o
W

510996
TYPES
Types for Proofs and Programs

Coordination Action
FP6-2002-1ST-C

Deliverable: Short Course



Monads and more 02-07-2008 13.56

Monads and more

Intensive course by Tarmo Uustalu, Institute of Cybernetics, Tallinn, Estonia. Intended audience:
Postgraduates and researchers in Theoretical Computer Science.

Slides:

Monday (upupdated)
Tuesday (update)

Wednesday

Friday
Slides about tree transducers

Course contents:

Monads and why they matter for a working programming language person
Combining monads: monad transformers, distributive laws, the coproduct of monads
Finer and coarser: Lawvere theories and arrows

Comonads and context-dependent computation

Notions of computation on trees

U DN WN =

Time and place

Monday 14 May - Wednesday + Friday, 9:00-11:00 in C60 (may change), CS & IT.

Contact

Thorsten Altenkirch

Last modified: Thu May 24 10:06:18 BST 2007

http://www.cs.nott.ac.uk/~txa/tarmo07.html Page 1 of 1


http://www.cs.nott.ac.uk/~txa/rouge-slides.pdf
http://www.cs.nott.ac.uk/~txa/
http://cs.ioc.ee/~tarmo/
http://www.cs.nott.ac.uk/~txa/monads-more-1.pdf
http://www.cs.nott.ac.uk/~txa/monads-more-2.pdf
http://www.cs.nott.ac.uk/~txa/monads-more-3.pdf
http://www.cs.nott.ac.uk/~txa/monads-more-4.pdf

Monads and More: Part 1

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007
University of Udine, 2-6 July 2007



Outline

)

Monads and why they matter for a working functional
programmer: monads, Kleisli categories, monadic
computation, strong and commutative monads, monadic
semantics

Combining monads: monads from adjunctions,
distributive laws, the coproduct of monads

Finer and coarser: Lawvere theories, arrows and Freyd
categories

Comonadic notions of computation: comonads and
coKleisli categories, comonadic computation, in particular
dataflow computation, lax/strong symmetric monoidal
comonads, comonadic semantics

Notions of computation on trees



Prerequisites

@ Basics of functional programming and typed lambda
calculi

@ From category theory:

e functors, natural transformations
adjunctions

symmetric monoidal (closed) categories
Cartesian (closed) categories, coproducts

("]
]
(]
e initial algebra, final coalgebra of a functor



Monads

@ A monad on a category C is given by a

e a functor T : C — C (the underlying functor),

e a natural transformation 7 : Idec — T (the unit),

e a natural transformation p: TT — T (the
multiplication)

satisfying these conditions:

TA—2- TTA  TTTAXZ-TTA

s T

TTA T> TA TTA T TA

@ This definition says that (7,7, 1) is a monoid in the
endofunctor category [C,C].



An alternative formulation: Kleisli triples

@ A more combinatory formulation is the following.
e A monad (Kleisli triple) is given by
e an object mapping T : |C| — |C|,
o for any object A, a map na: A— TA,
o for any map k: A— TB, amap k*: TA — TB (the
Kleisli extension operation)
satisfying these conditions:
o if k: A— TB, then k* onp = k,
o Ny = id7a,
o if ki A— TB, (: B — TC, then (£* o k)* = (* o k*.
o (Notice there are no explicit functoriality and naturality
conditions.)



Monads vs. Kleisli triples

@ There is a bijection between monads and Kleisli triples.

e Given T, n, u, one defines

o if k: A— TB, then k* =gy TA—"% 7TB 12~ T8

@ Given T (on objects only),  and —*, one defines
o if f: A— B, then
Tf =4 (A——~B—"-TB): TA— TB,

id71a



Kleisli category of a monad

@ A monad T on a category C induces a category KI(T)
called the Kleisli category of T defined by

an object is an object of C,

a map of from A to B is a map of C from A to TB,

idy =ar A—">TA,

o ifk:A=T B, ¢:B —T C, then

00T k=gt A—>TB—5TTC > TC

@ From C there is an identity-on-objects inclusion functor J
to KI(T), defined on maps by

o if f: A— B, then
=g A—=B-—L-TB = A TA- "~ TB.




Computational interpretation

Think of C as the category of pure functions and of TA as
the type of effectful computations of values of a type A.
KI(T) is then the category of effectful functions.

na : A — TA is the identity function on A viewed as
trivially effectful.

Jf : A— TB is a general pure function f : A — B viewed
as trivially effectful.

pa: TTA — TA flattens an effectful computation of an
effectful computation.

k*: TA — TB is an effectful function k: A— TB
extended into one that can input an effectful
computation.



Examples

@ Exceptions monad:
o TA =4t A+ E where E is some object (of exceptions),
o ma=ar AL A+E,
pa=a (A+E)+E " A+E,
o ifk:A— B+ E, then k* =g A+ E —
@ Output monad:

o TA =4t A x E where (E, e, m) is some monoid (of
output traces), e.g., the type of lists of a fixed element
type with nil and append,

o ma=ar A Ax1 S AXE,

° MA_df(AxE)><E—>A><(E><E)'dxmA><E,

o if k: A— B x E, then
k* =gt AXE 9 (BXEYXE -2 Bx(ExE) "7 BxE.

[|d inr]

[k,inr] BiE.



@ Reader monad:
o TA =4t E = A where E is some object (of
environments),
o na =ar MA x E = A),
o pia=at N(E = (E = A)) x E
<evsnd> (EjA) % Ei>A),

o if k: A— E = B, then k* =4t N((E = A) x

(evsnd> A x Ek><|d (E:> B) « E &, B)



o Side-effect monad:

o TA=4t S = A x S where S is some object (of states),
nA:df/\(AXSi>AX5),
pa=aNS=((S=AxS5)xS)xS

L(S=2AxS) xS L AXS),
oifk:A—S=BxS, then k* =gt A((S=AxS) xS
L Ax SN (S=BxS)xS 2 BxYS).

e Continuations monad:

o TA =4t (A= R) = R where R is some object (of
answers),
o na=at MAx (A= R) = (A= R)x R 25 R),
o if k:A— (B= R)= R, then
k* =qf /\(((A = R) = R) X (B = R)

i (K)o ev
G (A = R) = R) x (A= R) =% R).



Strong functors

@ A strong functor on a category (C,/,®) is given by
e an endofunctor F on C,
e together with a natural transformation
slag: A® FB — F(A® B) (the (tensorial) strength)

satisfying
1 FA—"4 F(I @ A)
UIFAl \LFU'A
FA=————FA
(A B)® FC F((A® B) @ C)

3A,B,FC\L \LFaA,B,C

A®(B®FC) = A® F(B® C) ;—F(A® (B® C))

sla,BeC



@ A strong natural transformation between two strong
functors (F,sl), (G,sl") is a natural transformation
T : F - G satisfying

sl
A® FB—"%F(A® B)

idA®TBl iTA@)B

SIAJ3



Strong monads

@ A strong monad on a monoidal category (C,/,®) is a
monad (T, 7, i) together with a strength sl for T for
which n and p are strong, i.e., satisfy

AR B=—A®B
idA@nB\L lnA@B

sl Tsl
AR TTB—2T(A® TB) —=2 TT(A® B)
idA@uBi iﬂA@B

A® TB T(A® B)

SIA,B

(Note that Id is always strong and, if F, G are strong,
then GF is strong.)



Commutative monads

o If (C,/,®) is symmetric monoidal, then a strong functor
(F,sl) is actually bistrong: it has a costrength
stag: FA® B — F(A® B) with properties symmetric to
those of a strength defined by
slg. A Fcp JA

SraB =dt FA®BCFAB>B®FA—>F(B®A) — F(A® B)

@ A bistrong monad (T,sl,sr) is called commutative, if it

satisfies
TA® TB—— T(TA@B)—>TT(A®B)
T(A® TB) HA®B
TsIA’B\L
TT(A® B) e T(A® B)




Examples

@ Exceptions monad:

o TA =4t A+ E where E is an object,

o slag =at Ax(B+E) 25 AxB+AxE " AxB+E.
@ Output monad:

o TA =4t A x E where (E, e, m) is a monoid,

o slas =ar Ax (Bx E) 2> (Ax B) x E.
@ Reader monad:

o TA =4t E = A where E is an object,

o slap=at N((Ax (E=B))x E

2, Ax ((E= B)x E)' ¥ Ax B).



Tensorial vs. functorial strength

@ A functorially strong functor on a monoidal closed
category (C, I, ®,—o) is an endofunctor F on C with a
natural transformation fspg : A— B — FA — FB
internalizing the functorial action of F.

@ There is a bijective correspondence between tensorially
and functorially strong endofunctors, in fact an
equivalence between their categories.

@ Given fs, one defines sl by

Sl s =t AQFB 25 (B —o A2B)9FB %) F(A2B)

@ Given sl, one defines fs by

Fev



On Set, every monad is (1, x) strong

@ Any endofunctor on Set has a unique functorial strength
and any natural transformation between endofuctors on
Set is functorially strong.

@ Hence any monad on Set is both functorially and
tensorially strong.



Effects

@ Of course we want the Kleisli category of a monad to
contain more maps than the base category.

@ To describe those, we must single out some proper
sources of effectfulness. How to choose those is a topic
on its own.

e E.g., for the exceptions monad, an important map is

inr

raise =gt E — A+ E.



Semantics of pure typed lambda calculus

@ Pure typed lambda calculus can be interpreted into any
Cartesian closed category C, e.g., Set.

@ The interpretation is this:

[K] =ar an object of C
[AxB] =ar [A] x [B]
[A=B] =a [A]l=I[B]

[[Q] =df [[Co]] X ... X [[Cn—l]]

[(x)xi] =ar i
[(x)let x — tinu] =qr [(x,x)u]o/id,[(x)t])
[(x) fst(t)] =ar fsto[(x)1]
[(x)snd(t)] =ar sndo [(x)1]
[(x) (to, t1)] =ar ([(x) to]], [(x) ta])
[C)Axt] =ar A([(x,x) t])
[(x)tu] =ar evo([(x)t], [(x)u])



@ This interpretation is sound: derivable typing judgements
of the pure typed lambda calculus are valid, i.e.,

x: CkFt:Aimplies [(x) t] : [C] — [A]

and the same holds true about all derivable equalities.

@ This interpretation is also complete.



Pre-[Cartesian closed] structure of the Kleisli

category of a strong monad

@ Given a Cartesian (closed) category C and a (1, x) strong
monad T on it, how much of that structure carries over

to KI(T)?

@ We can manufacture “pre-products” in KI(T) using the
products of C and the strength sl like this:

T
Ao x' A1 =qf
fStT =dr
sndT =d4f

<k07 k1>T —df

Ao X A1
n o fst

nosnd
sI* o sro (ko, k1)



k:C—-TA (. CxA—TB

(o k=4
(id¢,k)

C— CxTA—>T(C><A)—>TB

fstT =gqr Ag X Ay —= Ay —= TAo

snd” =g Ag x A; - A, 1 TA,

koZC—>TAO k]_ZC—>TA1

<k0a kl>T —d

(ko,k1) StAqy, TAL

C4> TAO X TA]_ I T(Ao X TA]_) A40; T(AO X Al)



The typing rules of products hold, but not all laws.

In particular, we do not get the 3-law of products. Effects
cannot be undone!

E.g., taking T to be the exception monad defined by
TA =4 A+ E for some fixed E we do not have

snd” o7 (ko, k)T = k.

Take kg =45 raise = inr : E — TA,

ki =qid" =inl: E— TE

Then (kg, k;)T =inr: E — T(A x E) and hence

snd” o7 (ko, ky)T = inr # inl = k.

In fact, x T is not even a bifunctor unless T is
commutative, although it is functorial in each argument
separately. Effects do not commute in general!



@ “Pre-exponents” are defined from the exponents of C by

A=TB =4 A= TB
evT =4r €V

N (k) =ar noNKk)

VA, TB

evig=a (A= TB)x A2 18

k:CxA— TB

AT (k) =at cMas B2 T(A= TB)




o It is not true that A=" — : KI(T) — KI(T) is right
adjoint to — x " A: KI(T) — KI(T).
So =T is not a true exponent wrt. the preproduct x .
@ But A=T — : KI(T) — C is right adjoint to
J(—xA):C—KI(T):

J(ICxA)—-TB
CxA—TB
C—-A=1TB
C—-A="T8B

We that say A=" B is the Kleisli exponent of A, B.

@ More about the pre-[Cartesian closed] structure of Kleisli
categories in the story about arrows.



CoCartesian structure of the Kleisli category of a
monad

o If C is coCartesian (has coproducts), then KI(T) is
coCartesian too, since J as a left adjoint preserves
colimits.

e Concretely, the coproduct on KI(T) is defined by

Ac+T A =t Ao+ Al
ian —df N © inl
inrT =g noinr

[ko, ki]T =ar [ko, ki



Semantics of an effectful language

@ In the semantics of an effectful language, the semantic
universe is the Kleisli category KI( T) of the appropriate
strong monad T on a Cartesian closed base category C.

@ The pure fragment is interpreted into KI(T) as if the
language was pure, using the pre-[Cartesian closed]
structure:

[K]T =qt an object of KI(T)
= that object of C
[AxB]T =4 [A]" xT[B]"
=[Al” x[B]"
[A=B]T =4 [A]"=T[B]"
=[AI" = T[B]"

[[QHT =df [[Co]]T ><T... ><T [[Cn_l]]T
=[G]" x ... x [Caza] T



[(x)x]T =ar

[(x) fet x — tin u] T =as
[6) ()] =ar
[() snd ()] =as

[(x) (to, t1)] " =at

[x) Mxt] T =qr

[(x)tu]T =q

Tl
=nom;
[, x) u] T o7 (idT, [(x)t]T)T
= ([(x,x) u] ")* osl o (id, [(x) 1] T)
fst” o7 [(x)] "
= Tfsto [(x)t]"
snd” o [(x)t]"
= Tsnd o [(x)t]"
([()t] ", [()ul")T
=sl*osro ([(x)to] ", [(x)t] ")
AT([(x, x)t]T)
=no N[(x,x)t] ")
ev ol ([(x)t] ", [(x)u] )T
=evtosl*osro ([(x)t]7, [(x)u] ")



@ As KI(T) is only pre-Cartesian closed, for this pure
fragment, soundness of typing holds, i.e.,

x:CkHt:Aimplies [(x)t]" : [C]" =T [A]"

but not all equations of the pure typed lambda-calculus
are validated.

@ In particular,

Ft:Aimplies [t]7 : 1 —" [A]T

so a closed term t of a type A denotes an element of
TIA]T.



@ Any effect-constructs must be interpreted specifically
validating their desired typing rules and equations.
E.g., for a language with exceptions we would use the
exceptions monad and define

[(x) raise(e)]T =g raiseo’ [(x)e]”
= raise* o [(x) e] "



Kleisli adjunction

@ Given a monad T on category C, in the opposite direction
to that of J : C — KI(T) there is a functor
U : KI(T) — C defined by
o UA =y TA,

o ifk:A—T B, then Uk =gt TA—X>TB.

@ U is right adjoint to J.
J‘ S o A— TB
\ / A— UB

Importantly, UJ = T. Indeed,
o UIA=TA,
o if f: A— B, then UJf = (ng o f)* = TF.
Moreover, the unit of the adjunction is 7.
J - U is the initial adjunction factorizing T in this way.
There is also a final one, known as the Eilenberg-Moore



Kleisli categories

@ In general one can define a Kleisli category on C to be

e a category D with the same objects as C
e together with an identity-on-objects functor J : C — D
with right adjoint U.

@ To give a monad is the same as to give Kleisli category.

@ We already know that a monad T induces a Kleisli
category D =q4¢ KI(T).

@ Given a Kleisli category D, we obtain a monad by taking
T =df UJ.



Monad maps

@ A monad map between monads T, S on a category C is a
natural transformation 7: T — S satisfying

TTA 57a

A=——A  TTA-"-STA-"-SSA
CI ! o
TA—=>SA TA SA

TA

@ Alternatively, a map between two monads (Kleisli triples)
T, S is, for any object A, a map 74 : TA — SA satisfying

°TAO77A_77A1
o if k: A— TB, then g o k*T = (1 0 k)*° o 7a.

(No explicit naturality condition on 7.)
@ The two definitions are equivalent.

@ Monads on C and maps between them form a category
Monad(C).



Monad maps vs. functors between Kleisli categories

@ There is a bijection between monad maps 7 between T,
S and functors V : KI(T) — KI(S) satisfying VJT = J°.
@ Given 7, one defines V by
o VA =g A,
o ifk:A— TB, then Vk =gs A -~ TB & SB.
@ Given V, one defines 7 by

o Ta=at V(TANA TA): TA =S A



Monads and More: Part 2

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007
University of Udine, 2-6 July 2007



Monads from adjuctions (Huber)

@ For any pair of adjoint functors L :C — D, R: D — C,
L 4 R with unit n : Ide — RL and counit € : LR = Idp,
the functor RL carries a monad structure defined by

o nRl =4 1d -5 RIL,

o uRl =y RLRL FE5 Ry

@ The Kleisli and Eilenberg-Moore adjunctions witness that
any monad on C admits a factorization like this.



Examples
@ State monad:
o L,R:C—>C, LA:deXS, RB:de:>B,
AxS—B
A—S=B
o RLA=S=AxS,
@ An exotic one:
o LR:C—C, LA=g pX.A+ X x S22 Ax ListS,
RB =df vY.B x (5:> Y),
UXA+XxS— B
A—-vY.Bx(S=Y)

o RLA=vY.(uX. A+ X xS)x (S=Y)=
vY.A x ListS x (§ = Y).
e What notion of computation does this correspond to?



@ Continuations monad:

o L:C—C°P, LA:de:>E,
R:C®° - C, RB=4 B=E,

A=E—B
E+—BxA
Ax B — E
A—-B=E

o RLA=(A=E) = E.



Monads from adjunctions ctd.

@ Given two functors L:C —Dand R: D — C, L4 R and
a monad T on D, we obtain that RTL is a monad on C.

@ This is because T factorizes as UJ where J = U is the
Kleisli adjunction.
That means an adjoint situation JL = RU implying that
RUJL = RTL is a monad.

@ The monad structure is
o nRTL —4 1d RL™E RTL,
.
o uRTL =4 RTLRTL "It RTTL 2 RTL.



Examples

@ State monad transformer:
[_,RZC—>C, LA=4 AX S, RB=4S = B,
T —a monad on C,
RTLA=S= T(AXxS),
In particular, for T the exceptions monad we get
RTLA=S= (AxS)+E.
@ Continuations monad transformer:
o L:C—(C°P, LA:de:>E,
R:C° —C, RB =4t B=E,
e T —a monad on C°P, i.e., a comonad on C,
o RTLA=4 T(A= E) — E.



Free algebras, free monads

@ Given a endofunctor H on a category C, let
(H*A, [n%,74]) be the initial algebra of A+ H— (if it
exists), so that, for any A+ H—-algebra (C, [g, h]), there
is a unique map f : H*A — C satisfying

i ™
A~ H A=<= HH*A
f Hf
£y v
C~——HC

@ H*Ais the type of wellfounded H-trees with mutable
leaves from A, i.e., of H-terms over variables from A.



o ((H*A,7),nk) is the free H-algebra on A,
ie., A (H*A, 7HA) : C — alg(H) is left adjoint to the
forgetful functor U : alg(H) — C.

(H*A,74) — (C, h)

A— C
A— U(C,h)

and 1" is the unit of the adjunction.



@ The pointed functor (H*,n'") carries a monad structure.

@ The Kleisli extension k* : H*A — H*B of any given map
k : A— H*B is defined as the unique map f satisfying

A—2 HfA<i HH* A
f Hf

k v v
H*B <.,.73 HH*B

Intuitively, this is grafting of trees into the mutable leaves
of a tree or substitution of terms into the variables of a
term.



o ((H*,nM, ut),7H) is the free monad on H,
ie., H— (H*,n" uH) :[C,C] — Monad(C) is left
adjoint to the forgetful functor U : Monad(C) — [C,C]

(H*,n", uty — (S, n°, 1)
H—S
H— U(S,n°, 1°)

and 7 is the unit of the adjunction.



Free completely iterative algebras, free completely
iterative monads (Adamek, Milius, Velebil)

@ The final coalgebras H*A of A+ H— (the free
completely iterative H-algebras over A) for each A also a
give a monad (the free completely iterative monad on H).



Examples

o If HX =1+ X x X, then H*A is the type of wellfounded
binary trees with a termination option and with mutable
leaves from A
(i.e., terms in the signature with one nullary, one binary
operator over variables from A).

o If HX =4 ListX =[],y X', then H*A'is the type of
wellfounded rose trees with mutable leaves from A
(i.e., terms in the signature with one operator of every
finite arity over variables from A).



Monads from parameterized monads via initial
algebras / final coalgebras (U.)
@ A parameterized monad on C is a functor
F :C — Monad(C).

o If F is a parameterized monad then the functors
F*, F>* :C — C defined by F*A =4 uX.FXA and
F°A =4 vX.FXA carry a monad structure.

@ In fact more can be said about them, but here we won't.



Examples

@ Free monads:
o FXA =4t A+ HX where H:C — C,
o F*A =4t uX.A+ HX, F*A =4 vX.A+ HX.
o These are the types of wellfounded/nonwellfounded
H-trees with mutable leaves from A.

@ Rose tree types:
o FXA =4 A x HX where H : C — Monoid(C),
o F*A =4t uX.Ax HX, F*A =4 vX.A x HX.
o If HX =4 ListX, these are the types of
wellfounded /nonwellfounded A-labelled rose trees.



@ Types of hyperfunctions with a fixed domain:
o FXA =4t HX = A where H:C — CP,
o F*A =g uX.HX = A, FXA =4 vX.HX = A.
o If FX =4¢ X = E, these are the types of
wellfounded/nonwellfounded hyperfunctions from E to
A. (Of course these types do no exist in Set.)



Distributive laws

e If T, S are monads on C, it is not generally the case that
ST is a monad. But sometimes it is.

o A distributive law of a monad T over a monad S is a
natural transformation A : TS — ST satisfying

T——T 7SS 22> 5TS 22~ 55T
Tnsi \Lns T T,usl \L,LLS T
TS ——=ST 7S - ST
S——5 TTS -2 757 21 STT
nTSl iSUT #TSJ/ lSHT
7S —>ST 7S ST



o A distributive law A\ of T over S gives a monad structure
on the endofunctor ST
ST nSnT
o n°' =4¢ld — ST,

S, T
o ST =g STST 2L sSTT 1 ST



Examples

@ The exceptions monad distributes over any monad.

e S —a monad,

o TA =4t A+ E where E is an object,

A =gt SA+ E 4T 544 g S ¢
o STA=S(A+E).

For T the state monad, this gives
ST=5= (A+ E) xS, which is a different
combination of exceptions and state than we saw before.

(A+E),

@ The output monad distributes over any (1, x) strong
monad.

(S,sl) — a strong monad,

TA =4¢ A X E where E is a monoid,
A =qt SAx E > S(Ax E),
STA=S(A X E).



@ Any (1, x) strong monad distributes over the
environment monad.

(T,sl) — a strong monad,

SA =4t E = A where E is an object,

A =qt NT(E = A) x E =5 T((E = A) x E) 1% TA),
o STA=E=TA



Coproduct of monads

@ An interesting canonical way to combine monads is the
coproduct of monads.

@ A coproduct of two monads Ty and T; on C is their
coproduct in Monad(C).

@ l.e., itisa monad Ty +™ T, together with two monad
maps inl™ : To =™ To+™ Ty, int™: Tg =™ To+™ T1
such that for any monad S and monad maps
To: To—™S, 71 : Ty =™ S there exists a unique monad
map To +™ T; —™ S satisfying

TO inl™ -,-0 +m Tl inr™ -,-1

N,

v
S



@ The coproduct of two monads cannot be computed
“pointwise”, it is not the coproduct of the underlying
functors.

@ In fact, most of the time the coproduct of the underlying
functors of two monads is not even a monad.



Coproduct of free monads

@ The coproduct of the free monads on functors Hy, H; is
the free monad on their coproduct:

Hy +™ Hy = (Ho + Hy)*

(obvious, since the free monad delivering functor is a left
adjoint and hence preserves colimits, in particular
coproducts).



Coproduct of a free monad and an arbitrary monad

(Power)

@ More generally, the coproduct of a free monad H* with an
arbitary monad S is this (if (HS)* exists):

H*+™ S = S(HS)"

(H* +™ S)A = S(uX.A + HSX) = uX.S(A + HX)

o For HX =4t E, H*'A = uX.A+ E = A+ E (exceptions
monad) and (H* +™ S)A = uX.S(A+ E) = S(A+ E).
This is the same combination of exceptions with any
other monad as obtained from the canonical distributive
law of the exceptions monad over another monad.



Ideal monads (Adamek, Milius, Velebil)

@ Idea: to generalize the separation of variables from

operator terms in term algebras.

@ An ideal monad on C is a monad (T,n, i) together with
an endofunctor T' on C and a natural transformation

@' T'T = T’ such that
o T=Id+ T,
e 1 =nl,
o p=[id,inroy].
inrT

TO-TT=(d+ 7T 77

T=I1d+T T’

inr

@ An ideal monad map between T =Id+ T’ and

S=1Id+S"is monad map 7: T — S together with a

nat. transf. 7/ : T' — S’ satisfying 7 = id + 7.



Examples

@ Free monads are ideal:

o TA =gt uX.A+ HX where H:C — C
o TAZ A+ HTA

@ The finite powerset monad is not ideal:
o TA=yt Pr
o TA= A+ 1+ P>2A, but P>p is not a functor:
If for some f : A— B and ag, a1 € A we have
f(ag) = f(a1), then P;f sends a 2-element set {ap, a1}
to singleton.
@ The finite multiset monad is not ideal:
o TA=Z A+ 1+ MxoA, but u does not restrict to a nat.
transf. M>o Mg — M>o:
If a € A, then ua{{a},0} = {a}.



@ The nonempty finite multiset monad is ideal:

o TA =gt M>1
o TAX A+ MZZA

@ The nonempty list monad is ideal too.



Coproduct of ideal monads (Ghani, U.)

@ Given two ideal monads So = Id + S and S; = Id + 5],
their coproduct is the ideal monad T =1Id+ Tg+ T,
defined by

(ToA, T{A) =ar 11(Xo, X1).(So(A + X1)), S1(A + Xo))



Monads and More: Part 3

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007
University of Udine, 2-6 July 2007



Arrows (Hughes)

@ Arrows are a generalization of strong monads on
symmetric monoidal categories (in their Kleisli triple
form).

@ An arrow on a symmetric monoidal category (C, I, ®) is
given by
e an object mapping R : |C| x |C| — |Set]|,
o for any objects A, B of C, a map
arr : Hom¢(A, B) — R(A, B) of Set,
o for any objects A, B, C of C, a map
< R(A,B) x R(B,C) — R(A, C) of Set,
o for any objects A, B, C of C, a map
secondc : R(A,B) - R(C ® A, C ® B) of Set
satisfying the conditions on the next slide.



@ (ctd. from the previous slide)

if k € R(A, B), then arridg << k = k,

o if k € R(A, B), then k < arrida = k,

if ke R(A,B), £ € R(B,C), me R(C, D), then
(MKl K k=m< ({ K k),
iff:A— B, g:B— C, then
arr(gof)=arrg K arr f,

o if f: A— B, then second¢ (arr f) = arr(id¢ x ),

if k € R(A, B), £ € R(B, C),

secondp (¢ < k) = secondp ¢ << secondp k,

if k € R(A,B), f: C — D, then

arr (f xidg) <« second¢ k = secondp k << arr (f xida),
if k € R(A,B), k << arruly = ulg < secondk,

if k € R(A, B), second¢ (secondp k) << acp.a =
ac,p,B K secondcgpk.



Examples

@ Arrows from strong monoidal functors:

o R(A, B) =4t Hom¢(FA, FB) where F is a monoidal
endofunctor on C (i.e., there is a natural isomorphism
MAB - FA® FB — F(A® B),

o iff:A— B, thenarrf = Ff : FA — FB,

o ifk: FA— FB, ¢: FB — FC, then
<< k=q FA S FB -5 FC,

o if k: FA — FB, then second k =q; F(C ® A) ™

FC® FA“®S FC ® FB ™ F(C @ B).



o Kileisli maps of strong monads:

o R(A, B) =4t Hom¢(A, TB) where T is a strong monad,
o if f: A— B, then arrf = Jf : A— TB where J is the
Kleisli inclusion of T,
o ifk:A— TB,{: B — TC, then
(< k=g A 1B L TC,
o if k: A— TB, then
second k =g¢ C®A'dﬁ§ C®TB -5 T(C®B).
@ CoKleisli maps of comonads on Cartesian categories:
e R(A, B) =4t Hom¢ (DA, B) where D is a comonad on C,
o if f: A— B, then arrf = Jf : DA — B where J is the
coKleisli inclusion of D,
o if k: DA— B, ¢: DB — C, then
(< k=4 DAXS DB
o if k: DA — B, then

second k =q; D(C x A) (Dfst,Dsnd)

DC x DA &5 ¢ x B.



@ Output once more:

o R(A, B) =4t E x Hom¢(A, B) where (E,e, m) is a
monoid in Set,
o if f: A— B, then arrf = (e, f) : E x Hom¢(A, B),
o if (x,f): E x Hom¢(A, B), (y,g) : E x Hom¢(B, C),
then
(vy,g) << (x,f) =qr (m(x,y),gof) € E xHome(A, C),
o if (x,f): E x Hom¢(A, B), then
second (x, f) =gt (x, C®f) € E x Hom¢(C® A, C® B).



Arrows in the monoid form (Jacobs, Heunen,
Hasuo)

@ An alternative definition mimicks the definition of monads
in the standard, i.e., monoid form.

@ An arrow on a symmetric monoidal category (C,/,®) is a
strong monoid in the category of endoprofunctors on
C, I, ®).

@ A profunctor from C to D is a functor C°? x D — Set.
The identity profunctor on C is
Id =df Homc - C°? x C — Set.
The composition of profunctors R : C — D and
S:D—Eis SR(A, C) =4 [° R(A,B) x S(B, C).



@ Accordingly, the data of an arrow are the following.

e The carrier of an arrow is a profunctor R from C to C,
i.e., a functor R : C°? x C — Set.

e The unit is a natural transformation from Id to R, i.e., a
family of maps arra g : Hom¢(A, B) — R(A, B) natural
in A, B.

The multiplication is a nat. transf. from RR to R, i.e., a
family of maps << 4 g.c: R(A,B) x R(B,C) — R(A, C)
natural in A, C and dinatural in B.

The strength is a family of

seconda g c  R(A,B) = R(C® A, C® B) natural in A,
B and dinatural in C.



Symmetric premonoidal categories (Power,
Robinson)

@ Intuitively, a symmetric premonoidal category is the same
as a symmetric monoidal category, except that the tensor
is not necessarily a bifunctor, it must only be functorial in
each argument separately.

@ More officially: A symmetric premonoidal category is
given by

a category IC,

an object / of K,

for any object A, a functor Ax —: K — K,

natural isomorphisms a, ul, ur, c satisfying the laws of a

symmetric monoidal category and have all their

components central (see further).



@ Symmetry yields symmetric functors — x A: K — K
where Ay X A; = Ag X A; (which we also denote more
symmetrically by Ay ® A;).

@ A morphism f : A — B is called central if, for any
g : C — D, both

A9 C X% AaoD CoAZADA

fxCl J/fxD foi iDNf

B®CT>qg>C®D C®BWD®C



Freyd categories

@ A Freyd category on a symmetric monoidal category C is
given by
o a symmetric premonoidal category (K, I, @) with the
same objects as C
o together with an identity-on-objects inclusion functor
J : C — K that preserves centrality and strictly preserves

its the (/, ®) structure as premonoidal (meaning that
=1, A B=A®B).



Freyd categories vs. arrows (Jacobs, Heunen,

Hasuo)

@ Freyd categories are in a bijection with arrows.

@ For an arrow R on a symmetric monoidal category
(C,1,®), the Freyd category ((C, I, ®*), J) is defined

by

an object is an object of C,

a map from A to B is an element of R(A, B),

id§ =4 arrida,

if k: A=K B, 0:B K C, then Lol k =4 ¢ <« k,
IK=1 ARK B =4 A® B,

if k: A=K B, then C xX k =4¢ second k,

if f: A— B, then Jf =4¢ arrf.



o Given a Freyd category ((K, I*, ®"),J) on C, the
corresponding arrow R is defined by
R(A, B) =4t Hom(A, B),
iff:A— A g:B— B, k€ Homi(A, B), then
R(f,g) k =qt Jg << k < Jf,
o if f: A— B, then arr f =4¢ Jf € Homk (A, B),
o if k € Homg(A, B), £ € Homg(B, C), then
0 < k =q; £ X k € Homg (A, ),
o if k € Homy (A, B), then
second k =qt C x* k € Homk(C ® A, C ® B).



When is Freyd Kleisli? (Power)

o Given a Freyd category ((K,/*, ®*), J) on a symmetric
monoidal category (C, /,®), when is it the Kleisli
category of a strong monad?

@ A simple condition is in terms of Kleisli exponents.

@ Suppose J(— x A) : C — K has a right adjoint A =X —.
In this case we say the Freyd category is closed.

Then also TB =4 | =X B is a strong monad with Kleisli
exponents and ((KC, I, @%), J) is its Kleisli category.



Monads and More: Part 4

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007
University of Udine, 2-6 July 2007



Comonads

@ Comonads are the dual of monads.

@ A comonad is a

e a functor D : C — C (the underlying functor),

e a natural transformation 7 : D = Id¢ (the counit),

e a natural transformation § : D — DD (the
comultiplication)

satisfying these conditions:

da oA
DA—— DDA DA——— DDA

o] \ oo o) |

DDA —— DA DDA e DDDA

@ In other words, a comonad is comonoid in [C,C] (a
monoid in [C,C]°P).



CoKleisli triples

o A coKleisli triple is given by
e an object mapping D : |C| — |C],
o for any object A, a map g4 : DA — A,

o for any map k : DA — B, a map k' : DA — DB (the
coKleisli extension operation)

satisfying
o if k: DA — B, then g o k = k,
] 8; = idDA,

o ifk: DA— B, {: DB — C, then (£ o k')t = ¢t o k.

@ There is a bijection between comonads and coKleisli
triples.



CoKleisli category of a comonad

@ A comonad D on a category C induces a category
CoKI(D) called the coKleisli category of D defined by

an object is an object of C,
a map of from A to B is a map of C from DA to B,
id? =4 DA 4 A,
if k: A—P B, £:B—P C, then
0P k =4 DA 4 DDA 25 DB -5 C.
@ From C there is an identity-on-objects inclusion functor J
to CoKI(D), defined on maps by
o if f: A— B, then
Jf =g DA% AL B=pa Pl DB 25 B,

@ The functor J has a left adjoint U : CoKI(D) — C given

by UA =4 DA if k : A—P B, then Uk —y DA - DB.



Comonadic notions of computation

@ We think of C as the category of pure functions and of
DA as the type of coeffectful computations of values of
type A (values in context).

@ CoKI(D) is the category of coeffectful or
context-dependent functions.

@ c4: DA — A'is the identity on A seen as trivially
context-dependent (discarding the context).

e Jf : DA — B is a general pure function f : A— B
regarded as trivially context-dependen.

@ 04 : DA — DDA blows the context of a value up
(duplicates the context).

e k' : DA — DB is a context-dependent function
k : DA — B extended into one that can output a value of
in a context (e.g., for a postcomposed context-dependent
function).



Examples

@ Product comonad, for dependency on an environment:

o DA =4t A x E where E is an object of C,

fst
OEA:deXE;A,

o da=ar Ax E (A% E) % E,
o ifk:Ax E— B, then kf =s Ax E = B« E.

@ This is the dual of the exceptions monad.

@ It is not very interesting, as CoKI(D) = KI(T) for
TA =4¢ E = A (the reader monad).



@ Exponent comonad:
o DA=y4E=A where (E, e, m) is a monoid in C,
OSA:df(E:>A) (E:>A)
'dxe PEE=A)xEZL A
o da=at NAM((E = A) x E) x E 25 (E = A) x (E x E)
DT E = A) x E-2% A)),

o Interesting special cases are (E, e, m) =4 (Nat,0,+) and
(E, e, m) =q4¢ (Nat, 0, max).



o “Costate” comonad:

o DA =45 (§ = A) x S where S is an object of C,
° €A:df(5:>A)XSi>A,
o if k:(§S= A)xS — B, then
K =ar (S = A) x § X9 (s - By x s
@ This comonad arises from the adjunction
Sx——4S5=—.



Symmetric monoidal functors

e A strong/lax symmetric monoidal functor between
symmetric monoidal categories (C,/,®) and (P, /", ®') is
e a functor on F : C —P
o together with an isomorphism/map e : " — FI
e and a natural isomorphism /transformation with
components ma g : FAQ' FB — F(A® B)

satisfying
d® e MA,B
FAR IS FAQ FI 2> F(A® 1)  FA®' FB-%F(A® B)
ur;_-Ai lFurA C'/L_A’FB\L iFCA,B
FA FA FB® FA = F(B® A)
(FA® FB) & FC" S F(Aw B) o FC*SF((A® B) ® C)
a%A,FB,FcJ/ lFaAvaC

FA®' (FB @' FC)HFA@) F(B® C)gpzF(A® (B ()



@ A symmetric monoidal natural transformation between
two (strong or lax) symmetric monoidal functors
(F,e,m), (G,€e’,m’) is a natural transformation
71 F = G satisfying

I—~F  FA® FB—%F(A® B)

lT’ TA®,TBl J/TA@;B

I'—=6l  GA®' GB—— G(A® B)

Ma B




Symmetric monoidal comonads

e A strong/lax symmetric monoidal comonad on a
symmmetric monoidal category (C,/,®) is a comonad
(D,e,9) where D is a strong/lax symmetric monoidal
functor (with /, ® preserved by e, m) and ¢, ¢ are
symmetric monoidal natural transformations, i.e., satisfy

| —=DI | - DI
| o
| ——1 | —s> DI —52 DDI

DA ® DB % D(A® B)

€A®EB\L lEA(g)B

AR B=———A®B



DA ® DB e D(A® B)
6A®§B l(SA@B

DDA © DDB s D(DA @ DB) 5— DD(A @ B)

DA,D

@ (Note that Id is always symmetric monoidal and F, G
being symmetric monoidal imply that GF is symmetric
monoidal too.)

@ A strong/lax symmetric semimonoidal comonad is as a
strong/lax symmetric monoidal comonad, but without e
(on a category which may be without /).



Dataflow computations

Dataflow computation = discrete-time signal transformations
= stream functions.

The output value at a time instant (stream position) is
determined by the input value at the same instant (position)
plus further input values.

Example dataflow programs

pos = 0 fby (pos+ 1)

sum x = x+ (0 fby (sum x))
fact = 1 fby (fact * (pos + 1))
fibo = 0 fby (fibo + (1 fby fibo))

pos 0 1 2 3 4 5 6
sum pos | O 1 3 6 10 15 21
fact 1 1 2 6 24 120 720
fibo 0 1 1 2 3 5 8




We want to consider functions Str A — Str B as impure
functions from A to B.

Streams are naturally isomorphic to functions from natural
numbers: StrA =4 vX.A x X = Nat = A.

General stream functions StrA — StrB are thus in natural
bijection with maps StrA x Nat — B.



Comonad for general stream functions

@ Functor:
DA =4 (Nat = A) x Nat = ListA x StrA

@ Input streams with past/present/future:

do,d1, .-, 3,,,1,, dpi1,dnt2, - - -

o Counit:

ea : (Nat=A)xNat — A
(a, n) = a(n)

@ CoKleisli extension:

k : (Nat = A) x Nat — B

k* : (Nat= A) x Nat — (Nat= B) x Nat
(a, n) —  (Amk(a, m), n)



Comonad for causal stream functions
@ Functor: DA =4¢ NEList = ListA x A

@ Input streams with past and present but no future

o Counit:
Ea - NEListA — A

[ao, .. .,an] — a,
o CoKleisli extension:

k : NEListA — B

k* : NEListA — NEListB
[a0, .. .,an] — [k[ao], k[a0, a1], - - -, ka0,

Comonad for anticausal stream functions
@ Input streams with present and future but no past

@ Functor: DA =4 StrA= A x StrA

ooy an]]



Relabelling tree transformations

@ Let H:C — C. Define TreeA =4 uX.A x HX. We are
interested in relabelling functions TreeA — TreeB.
(Alt. we can define Tree™A =4 vX.A x HX and interest
ourselves in relabelling functions Tree™A — Tree™B.)

@ Comonad for general relabelling functions:
DA =4 Tree’ A x A = PathA x TreeA

where PathA =4 uX.1 4+ A x H'(TreeA) x X (Huet's
zipper).

e Eg,for HX =4 1+ X x X, HX =22 x X and
PathA = uX.1+ A x 2 X TreeA x X.

@ Comonad for bottom-up relabelling functions:

DA =4 TreeA



Cartesian preclosed structure of the coKleisli

category of a strong/lax (semi)monoidal comonad

@ Let D be a comonad on a Cartesian closed category C.

@ Since J: C — CoKI(D) is a right adjoint and preserves
limits, CoKI(D) inherits products from C. Explicitly, we

can define
A XD B =df
D _
Tg =df
D _
Ty =df
D

—df

Ax B
fstoe
sndoe

(Ko, k1)



e If Dis (1, x) strong/lax symmetric semimonoidal, then
we can also define

A=PB =4 DA=B
evP =4 evo (o Dfst, Dsnd)
/\D(k) =df /\(k @) m)

(eoDfst,Dsnd)

D((DA = B) x A) (DA= B) x DA—=>~ B

DC x DA—">D(C x A)—~B

A(kom)
DC—DA=B



@ Using a strength (if available) is not a good idea: We
have no multiplication

DC x DA—2> D(C x DA) -2~ DD(C x A)—= D(C x A)

and applying € or De gives a solution where the order of
arguments of a function is important and coeffects do not
combine:

idxe

DC x DA~ DC x A—2>D(C x A)

or
exid

DC x DA— C x DA——= D(C x A)



e If D is strong semimonoidal (in which case it is
automatically strong symmetric semimonoidal as well),
then A =P — is right adjoint to — x? A and hence ="
is an exponent functor:

D(C x A) — B
DC x DA— B
DC — DA= B

@ This is the case, e.g., if DA=Z vX.A x (E = X) for some
E (e.g., DAZStrA~ uX.Ax (1= X)).



@ More typically, D is only lax symmetric semimonoidal.

@ Then it suffices to have m satisfying

DA————DA
App lDAA

where A = (id,id) : A — A x Ais part of the comonoid
structure on the objects of C, to get that

m o (Dfst, Dsnd) = id and that =P is a weak exponent
operation on objects. It is not functorial (not even in
each argument separately).



Partial uniform parameterized fixpoint operator
Let F:C — C. Define DA=4 vZ.AX FZ.

Call a coKleisli map k : A x B —P B guarded if for some k'
we have

D(A x B) k

B

: .
fstxid

(Ax B) x FD(A x B)

A x FD(A x B)

For any guarded k : A x B —P B, there is a unique map
fix(k) : A —P B satisfying




fix is a partial Conway operator defined on guarded maps, i.e.,
besides the fixpoint property, for any guarded
k:AxPB =P B,

fix(k) = k oP (id®, fix(k))P

it satisfies naturality in A, dinaturality in B, and the diagonal
property: for any guarded k : AxP B xP B =P B,

fix(k oP (idD x P AD)) = fix(fix(k))

Wrt. pure maps, fix is also uniform (i.e., strongly dinatural in
B instead of dinatural), i.e., for any guarded
k:AxPB-SPB (:AxPB =P B andh:B— B

JhoP k=100P (id° xP Jh) = JhoP fix(k) = fix(¢)



Comonadic semantics

@ As in the case of monadic semantics, we interpret the
lambda-calculus into CoKI(D) in the standard way (using
its Cartesian preclosed structure), getting

[K]P =4t an object of CoKI(D)
= that object of C
[AxB]? =a [A]P <P [B]°
— [A]° x [B]°
[A= B]P =4 [A]P =P [B]P
= D[A]® = [B]°

HQ]]D =df [[Co]]D X ... X HCn_l]]D
= [Go] x ... x [Chza]



71'6) oP [(x) t]]D

= fsto [(x) t]P
7T1D oP [(x) t]]D

=sndo [(x) t]P
(I(x) t]®, [(x) t.]7)°

= ([(x) o] ®, [(x) ta]")
AP ([(x, x) t]°)

= A([(x, x) t]P o m)
evP o ([(x) t]°, [(x) u]®)P

=evo ([(x) t]°, ([(x) u]P)")



o Coeffect-specific constructs are interpreted specifically.

e E.g., for the constructs of a general/causal /anticausal
dataflow language we can use the appropriate comonad
and define:

[(x) ¢ fby u]® =ar fby o ([(x) t]°, ([(x) 1)]?)")?
[(x)t next u]® =4 nexto ([(x)t]P)!



Again, we have soundness of typing, in the form

x: CFt:Aimplies [(x)t]° : [C]P —P [A]P, but not
all equations of the lambda-calculus are validated.

For a closed term |- t : A, soundness of typing says that
[t]P : 1 =P [A]P, i.e., D1 — [A]P, so closed terms are
evaluated relative to a coeffect over 1.

In case of general or causal stream functions, an element

of D1 is a list over 1, i.e., a natural number, the time
elapsed.

If D is strong or lax symmetric monoidal (not just
semimonoidal), we have a canonical choice e : 1 — D1.



@ Comonadic dataflow language semantics: The first-order
language agrees perfectly with Lucid and Lustre by its
semantics.

The meaning of higher-order dataflow computation has
been unclear. We get a neat semantics from
mathematical considerations (cf. Colago, Pouzet's design
with two flavors of function spaces).



Symmetric monoidal comonads (and strong
monads) in linear / modal logic

@ Strong symmetric monoidal comonads are central in the
semantics of intuitionistic linear logic and modal logic to
interpret the | and O (<) operators.

@ Linear logic: Benton, Bierman, de Paiva, Hyland;
Bierman; Benton; Mellies; Maneggia; etc.

@ Modal logic: Bierman, de Paiva.

@ Applications to staged computation and semantics of
names: Pfenning, Davies, Nanevski.



