Agda Il — Take One

UIf Norell

May 10, 2006

UIf Norell Agda Il — Take One

Introduction

Motivation
The Basics
Features and Not

Q Introduction
@ Motivation
@ The Basics
@ Features and Not

Q Not Yet Features
@ Piin Set
@ Signatures and Structures
@ Inductive Families

Q Features
@ Datatypes
@ Definitions by Pattern Matching
@ Implicit Arguments
@ Module System

Q Conclusions

Introduction Motivation

The Basics
Features and Not

What's the point?

@ of Agda ll
e Solid theoretical foundation (lacking in Agda)

@ Small well-defined core language with nice metatheory.
@ Transparent translation from the full language to the core
language.

@ of this talk
e Present the (full) language from a user’s perspective.

UIf Norell Agda Il — Take One

Introduction Motivation

The Basics
Features and Not

The Logical Framework

The Basic Language

(Terms) s,t
(Types) A,B
(Sorts) a,f

X|lc|f|st|Ax—ot]| Ax:A)—>t
x:A)»B | A->B|t]| «a
Seti | Set | Prop

@ Note: Set # Prop.

Example: polymorphic identity

id:(A:Set) - A—- A
id=A(A: Set)(x:A) > x

UIf Norell Agda Il — Take One

Introduction Motivation

The Basics
Features and Not

What's there and what’s not

@ Features

e Inductive datatypes

e Functions by pattern matching
e Implicit arguments

e Module system

@ Not Yet Features

@ ITin Set
@ Signatures and structures
@ Inductive families

UIf Norell Agda Il — Take One

Pi in Set
Signatures and Structures
Inductive Families

Not Yet Features

ITin Set

@ What does it mean?

We don’t have

'+A:Set I,x:A+ B: Set
I't(x:A)—> B: Set

@ Consequences:

We can’t do

Rel A=A —- A — Prop
apply : List (Nat — Nat) — List Nat — List Nat

UIf Norell Agda Il — Take One

Pi in Set
Signatures and Structures
Inductive Families

Not Yet Features

ITin Set

@ Why don’t we have it?

e Ask Thierry... (The metatheory gets tricky when you
combine n-equality and IT in Set.)

@ What to do about it:

e Get the metatheory straightened out (e.g. n-equality for
datatypes).

e Abandon n-equality.

@ Abandon ITin Set.

UIf Norell Agda Il — Take One

Pi in Set
Signatures and Structures
Inductive Families

Not Yet Features

Signatures and Structures

@ What does it mean?
e In Agda you can say (something like)

Pair A B=sig fst : A
snd : B
p : Pair Nat Nat

p=struct fst = 3
snd = 7
three = p.fst

@ Why don’t we have it?

e We want to start simple.
e Signatures and structures will appear in Agda Il — Take Two
(but probably not in the same form as in Agda).

UIf Norell Agda Il — Take One

Pi in Set
Signatures and Structures
Inductive Families

Not Yet Features

Inductive Families

@ What does it mean?
e For instance:

data Vec (A : Set) : Nat —» Set where
vnil . Vec A zero
vecons : (n:Nat)—> A — Vec A n— Vec A (suc n)

@ Why don’t we have it?

@ The inductive families in Agda are very limited in terms of
what you can do with them.
e We want something better, which will require some thinking.

UIf Norell Agda Il — Take One

Datatypes

Definitions by Pattern Matching
Features Implicit Arguments

Module System

Datatypes

@ Standard, garden-variety, strictly positive datatypes:

data Nat : Set where
zero : Nat
suc : Nat — Nat

data Exist (A : Set) (P : A — Prop) : Prop where
witness : (x:A) > P x — ExistA P

data Acc (A : Set) ((<): A —> A — Prop) (x : A) : Prop where
acc : (y:A)-»>y<x—o>AccA (<)y)— Acc A (<) x

@ Note that data... is a declaration (not a term or type).

UIf Norell Agda Il — Take One

Datatypes
Definitions by Pattern Matching
Features Implicit Arguments

Module System

Definitions by Pattern Matching

@ Functions are defined by pattern matching

e Arbitrarily nested, exhaustive, possibly overlapping
patterns.
@ No case expressions!

(+) : Nat — Nat — Nat

zero + m = m

sucn + m = suc((n+m

egNat: Nat —- Nat — Bool
eqgNat zero zero = true
eqgNat (sucn) (sucm) = egNatnm
eqgNat _ _ = false

UIf Norell Agda Il — Take One

Datatypes
Definitions by Pattern Matching
Features Implicit Arguments

Module System

Mutual induction-recursion

@ You can have mutually inductive-recursive definitions:

mutual
even: Nat — Bool
even zero = tfrue
even (sucn) = oddn
odd: Nat — Bool
odd ZEero = false
odd (sucn) = evenn

@ |'d show the standard universe construction example of
induction-recursion, but you need I in Set for that.

UIf Norell Agda Il — Take One

Datatypes

Definitions by Pattern Matching
Features Implicit Arguments

Module System

Local functions

@ Functions (and datatypes) can be local to a definition:

reverse : (A : Set) — List A — List A
reverse A xs = rev xS nil

where
rev: ListA— ListA — List A
rev nil ys = yS

rev. (X:XS) ys rev xs (X :: ys)

UIf Norell Agda Il — Take One

Datatypes

Definitions by Pattern Matching
Features Implicit Arguments

Module System

Termination

@ We allow general recursion.
@ Termination checking is done separately (as in Agda).

@ Example:

gsort : List Nat — List Nat

gsort nil = nil

gsort (X :: XS) = filter (A\y — y < X) XS ++
x :: filter (Ay — y > X) XS

UIf Norell Agda Il — Take One

Datatypes

Definitions by Pattern Matching
Features Implicit Arguments

Module System

Meta Variables

@ There are two kinds of meta variables (only one in Agda):

e Interaction points: 2 and {! ... !}
e Go figure': _

@ The type checker should be able to figure out the value of
a go figure without user intervention...

@ ...whereas the value of an interaction point is supplied by
the user.

@ We use go figures to implement implicit arguments.

'Conorism

UIf Norell Agda Il — Take One

Datatypes
Definitions by Pattern Matching
Features Implicit Arguments

Module System

Implicit Arguments

@ Curly braces { } are used to indicate implicitness:

id: {A:Set}>A—>A
id {A} x =x
zero’ = id {Nat} zero

@ Implicit arguments can be omitted: id x means id {_} x.
@ Both in left-hand-sides and right-hand-sides:

id : {A:Set} - A—>A
idXx =x J

UIf Norell Agda Il — Take One

Datatypes
Definitions by Pattern Matching
Features Implicit Arguments

Module System

data List (A : Set) : Set where
nil : List A
(:) : A—ListA—ListA

(++): {A: Set} — List A — List A — List A
nil ++ ysS = Vs
(X::XxS) ++ ys = X:u(XS++Yys)

@ Note that constructors are polymorphic:

e +nil: List A, forany A
@ ¥ nil: {A: Set} — List A.

UIf Norell Agda Il — Take One

Datatypes

Definitions by Pattern Matching
Features Implicit Arguments

Module System

Module System

@ Purpose:

e Control the scope of names.
@ (Not to model algebraic structures.)

@ Guiding principle:
@ Scope checking should not require type checking or
computation.

@ Consequence:
@ Modules are not first class.

UIf Norell Agda Il — Take One

Datatypes

Definitions by Pattern Matching
Features Implicit Arguments

Module System

Submodules

@ Each source file contains a single module, which in turn
can contain any number of submodules:

module Prelude where
module Nat where

module List where

module Fold where

UIf Norell Agda Il — Take One

Datatypes
Definitions by Pattern Matching
Features Implicit Arguments

Module System

Accessing the Module Contents

@ To use a module from a file the module has to be imported

import Prelude J

@ We can then use the names in the module fully qualified

one = Prelude.Nat.suc Prelude.Nat.zero J

@ Or we can open a module

open Prelude.Nat
one = suc zero

UIf Norell Agda Il — Take One

Datatypes

Definitions by Pattern Matching
Features Implicit Arguments

Module System

Controlling what is imported

@ We can exercise finer control over what is imported or
opened.

import Prelude as P

open P.Nat, hiding (+), renaming (zero to z)
open P.List, using (replicate)

zz : P.List.List Nat

zz = replicate (suc (suc z)) z

UIf Norell Agda Il — Take One

Datatypes
Definitions by Pattern Matching
Features Implicit Arguments

Module System

Controlling what is exported

@ Private things are not exported.

module BigProof where
private minorLemma = ...
mainTheorem : P == NP
mainTheorem = ... minorLemma.. ..

@ Abstract things export only their type.

module Stack where
abstract
Stack : Set — Set
Stack = List

@ Private things still reduce, abstract things don't.

UIf Norell Agda Il — Take One

Datatypes
Definitions by Pattern Matching
Features Implicit Arguments

Module System

Parameterised Modules

@ Modules can be parameterised.

module Monad (M : Set — Set)
(return: {A : Set} - A —->MA)
(>>=):{A,B:Set} > MA—>(A—- MB) > M B)
where
liftM : {A,B : Set} - (A ->B)-> MA—-> MB
liftMfm=m>>= Ax — return (f x)

@ And instantiated

module MonadlList = Monad List singleton (flip concatMap)
lemma: {A,B:Set} - (f:A— B)—> (xs:List A) -
map f xs == MonadList.liftM f xs

@ You need to instantiate a parameterised module to use it.

UIf Norell Agda Il — Take One

Conclusions

That’s it folks

@ Agda Il is very much work in progress.

@ At this point very little is set in stone, so if you think things
should be a different way now is the time to speak up.

@ Most of what you've seen will be available for use during
the 4th Agda Implementors Meeting starting next week in
Japan.

UIf Norell Agda Il — Take One

