (suc n)

Why don’t we have it?
The inductive families in Agda are very limited in terms of
what you can do with them.
We want something better, which will require some thinking.

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Datatypes

Standard, garden-variety, strictly positive datatypes:

data Nat : Set where
zero : Nat
suc : Nat → Nat

data Exist (A : Set) (P : A → Prop) : Prop where
witness : (x : A)→ P x → Exist A P

data Acc (A : Set) ((<) : A → A → Prop) (x : A) : Prop where
acc : ((y : A)→ y < x → Acc A (<) y)→ Acc A (<) x

Note that data . . . is a declaration (not a term or type).

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Definitions by Pattern Matching

Functions are defined by pattern matching
Arbitrarily nested, exhaustive, possibly overlapping
patterns.
No case expressions!

(+) : Nat → Nat → Nat
zero + m = m
suc n + m = suc (n +m)

eqNat : Nat → Nat → Bool
eqNat zero zero = true
eqNat (suc n) (suc m) = eqNat n m
eqNat = false

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Mutual induction-recursion

You can have mutually inductive-recursive definitions:

mutual
even : Nat → Bool
even zero = true
even (suc n) = odd n

odd : Nat → Bool
odd zero = false
odd (suc n) = even n

I’d show the standard universe construction example of
induction-recursion, but you need Π in Set for that.

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Local functions

Functions (and datatypes) can be local to a definition:

reverse : (A : Set)→ List A → List A
reverse A xs = rev xs nil

where
rev : List A → List A → List A
rev nil ys = ys
rev (x :: xs) ys = rev xs (x :: ys)

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Termination

We allow general recursion.
Termination checking is done separately (as in Agda).
Example:

qsort : List Nat → List Nat
qsort nil = nil
qsort (x :: xs) = filter (λy → y < x) xs ++

x :: filter (λy → y ≥ x) xs

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Meta Variables

There are two kinds of meta variables (only one in Agda):
Interaction points: ? and {! . . . !}
Go figure1:

The type checker should be able to figure out the value of
a go figure without user intervention...
...whereas the value of an interaction point is supplied by
the user.
We use go figures to implement implicit arguments.

1Conorism
Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Implicit Arguments

Curly braces { } are used to indicate implicitness:

Syntax

s, t F . . . | s {t} | λ{x} → t | λ{x : A } → t |
A ,B F . . . | {x : A } → B | {A } → B

id : {A : Set} → A → A
id {A } x = x
zero′ = id {Nat} zero

Implicit arguments can be omitted: id x means id { } x.
Both in left-hand-sides and right-hand-sides:

id : {A : Set} → A → A
id x = x

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Example

data List (A : Set) : Set where
nil : List A
(::) : A → List A → List A

(++) : {A : Set} → List A → List A → List A
nil ++ ys = ys
(x :: xs) ++ ys = x :: (xs ++ ys)

Note that constructors are polymorphic:
` nil : List A , for any A
0 nil : {A : Set} → List A .

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Module System

Purpose:
Control the scope of names.
(Not to model algebraic structures.)

Guiding principle:
Scope checking should not require type checking or
computation.

Consequence:
Modules are not first class.

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Submodules

Each source file contains a single module, which in turn
can contain any number of submodules:

module Prelude where
module Nat where
. . .

module List where
. . .
module Fold where
. . .

. . .

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Accessing the Module Contents

To use a module from a file the module has to be imported

import Prelude

We can then use the names in the module fully qualified

one = Prelude.Nat .suc Prelude.Nat .zero

Or we can open a module

open Prelude.Nat
one = suc zero

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Controlling what is imported

We can exercise finer control over what is imported or
opened.

import Prelude as P
open P.Nat , hiding (+), renaming (zero to z)
open P.List , using (replicate)
zz : P.List .List Nat
zz = replicate (suc (suc z)) z

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Controlling what is exported

Private things are not exported.

module BigProof where
private minorLemma = . . .
mainTheorem : P == NP
mainTheorem = . . .minorLemma . . .

Abstract things export only their type.

module Stack where
abstract

Stack : Set → Set
Stack = List

Private things still reduce, abstract things don’t.

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

Datatypes
Definitions by Pattern Matching
Implicit Arguments
Module System

Parameterised Modules

Modules can be parameterised.

module Monad (M : Set → Set)
(return : {A : Set} → A → M A)
((>>=) : {A ,B : Set} → M A → (A → M B)→ M B)

where
liftM : {A ,B : Set} → (A → B)→ M A → M B
liftM f m = m >>= λx → return (f x)

And instantiated

module MonadList = Monad List singleton (flip concatMap)
lemma : {A ,B : Set} → (f : A → B)→ (xs : List A)→

map f xs == MonadList .liftM f xs

You need to instantiate a parameterised module to use it.

Ulf Norell Agda II – Take One

Introduction
Not Yet Features

Features
Conclusions

That’s it folks

Agda II is very much work in progress.
At this point very little is set in stone, so if you think things
should be a different way now is the time to speak up.
Most of what you’ve seen will be available for use during
the 4th Agda Implementors Meeting starting next week in
Japan.

Ulf Norell Agda II – Take One

