
510996

TYPES
Types for Proofs and Programs

Coordination Action
FP6-2002-IST-C

Deliverable: Short Course

1

02-07-2008 13.56Monads and more

Page 1 of 1http://www.cs.nott.ac.uk/~txa/tarmo07.html

Monads and more

Intensive course by Tarmo Uustalu, Institute of Cybernetics, Tallinn, Estonia. Intended audience:
Postgraduates and researchers in Theoretical Computer Science.

Slides:

Monday (upupdated)
Tuesday (update)
Wednesday
Friday
Slides about tree transducers

Course contents:

1. Monads and why they matter for a working programming language person
2. Combining monads: monad transformers, distributive laws, the coproduct of monads
3. Finer and coarser: Lawvere theories and arrows
4. Comonads and context-dependent computation
5. Notions of computation on trees

Time and place

Monday 14 May - Wednesday + Friday, 9:00-11:00 in C60 (may change), CS & IT.

Contact

Thorsten Altenkirch

Last modified: Thu May 24 10:06:18 BST 2007

http://www.cs.nott.ac.uk/~txa/rouge-slides.pdf
http://www.cs.nott.ac.uk/~txa/
http://cs.ioc.ee/~tarmo/
http://www.cs.nott.ac.uk/~txa/monads-more-1.pdf
http://www.cs.nott.ac.uk/~txa/monads-more-2.pdf
http://www.cs.nott.ac.uk/~txa/monads-more-3.pdf
http://www.cs.nott.ac.uk/~txa/monads-more-4.pdf

Monads and More: Part 1

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14–18 May 2007
University of Udine, 2–6 July 2007

Outline
Monads and why they matter for a working functional
programmer: monads, Kleisli categories, monadic
computation, strong and commutative monads, monadic
semantics

Combining monads: monads from adjunctions,
distributive laws, the coproduct of monads

Finer and coarser: Lawvere theories, arrows and Freyd
categories

Comonadic notions of computation: comonads and
coKleisli categories, comonadic computation, in particular
dataflow computation, lax/strong symmetric monoidal
comonads, comonadic semantics

Notions of computation on trees

Prerequisites
Basics of functional programming and typed lambda
calculi

From category theory:

functors, natural transformations
adjunctions
symmetric monoidal (closed) categories
Cartesian (closed) categories, coproducts
initial algebra, final coalgebra of a functor

Monads
A monad on a category C is given by a

a functor T : C → C (the underlying functor),
a natural transformation η : IdC

.→ T (the unit),
a natural transformation µ : TT

.→ T (the
multiplication)

satisfying these conditions:

TA
ηTA !!

TηA

"" !!
!!

!!
!!

!

!!
!!

!!
!!

! TTA
µA

""
TTA µA

!! TA

TTTA
µTA !!

TµA

""

TTA
µA

""
TTA µA

!! TA

This definition says that (T , η, µ) is a monoid in the
endofunctor category [C, C].

An alternative formulation: Kleisli triples
A more combinatory formulation is the following.

A monad (Kleisli triple) is given by
an object mapping T : |C|→ |C|,
for any object A, a map ηA : A → TA,
for any map k : A → TB, a map k! : TA → TB (the
Kleisli extension operation)

satisfying these conditions:
if k : A → TB, then k! ◦ ηA = k,
η!
A = idTA,

if k : A → TB, " : B → TC , then ("! ◦ k)! = "! ◦ k!.

(Notice there are no explicit functoriality and naturality
conditions.)

Monads vs. Kleisli triples
There is a bijection between monads and Kleisli triples.

Given T , η, µ, one defines

if k : A→ TB, then k! =df TA
Tk !! TTB

µB !! TB .

Given T (on objects only), η and −!, one defines
if f : A→ B, then

Tf =df (A
f !! B

ηB !! TB)! : TA→ TB,

µA =df (TA
idTA !! TA)! : TTA→ TA.

Kleisli category of a monad
A monad T on a category C induces a category Kl(T)
called the Kleisli category of T defined by

an object is an object of C,
a map of from A to B is a map of C from A to TB,

idT
A =df A

ηA !! TA ,
if k : A →T B, ! : B →T C , then

! ◦T k =df A
k !! TB

T " !! TTC
µC !! TC

From C there is an identity-on-objects inclusion functor J
to Kl(T), defined on maps by

if f : A → B, then

Jf =df A
f !! B

ηB !! TB = A
ηA !! TA

Tf !! TB .

Computational interpretation
Think of C as the category of pure functions and of TA as
the type of effectful computations of values of a type A.

Kl(T) is then the category of effectful functions.

ηA : A→ TA is the identity function on A viewed as
trivially effectful.

Jf : A→ TB is a general pure function f : A→ B viewed
as trivially effectful.

µA : TTA→ TA flattens an effectful computation of an
effectful computation.

k! : TA→ TB is an effectful function k : A→ TB
extended into one that can input an effectful
computation.

Examples
Exceptions monad:

TA =df A + E where E is some object (of exceptions),

ηA =df A
inl−→ A + E ,

µA =df (A + E) + E
[id,inr]−→ A + E ,

if k : A→ B + E , then k! =df A + E
[k,inr]−→ B + E .

Output monad:
TA =df A× E where (E , e,m) is some monoid (of
output traces), e.g., the type of lists of a fixed element
type with nil and append,

ηA =df A
ur−→ A× 1

id×e−→ A× E ,

µA =df (A× E)× E
a−→ A× (E × E)

id×m−→ A× E ,
if k : A→ B × E , then

k! =df A×E
k×id−→ (B×E)×E

a−→ B×(E×E)
id×m−→ B×E .

Reader monad:
TA =df E ⇒ A where E is some object (of
environments),

ηA =df Λ(A× E
fst−→ A),

µA =df Λ((E ⇒ (E ⇒ A))× E
〈ev,snd〉−→ (E ⇒ A)× E

ev−→ A),
if k : A→ E ⇒ B, then k! =df Λ((E ⇒ A)× E

〈ev,snd〉−→ A× E
k×id−→ (E ⇒ B)× E

ev−→ B).

Side-effect monad:
TA =df S ⇒ A× S where S is some object (of states),

ηA =df Λ(A× S
id−→ A× S),

µA =df Λ(S ⇒ ((S ⇒ A× S)× S)× S
ev−→ (S ⇒ A× S)× S

ev−→ A× S),
if k : A→ S ⇒ B × S , then k! =df Λ((S ⇒ A× S)× S

ev−→ A× S
k×id−→ (S ⇒ B × S)× S

ev−→ B × S).

Continuations monad:
TA =df (A⇒ R)⇒ R where R is some object (of
answers),
ηA =df Λ(A× (A⇒ R)

c−→ (A⇒ R)× R
ev−→ R),

if k : A→ (B ⇒ R)⇒ R, then
k! =df Λ(((A⇒ R)⇒ R)× (B ⇒ R)

id×Λ(Λ−1(k)◦c)−→ ((A⇒ R)⇒ R)× (A⇒ R)
ev−→ R).

Strong functors
A strong functor on a category (C, I ,⊗) is given by

an endofunctor F on C,
together with a natural transformation
slA,B : A⊗ FB → F (A⊗ B) (the (tensorial) strength)

satisfying

I ⊗ FA
slI ,A !!

ulFA
""

F (I ⊗ A)

FulA
""

FA FA

(A⊗ B)⊗ FC
slA⊗B,C !!

aA,B,FC

""

F ((A⊗ B)⊗ C)

FaA,B,C

""
A⊗ (B ⊗ FC)

idA⊗slB,C

!! A⊗ F (B ⊗ C)
slA,B⊗C

!! F (A⊗ (B ⊗ C))

A strong natural transformation between two strong
functors (F , sl), (G , sl′) is a natural transformation
τ : F

.→ G satisfying

A⊗ FB
slA,B !!

idA⊗τB

""

F (A⊗ B)

τA⊗B

""

A⊗ GB
sl′A,B

!! G (A⊗ B)

Strong monads
A strong monad on a monoidal category (C, I ,⊗) is a
monad (T , η, µ) together with a strength sl for T for
which η and µ are strong, i.e., satisfy

A⊗ B

idA⊗ηB

!!

A⊗ B

ηA⊗B

!!

A⊗ TB
slA,B

"" T (A⊗ B)

A⊗ TTB
slA,TB""

idA⊗µB

!!

T (A⊗ TB)
T slA,B "" TT (A⊗ B)

µA⊗B

!!

A⊗ TB
slA,B

"" T (A⊗ B)

(Note that Id is always strong and, if F , G are strong,
then GF is strong.)

Commutative monads
If (C, I ,⊗) is symmetric monoidal, then a strong functor
(F , sl) is actually bistrong: it has a costrength
srA,B : FA⊗ B → F (A⊗ B) with properties symmetric to
those of a strength defined by

srA,B =df FA⊗ B
cFA,B−→ B ⊗ FA

slB,A−→ F (B ⊗ A)
FcB,A−→ F (A⊗ B)

A bistrong monad (T , sl, sr) is called commutative, if it
satisfies

TA⊗ TB
slTA,B !!

srA,TB

""

T (TA⊗ B)
T srA,B !! TT (A⊗ B)

µA⊗B

""

T (A⊗ TB)

T slA,B

""
TT (A⊗ B) µA⊗B

!! T (A⊗ B)

Examples
Exceptions monad:

TA =df A + E where E is an object,

slA,B =df A×(B+E)
dr−→ A×B+A×E

id+snd−→ A×B+E .

Output monad:
TA =df A× E where (E , e,m) is a monoid,

slA,B =df A× (B × E)
a−1

−→ (A× B)× E .

Reader monad:
TA =df E ⇒ A where E is an object,
slA,B =df Λ((A× (E ⇒ B))× E

a−→ A× ((E ⇒ B)× E)
id×ev−→ A× B).

Tensorial vs. functorial strength
A functorially strong functor on a monoidal closed
category (C, I ,⊗, !) is an endofunctor F on C with a
natural transformation fsA,B : A ! B → FA ! FB
internalizing the functorial action of F .

There is a bijective correspondence between tensorially
and functorially strong endofunctors, in fact an
equivalence between their categories.

Given fs, one defines sl by

slA,B =df A⊗FB
coev⊗id−→ (B ! A⊗B)⊗FB

Λ−1(fs)−→ F (A⊗B)

Given sl, one defines fs by

fsA,B =df Λ((A ! B)⊗ FA
sl−→ F ((A ! B)⊗ A)

Fev−→ FB)

On Set, every monad is (1,×) strong
Any endofunctor on Set has a unique functorial strength
and any natural transformation between endofuctors on
Set is functorially strong.

Hence any monad on Set is both functorially and
tensorially strong.

Effects
Of course we want the Kleisli category of a monad to
contain more maps than the base category.

To describe those, we must single out some proper
sources of effectfulness. How to choose those is a topic
on its own.

E.g., for the exceptions monad, an important map is

raise =df E
inr−→ A + E .

Semantics of pure typed lambda calculus
Pure typed lambda calculus can be interpreted into any
Cartesian closed category C, e.g., Set.

The interpretation is this:

!K" =df an object of C
!A× B" =df !A"× !B"

!A ⇒ B" =df !A" ⇒ !B"

!C" =df !C0"× . . .× !Cn−1"

!(x) xi" =df πi

!(x) let x ← t in u" =df !(x , x) u" ◦ 〈id, !(x) t"〉
!(x) fst(t)" =df fst ◦ !(x) t"

!(x) snd(t)" =df snd ◦ !(x) t"
!(x) (t0, t1)" =df 〈!(x) t0", !(x) t1"〉

!(x) λxt" =df Λ(!(x , x) t")
!(x) t u" =df ev ◦ 〈!(x) t", !(x) u"〉

This interpretation is sound: derivable typing judgements
of the pure typed lambda calculus are valid, i.e.,

x : C ! t : A implies !(x) t" : !C"→ !A"

and the same holds true about all derivable equalities.

This interpretation is also complete.

Pre-[Cartesian closed] structure of the Kleisli
category of a strong monad

Given a Cartesian (closed) category C and a (1,×) strong
monad T on it, how much of that structure carries over
to Kl(T)?

We can manufacture “pre-products” in Kl(T) using the
products of C and the strength sl like this:

A0 ×T A1 =df A0 × A1

fstT =df η ◦ fst
sndT =df η ◦ snd

〈k0, k1〉T =df sl! ◦ sr ◦ 〈k0, k1〉

k : C → TA ! : C × A → TB
! •T k =df

C
〈idC ,k〉

!! C × TA
slC ,A !! T (C × A) !!

!! TB

fstT =df A0 × A1
fst !! A0

η !! TA0

sndT =df A0 × A1
snd !! A1

η !! TA1

k0 : C → TA0 k1 : C → TA1

〈k0, k1〉T =df

C
〈k0,k1〉!! TA0 × TA1

srA0,TA1!! T (A0 × TA1)
sl!A0,A1 !! T (A0 × A1)

The typing rules of products hold, but not all laws.

In particular, we do not get the β-law of products. Effects
cannot be undone!

E.g., taking T to be the exception monad defined by
TA =df A + E for some fixed E we do not have
sndT ◦T 〈k0, k1〉T = k1.

Take k0 =df raise = inr : E → TA,
k1 =df idT = inl : E → TE
Then 〈k0, k1〉T = inr : E → T (A× E) and hence
sndT ◦T 〈k0, k1〉T = inr &= inl = k1.

In fact, ×T is not even a bifunctor unless T is
commutative, although it is functorial in each argument
separately. Effects do not commute in general!

“Pre-exponents” are defined from the exponents of C by

A⇒T B =df A⇒ TB

evT =df ev

ΛT (k) =df η ◦ Λ(k)

evT
A,B =df (A⇒ TB)× A

evA,TB !! TB

k : C × A→ TB

ΛT (k) =df C
Λ(k)

!! A⇒ TB
η !! T (A⇒ TB)

It is not true that A⇒T − : Kl(T)→ Kl(T) is right
adjoint to −×T A : Kl(T)→ Kl(T).
So ⇒T is not a true exponent wrt. the preproduct ×T .

But A⇒T − : Kl(T)→ C is right adjoint to
J(−× A) : C → Kl(T):

J(C × A)→T B

C × A→ TB
C → A⇒ TB
C → A⇒T B

We that say A⇒T B is the Kleisli exponent of A, B .

More about the pre-[Cartesian closed] structure of Kleisli
categories in the story about arrows.

CoCartesian structure of the Kleisli category of a
monad

If C is coCartesian (has coproducts), then Kl(T) is
coCartesian too, since J as a left adjoint preserves
colimits.

Concretely, the coproduct on Kl(T) is defined by

A0 +T A1 =df A0 + A1

inlT =df η ◦ inl

inrT =df η ◦ inr

[k0, k1]
T =df [k0, k1]

Semantics of an effectful language
In the semantics of an effectful language, the semantic
universe is the Kleisli category Kl(T) of the appropriate
strong monad T on a Cartesian closed base category C.

The pure fragment is interpreted into Kl(T) as if the
language was pure, using the pre-[Cartesian closed]
structure:

!K"T =df an object of Kl(T)
= that object of C

!A× B"T =df !A"T ×T !B"T
= !A"T × !B"T

!A⇒ B"T =df !A"T ⇒T !B"T
= !A"T ⇒ T !B"T

!C"T =df !C0"T ×T . . .×T !Cn−1"T
= !C0"T × . . .× !Cn−1"T

!(x) xi"T =df πT
i

= η ◦ πi

!(x) let x ← t in u"T =df !(x , x) u"T ◦T 〈idT , !(x) t"T 〉T
= (!(x , x) u"T)! ◦ sl ◦ 〈id, !(x) t"T 〉

!(x) fst(t)"T =df fstT ◦T !(x)t"T
= T fst ◦ !(x)t"T

!(x) snd(t)"T =df sndT ◦T !(x)t"T
= T snd ◦ !(x)t"T

!(x) (t0, t1)"T =df 〈!(x)t0"T , !(x)t1"T 〉T
= sl! ◦ sr ◦ 〈!(x)t0"T , !(x)t1"T 〉

!(x) λxt"T =df ΛT (!(x , x)t"T)
= η ◦ Λ(!(x , x)t"T)

!(x) t u"T =df evT ◦T 〈!(x)t"T , !(x)u"T 〉T
= ev! ◦ sl! ◦ sr ◦ 〈!(x)t"T , !(x)u"T 〉

As Kl(T) is only pre-Cartesian closed, for this pure
fragment, soundness of typing holds, i.e.,

x : C ! t : A implies !(x) t"T : !C"T →T !A"T

but not all equations of the pure typed lambda-calculus
are validated.

In particular,

! t : A implies !t"T : 1→T !A"T

so a closed term t of a type A denotes an element of
T !A"T .

Any effect-constructs must be interpreted specifically
validating their desired typing rules and equations.
E.g., for a language with exceptions we would use the
exceptions monad and define

!(x) raise(e)"T =df raise ◦T !(x) e"T

= raise! ◦ !(x) e"T

Kleisli adjunction
Given a monad T on category C, in the opposite direction
to that of J : C → Kl(T) there is a functor
U : Kl(T) → C defined by

UA =df TA,

if k : A →T B, then Uk =df TA
k!

!! TB .
U is right adjoint to J .

Kl(T)

U

""
!

C

J

JA →T B
A → TB
A → UB

Importantly, UJ = T . Indeed,
UJA = TA,
if f : A → B, then UJf = (ηB ◦ f)! = Tf .

Moreover, the unit of the adjunction is η.
J # U is the initial adjunction factorizing T in this way.
There is also a final one, known as the Eilenberg-Moore
adjunction.

Kleisli categories
In general one can define a Kleisli category on C to be

a category D with the same objects as C
together with an identity-on-objects functor J : C → D
with right adjoint U.

To give a monad is the same as to give Kleisli category.

We already know that a monad T induces a Kleisli
category D =df Kl(T).

Given a Kleisli category D, we obtain a monad by taking
T =df UJ .

Monad maps
A monad map between monads T , S on a category C is a
natural transformation τ : T

.→ S satisfying

A

ηT
A

!!

A

ηS
A

!!
TA τA

"" SA

TTA
τTA ""

µT
A

!!

STA
SτA "" SSA

µS
A

!!
TA τA

"" SA

Alternatively, a map between two monads (Kleisli triples)
T , S is, for any object A, a map τA : TA → SA satisfying

τA ◦ ηT
A = ηS

A,
if k : A → TB, then τB ◦ k#T = (τB ◦ k)#S ◦ τA.

(No explicit naturality condition on τ .)

The two definitions are equivalent.

Monads on C and maps between them form a category
Monad(C).

Monad maps vs. functors between Kleisli categories
There is a bijection between monad maps τ between T ,
S and functors V : Kl(T)→ Kl(S) satisfying VJT = JS .

Given τ , one defines V by
VA =df A,

if k : A→ TB, then Vk =df A
k−→ TB

τB−→ SB.

Given V , one defines τ by

τA =df V (TA
idTA−→ TA) : TA→S A.

Monads and More: Part 2

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14–18 May 2007
University of Udine, 2–6 July 2007

Monads from adjuctions (Huber)
For any pair of adjoint functors L : C → D, R : D → C,
L " R with unit η : IdC

.→ RL and counit ε : LR
.→ IdD,

the functor RL carries a monad structure defined by

ηRL =df Id
η−→ RL,

µRL =df RLRL
RεL−→ RL.

The Kleisli and Eilenberg-Moore adjunctions witness that
any monad on C admits a factorization like this.

Examples
State monad:

L,R : C → C, LA =df A× S , RB =df S ⇒ B,

A× S → B
A→ S ⇒ B

RLA = S ⇒ A× S ,

An exotic one:

L,R : C → C, LA =df µX .A + X × S ∼= A× ListS ,
RB =df νY .B × (S ⇒ Y),

µX .A + X × S → B

A→ νY .B × (S ⇒ Y)

RLA = νY .(µX .A + X × S)× (S ⇒ Y) ∼=
νY .A× ListS × (S ⇒ Y).
What notion of computation does this correspond to?

Continuations monad:

L : C → Cop, LA =df A⇒ E ,
R : Cop → C, RB =df B ⇒ E ,

A⇒ E ← B
E ← B × A
A× B → E
A→ B ⇒ E

RLA = (A⇒ E)⇒ E .

Monads from adjunctions ctd.
Given two functors L : C → D and R : D → C , L " R and
a monad T on D, we obtain that RTL is a monad on C.

This is because T factorizes as UJ where J # U is the
Kleisli adjunction.
That means an adjoint situation JL # RU implying that
RUJL = RTL is a monad.

The monad structure is

ηRTL =df Id
η−→ RL

RηT L−→ RTL,

µRTL =df RTLRTL
RTεTL−→ RTTL

µT

−→ RTL.

Examples
State monad transformer:

L,R : C → C, LA =df A× S , RB =df S ⇒ B,
T – a monad on C,
RTLA = S ⇒ T (A× S),
In particular, for T the exceptions monad we get
RTLA = S ⇒ (A× S) + E .

Continuations monad transformer:
L : C → Cop, LA =df A⇒ E ,
R : Cop → C, RB =df B ⇒ E ,
T – a monad on Cop, i.e., a comonad on C,
RTLA =df T (A⇒ E)→ E .

Free algebras, free monads
Given a endofunctor H on a category C, let
(H∗A, [ηH

A , τH
A]) be the initial algebra of A + H− (if it

exists), so that, for any A + H−-algebra (C , [g , h]), there
is a unique map f : H∗A→ C satisfying

A
ηH

A !!

g
""!!!!!!!! H∗A

f
##

HH∗A
τH
A$$

Hf
##

C HC
h

$$

H∗A is the type of wellfounded H-trees with mutable
leaves from A, i.e., of H-terms over variables from A.

((H∗A, τH
A), ηH

A) is the free H-algebra on A,
i.e., A !→ (H∗A, τHA) : C → alg(H) is left adjoint to the
forgetful functor U : alg(H)→ C.

(H∗A, τA)→ (C , h)

A→ C
A→ U(C , h)

and ηH is the unit of the adjunction.

The pointed functor (H∗, ηH) carries a monad structure.

The Kleisli extension k∗ : H∗A→ H∗B of any given map
k : A→ H∗B is defined as the unique map f satisfying

A
ηA !!

k ""!!
!!

!!
!!

H∗A

f
##

HH∗A
τA$$

Hf
##

H∗B HH∗BτB
$$

Intuitively, this is grafting of trees into the mutable leaves
of a tree or substitution of terms into the variables of a
term.

((H∗, ηH , µH), τH) is the free monad on H ,
i.e., H !→ (H∗, ηH , µH) : [C, C]→Monad(C) is left
adjoint to the forgetful functor U : Monad(C)→ [C, C]

(H∗, ηH , µH)→ (S , ηS , µS)

H → S
H → U(S , ηS , µS)

and τ is the unit of the adjunction.

Free completely iterative algebras, free completely
iterative monads (Adámek, Milius, Velebil)

The final coalgebras H∞A of A + H− (the free
completely iterative H-algebras over A) for each A also a
give a monad (the free completely iterative monad on H).

Examples
If HX = 1 + X × X , then H∗A is the type of wellfounded
binary trees with a termination option and with mutable
leaves from A
(i.e., terms in the signature with one nullary, one binary
operator over variables from A).

If HX =df ListX ∼=
∐

i∈N X i , then H∗A is the type of
wellfounded rose trees with mutable leaves from A
(i.e., terms in the signature with one operator of every
finite arity over variables from A).

Monads from parameterized monads via initial
algebras / final coalgebras (U.)

A parameterized monad on C is a functor
F : C →Monad(C).

If F is a parameterized monad then the functors
F ∗, F∞ : C → C defined by F ∗A =df µX .FXA and
F∞A =df νX .FXA carry a monad structure.

In fact more can be said about them, but here we won’t.

Examples
Free monads:

FXA =df A + HX where H : C → C,
F ∗A =df µX .A + HX , F∞A =df νX .A + HX .
These are the types of wellfounded/nonwellfounded
H-trees with mutable leaves from A.

Rose tree types:

FXA =df A× HX where H : C →Monoid(C),
F ∗A =df µX .A× HX , F∞A =df νX .A× HX .
If HX =df ListX , these are the types of
wellfounded/nonwellfounded A-labelled rose trees.

Types of hyperfunctions with a fixed domain:
FXA =df HX ⇒ A where H : C → Cop,
F ∗A =df µX .HX ⇒ A, F∞A =df νX .HX ⇒ A.
If FX =df X ⇒ E , these are the types of
wellfounded/nonwellfounded hyperfunctions from E to
A. (Of course these types do no exist in Set.)

Distributive laws
If T , S are monads on C, it is not generally the case that
ST is a monad. But sometimes it is.

A distributive law of a monad T over a monad S is a
natural transformation λ : TS

.→ ST satisfying

T

TηS

!!

T

ηST
!!

TS
λ

"" ST

TSS
λS ""

TµS

!!

STS
Sλ "" SST

µST
!!

TS
λ

"" ST

S

ηT S
!!

S

SηT

!!
TS

λ
"" ST

TTS
Tλ ""

µT S
!!

TST
λT "" STT

SµT

!!
TS

λ
"" ST

A distributive law λ of T over S gives a monad structure
on the endofunctor ST :

ηST =df Id
ηSηT

−→ ST ,

µST =df STST
SλT−→ SSTT

µSµT

−→ ST .

Examples
The exceptions monad distributes over any monad.

S – a monad,
TA =df A + E where E is an object,

λ =df SA + E
id+ηS

−→ SA + SE
[S inl,S inr]−→ S(A + E),

STA = S(A + E).
For T the state monad, this gives
ST = S ⇒ (A + E)× S , which is a different
combination of exceptions and state than we saw before.

The output monad distributes over any (1,×) strong
monad.

(S , sl) – a strong monad,
TA =df A× E where E is a monoid,
λ =df SA× E

sr−→ S(A× E),
STA = S(A× E).

Any (1,×) strong monad distributes over the
environment monad.

(T , sl) – a strong monad,
SA =df E ⇒ A where E is an object,

λ =df Λ(T (E ⇒ A)× E
sr−→ T ((E ⇒ A)× E)

Tev−→ TA),
STA = E ⇒ TA.

Coproduct of monads
An interesting canonical way to combine monads is the
coproduct of monads.

A coproduct of two monads T0 and T1 on C is their
coproduct in Monad(C).

I.e., it is a monad T0 +m T1 together with two monad
maps inlm : T0 →m T0 +m T1, inrm : T0 →m T0 +m T1

such that for any monad S and monad maps
τ0 : T0 →m S , τ1 : T1 →m S there exists a unique monad
map T0 +m T1 →m S satisfying

T0
inlm !!

τ0
""!!!!!!!!!!! T0 +m T1

##

T1
inrm$$

τ1
%%"""""""""""

S

The coproduct of two monads cannot be computed
“pointwise”, it is not the coproduct of the underlying
functors.

In fact, most of the time the coproduct of the underlying
functors of two monads is not even a monad.

Coproduct of free monads
The coproduct of the free monads on functors H0, H1 is
the free monad on their coproduct:

H!
0 +m H!

1 = (H0 + H1)
∗

(obvious, since the free monad delivering functor is a left
adjoint and hence preserves colimits, in particular
coproducts).

Coproduct of a free monad and an arbitrary monad
(Power)

More generally, the coproduct of a free monad H∗ with an
arbitary monad S is this (if (HS)∗ exists):

H∗ +m S = S(HS)∗

i.e.,

(H∗ +m S)A = S(µX .A + HSX) = µX .S(A + HX)

For HX =df E , H∗A = µX .A + E ∼= A + E (exceptions
monad) and (H∗ +m S)A = µX .S(A + E) ∼= S(A + E).
This is the same combination of exceptions with any
other monad as obtained from the canonical distributive
law of the exceptions monad over another monad.

Ideal monads (Adámek, Milius, Velebil)
Idea: to generalize the separation of variables from
operator terms in term algebras.
An ideal monad on C is a monad (T , η, µ) together with
an endofunctor T’ on C and a natural transformation
µ′ : T ′T

.→ T ′ such that
T = Id + T ′,
η = inl,
µ = [id , inr ◦ µ′].

T
inlT !!

!!!!!!!!!!!!!

!!!!!!!!!!!!! TT = (Id + T ′)T

µ

""

T ′T
inrT##

µ′

""
T = Id + T ′ T ′

inr
##

An ideal monad map between T = Id + T ′ and
S = Id + S ′ is monad map τ : T

.→ S together with a
nat. transf. τ ′ : T ′ .→ S ′ satisfying τ = id + τ ′.

Examples
Free monads are ideal:

TA =df µX .A + HX where H : C → C
TA ∼= A + HTA

The finite powerset monad is not ideal:
TA =df Pf

TA ∼= A + 1 + P≥2A, but P≥2 is not a functor:
If for some f : A → B and a0, a1 ∈ A we have
f (a0) = f (a1), then Pf f sends a 2-element set {a0, a1}
to singleton.

The finite multiset monad is not ideal:
TA =df Mf

TA ∼= A + 1 +M≥2A, but µ does not restrict to a nat.
transf. M≥2Mf

.→M≥2:
If a ∈ A, then µA{{a}, ∅} = {a}.

The nonempty finite multiset monad is ideal:
TA =df M≥1

TA ∼= A +M≥2A

The nonempty list monad is ideal too.

Coproduct of ideal monads (Ghani, U.)
Given two ideal monads S0 = Id + S ′

0 and S1 = Id + S ′
1,

their coproduct is the ideal monad T = Id + T ′
0 + T ′

1

defined by

(T ′
0A, T ′

1A) =df µ(X0, X1).(S
′
0(A + X1)), S

′
1(A + X0))

Monads and More: Part 3

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14–18 May 2007
University of Udine, 2–6 July 2007

Arrows (Hughes)
Arrows are a generalization of strong monads on
symmetric monoidal categories (in their Kleisli triple
form).

An arrow on a symmetric monoidal category (C, I ,⊗) is
given by

an object mapping R : |C|× |C|→ |Set|,
for any objects A, B of C, a map
arr : HomC(A,B)→ R(A,B) of Set,
for any objects A, B, C of C, a map
≪: R(A,B)× R(B,C)→ R(A,C) of Set,
for any objects A, B, C of C, a map
secondC : R(A,B)→ R(C ⊗ A,C ⊗ B) of Set

satisfying the conditions on the next slide.

(ctd. from the previous slide)

if k ∈ R(A,B), then arr idB ≪ k = k,
if k ∈ R(A,B), then k ≪ arr idA = k,
if k ∈ R(A,B), ! ∈ R(B,C), m ∈ R(C ,D), then
(m ≪ !) ≪ k = m ≪ (! ≪ k),
if f : A → B, g : B → C , then
arr (g ◦ f) = arr g ≪ arr f ,
if f : A → B, then secondC (arr f) = arr(idC × f),
if k ∈ R(A,B), ! ∈ R(B,C),
secondD (! ≪ k) = secondD ! ≪ secondD k,
if k ∈ R(A,B), f : C → D, then
arr (f × idB) ≪ secondC k = secondD k ≪ arr (f × idA),
if k ∈ R(A,B), k ≪ arr ulA = ulB ≪ secondIk,
if k ∈ R(A,B), secondC (secondD k) ≪ aC ,D,A =
aC ,D,B ≪ secondC⊗Dk.

Examples
Arrows from strong monoidal functors:

R(A,B) =df HomC(FA,FB) where F is a monoidal
endofunctor on C (i.e., there is a natural isomorphism
mA,B : FA⊗ FB → F (A⊗ B),
if f : A→ B, then arr f = Ff : FA→ FB,
if k : FA→ FB, ! : FB → FC , then

! ≪ k =df FA
k−→ FB

!−→ FC ,

if k : FA→ FB, then second k =df F (C ⊗ A)
m−1

−→
FC ⊗ FA

id⊗k−→ FC ⊗ FB
m−→ F (C ⊗ B).

Kleisli maps of strong monads:

R(A,B) =df HomC(A,TB) where T is a strong monad,
if f : A→ B, then arr f = Jf : A→ TB where J is the
Kleisli inclusion of T ,
if k : A→ TB, ! : B → TC , then

! ≪ k =df A
k−→ TB

!!

−→ TC ,
if k : A→ TB, then

second k =df C ⊗ A
id⊗k−→ C ⊗ TB

sr−→ T (C ⊗ B).

CoKleisli maps of comonads on Cartesian categories:

R(A,B) =df HomC(DA,B) where D is a comonad on C,
if f : A→ B, then arr f = Jf : DA→ B where J is the
coKleisli inclusion of D,
if k : DA→ B, ! : DB → C , then

! ≪ k =df DA
k†−→ DB

!−→ C ,
if k : DA→ B, then

second k =df D(C × A)
〈Dfst,Dsnd〉−→ DC × DA

ε×k−→ C × B.

Output once more:

R(A,B) =df E × HomC(A,B) where (E , e,m) is a
monoid in Set,
if f : A → B, then arr f = (e, f) : E × HomC(A,B),
if (x , f) : E × HomC(A,B), (y , g) : E × HomC(B,C),
then
(y , g) ≪ (x , f) =df (m(x , y), g ◦ f) ∈ E × HomC(A,C),
if (x , f) : E × HomC(A,B), then
second (x , f) =df (x ,C ⊗ f) ∈ E ×HomC(C ⊗A,C ⊗B).

Arrows in the monoid form (Jacobs, Heunen,
Hasuo)

An alternative definition mimicks the definition of monads
in the standard, i.e., monoid form.

An arrow on a symmetric monoidal category (C, I ,⊗) is a
strong monoid in the category of endoprofunctors on
(C, I ,⊗).

A profunctor from C to D is a functor Cop ×D → Set.
The identity profunctor on C is
Id =df HomC : C op × C → Set.
The composition of profunctors R : C → D and
S : D → E is SR(A, C) =df

∫ B
R(A, B)× S(B , C).

Accordingly, the data of an arrow are the following.

The carrier of an arrow is a profunctor R from C to C,
i.e., a functor R : Cop × C → Set.
The unit is a natural transformation from Id to R, i.e., a
family of maps arrA,B : HomC(A,B)→ R(A,B) natural
in A, B.
The multiplication is a nat. transf. from RR to R, i.e., a
family of maps ≪A,B,C : R(A,B)× R(B,C)→ R(A,C)
natural in A, C and dinatural in B.
The strength is a family of
secondA,B,C :: R(A,B)→ R(C ⊗A,C ⊗B) natural in A,
B and dinatural in C .

Symmetric premonoidal categories (Power,
Robinson)

Intuitively, a symmetric premonoidal category is the same
as a symmetric monoidal category, except that the tensor
is not necessarily a bifunctor, it must only be functorial in
each argument separately.

More officially: A symmetric premonoidal category is
given by

a category K,
an object I of K,
for any object A, a functor A !− : K→ K,
natural isomorphisms a, ul, ur, c satisfying the laws of a
symmetric monoidal category and have all their
components central (see further).

Symmetry yields symmetric functors −! A : K→ K
where A0 ! A1 = A0 " A1 (which we also denote more
symmetrically by A0 ⊗ A1).

A morphism f : A→ B is called central if, for any
g : C → D, both

A⊗ C
A!g !!

f "C
""

A⊗ D

f "D
""

B ⊗ C
B!g

!! C ⊗ D

C ⊗ A
g"A !!

C!f
""

D ⊗ A

D!f
""

C ⊗ B
g"B

!! D ⊗ C

Freyd categories
A Freyd category on a symmetric monoidal category C is
given by

a symmetric premonoidal category (K, IK,⊗K) with the
same objects as C
together with an identity-on-objects inclusion functor
J : C → K that preserves centrality and strictly preserves
its the (I ,⊗) structure as premonoidal (meaning that
IK = I , A⊗K B = A⊗ B).

Freyd categories vs. arrows (Jacobs, Heunen,
Hasuo)

Freyd categories are in a bijection with arrows.

For an arrow R on a symmetric monoidal category
(C, I ,⊗), the Freyd category ((K, IK,⊗K), J) is defined
by

an object is an object of C,
a map from A to B is an element of R(A,B),
idKA =df arr idA,
if k : A →K B, ! : B →K C , then ! ◦K k =df ! ≪ k,
IK = I , A⊗K B =df A⊗ B,
if k : A →K B, then C !K k =df second k,
if f : A → B, then Jf =df arr f .

Given a Freyd category ((K, IK,⊗K), J) on C, the
corresponding arrow R is defined by

R(A,B) =df HomK(A,B),
if f : A′ → A, g : B → B ′, k ∈ HomK(A,B), then
R(f , g) k =df Jg ≪ k ≪ Jf ,
if f : A → B, then arr f =df Jf ∈ HomK(A,B),
if k ∈ HomK(A,B), ! ∈ HomK(B,C), then
! ≪ k =df ! ◦K k ∈ HomK(A,C),
if k ∈ HomK(A,B), then
second k =df C !K k ∈ HomK (C ⊗ A,C ⊗ B).

When is Freyd Kleisli? (Power)
Given a Freyd category ((K, IK,⊗K), J) on a symmetric
monoidal category (C, I ,⊗), when is it the Kleisli
category of a strong monad?

A simple condition is in terms of Kleisli exponents.

Suppose J(−! A) : C → K has a right adjoint A⇒K −.
In this case we say the Freyd category is closed.
Then also TB =df I ⇒K B is a strong monad with Kleisli
exponents and ((K, IK,⊗K), J) is its Kleisli category.

Monads and More: Part 4

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14–18 May 2007
University of Udine, 2–6 July 2007

Comonads
Comonads are the dual of monads.

A comonad is a

a functor D : C → C (the underlying functor),
a natural transformation η : D

.→ IdC (the counit),
a natural transformation δ : D

.→ DD (the
comultiplication)

satisfying these conditions:

DA
δA !!

δA

"" !!
!!

!!
!!

!

!!
!!

!!
!!

! DDA

DεA

""
DDA εDA

!! DA

DA
δA !!

δA

""

DDA

DδA

""
DDA

δDA

!! DDDA

In other words, a comonad is comonoid in [C, C] (a
monoid in [C, C]op).

CoKleisli triples
A coKleisli triple is given by

an object mapping D : |C|→ |C|,
for any object A, a map εA : DA → A,
for any map k : DA → B, a map k† : DA → DB (the
coKleisli extension operation)

satisfying
if k : DA → B, then εB ◦ k† = k,
ε†A = idDA,
if k : DA → B, " : DB → C , then (" ◦ k†)† = "† ◦ k†.

There is a bijection between comonads and coKleisli
triples.

CoKleisli category of a comonad
A comonad D on a category C induces a category
CoKl(D) called the coKleisli category of D defined by

an object is an object of C,
a map of from A to B is a map of C from DA to B,
idD

A =df DA
εA−→ A,

if k : A →D B, ! : B →D C , then

! ◦D k =df DA
µA−→ DDA

Dk−→ DB
"−→ C .

From C there is an identity-on-objects inclusion functor J
to CoKl(D), defined on maps by

if f : A → B, then

Jf =df DA
εA−→ A

f−→ B = DA
Df−→ DB

εB−→ B.

The functor J has a left adjoint U : CoKl(D) → C given

by UA =df DA, if k : A →D B , then Uk =df DA
k†−→ DB .

Comonadic notions of computation
We think of C as the category of pure functions and of
DA as the type of coeffectful computations of values of
type A (values in context).

CoKl(D) is the category of coeffectful or
context-dependent functions.

εA : DA→ A is the identity on A seen as trivially
context-dependent (discarding the context).

Jf : DA→ B is a general pure function f : A→ B
regarded as trivially context-dependen.

δA : DA→ DDA blows the context of a value up
(duplicates the context).

k† : DA→ DB is a context-dependent function
k : DA→ B extended into one that can output a value of
in a context (e.g., for a postcomposed context-dependent
function).

Examples
Product comonad, for dependency on an environment:

DA =df A× E where E is an object of C,

εA =df A× E
fst−→ A,

δA =df A× E
〈id,snd〉−→ (A× E)× E ,

if k : A× E → B, then k† =df A× E
〈k,snd〉−→ B × E .

This is the dual of the exceptions monad.

It is not very interesting, as CoKl(D) ∼= Kl(T) for
TA =df E ⇒ A (the reader monad).

Exponent comonad:

DA =df E ⇒ A where (E , e,m) is a monoid in C,

εA =df (E ⇒ A)
ur−1

−→ (E ⇒ A)× 1
id×e−→ (E ⇒ A)× E

ev−→ A,
δA =df Λ(Λ(((E ⇒ A)× E)× E

a−→ (E ⇒ A)× (E × E)
id×m−→ (E ⇒ A)× E

ev−→ A)),

Interesting special cases are (E , e, m) =df (Nat, 0, +) and
(E , e, m) =df (Nat, 0, max).

“Costate” comonad:

DA =df (S ⇒ A)× S where S is an object of C,
εA =df (S ⇒ A)× S

ev−→ A,
if k : (S ⇒ A)× S → B, then

k† =df (S ⇒ A)× S
Λ(k)×id−→ (S ⇒ B)× S .

This comonad arises from the adjunction
S ×− % S ⇒ −.

Symmetric monoidal functors
A strong/lax symmetric monoidal functor between
symmetric monoidal categories (C, I ,⊗) and (D , I ′,⊗′) is

a functor on F : C →D

together with an isomorphism/map e : I ′ → FI
and a natural isomorphism/transformation with
components mA,B : FA⊗′ FB → F (A⊗ B)

satisfying

FA⊗′ I ′
id⊗′e′ !!

ur′FA
""

FA⊗′ FI
mA,I !! F (A⊗ I)

FurA
""

FA FA

FA⊗′ FB
mA,B !!

c′FA,FB

""

F (A⊗ B)

FcA,B

""

FB ⊗′ FA mB,A
!! F (B ⊗ A)

(FA⊗′ FB)⊗′ FC
mA,B⊗id

!!

a′FA,FB,FC

""

F (A⊗ B)⊗′ FC
mA⊗B,C!! F ((A⊗ B)⊗ C)

FaA,B,C

""
FA⊗′ (FB ⊗′ FC)

id⊗mB,C

!! FA⊗′ F (B ⊗ C)mA,B⊗C
!! F (A⊗ (B ⊗ C))

A symmetric monoidal natural transformation between
two (strong or lax) symmetric monoidal functors
(F , e, m), (G , e′, m′) is a natural transformation
τ : F

.→ G satisfying

I ′
e !! FI

τI

""
I ′

e′
!! GI

FA⊗′ FB
mA,B !!

τA⊗′τB

""

F (A⊗ B)

τA⊗B

""

GA⊗′ GB
m′

A,B

!! G (A⊗ B)

Symmetric monoidal comonads
A strong/lax symmetric monoidal comonad on a
symmmetric monoidal category (C, I ,⊗) is a comonad
(D, ε, δ) where D is a strong/lax symmetric monoidal
functor (with I , ⊗ preserved by e, m) and ε, δ are
symmetric monoidal natural transformations, i.e., satisfy

I
e !! DI

εI

""
I I

I
e !! DI

δI

""
I e

!! DI
De

!! DDI

DA⊗ DB
mA,B !!

εA⊗εB

""

D(A⊗ B)

εA⊗B

""
A⊗ B A⊗ B

DA⊗ DB
mA,B !!

δA⊗δB

""

D(A⊗ B)

δA⊗B

""

DDA⊗ DDB mDA,DB
!! D(DA⊗ DB)

DmA,B

!! DD(A⊗ B)

(Note that Id is always symmetric monoidal and F , G
being symmetric monoidal imply that GF is symmetric
monoidal too.)

A strong/lax symmetric semimonoidal comonad is as a
strong/lax symmetric monoidal comonad, but without e
(on a category which may be without I).

Dataflow computations
Dataflow computation = discrete-time signal transformations
= stream functions.

The output value at a time instant (stream position) is
determined by the input value at the same instant (position)
plus further input values.

Example dataflow programs

pos = 0 fby (pos + 1)
sum x = x + (0 fby (sum x))

fact = 1 fby (fact ∗ (pos + 1))
fibo = 0 fby (fibo + (1 fby fibo))

pos 0 1 2 3 4 5 6 . . .
sum pos 0 1 3 6 10 15 21 . . .
fact 1 1 2 6 24 120 720 . . .
fibo 0 1 1 2 3 5 8 . . .

We want to consider functions Str A→ Str B as impure
functions from A to B .

Streams are naturally isomorphic to functions from natural
numbers: StrA =df νX .A× X ∼= Nat⇒ A.

General stream functions StrA→ StrB are thus in natural
bijection with maps StrA× Nat→ B .

Comonad for general stream functions
Functor:

DA =df (Nat⇒ A)× Nat ∼= ListA× StrA

Input streams with past/present/future:

a0, a1, . . . , an−1, an , an+1, an+2, . . .

Counit:

εA : (Nat⇒ A)× Nat → A
(a, n) %→ a(n)

CoKleisli extension:

k : (Nat⇒ A)× Nat → B

k! : (Nat⇒ A)× Nat → (Nat⇒ B)× Nat
(a, n) %→ (λm k(a, m), n)

Comonad for causal stream functions
Functor: DA =df NEList ∼= ListA× A

Input streams with past and present but no future

Counit:
εA : NEListA → A

[a0, . . . , an] $→ an

CoKleisli extension:

k : NEListA → B
k! : NEListA → NEListB

[a0, . . . , an] $→ [k[a0], k[a0, a1], . . . , k[a0, . . . , an]]

Comonad for anticausal stream functions
Input streams with present and future but no past

Functor: DA =df StrA ∼= A× StrA

Relabelling tree transformations
Let H : C → C. Define TreeA =df µX .A× HX . We are
interested in relabelling functions TreeA→ TreeB .
(Alt. we can define Tree∞A =df νX .A× HX and interest
ourselves in relabelling functions Tree∞A→ Tree∞B .)

Comonad for general relabelling functions:

DA =df Tree′A× A ∼= PathA× TreeA

where PathA =df µX .1 + A× H ′(TreeA)× X (Huet’s
zipper).

E.g., for HX =df 1 + X × X , H ′X ∼= 2× X and
PathA ∼= µX .1 + A× 2× TreeA× X .

Comonad for bottom-up relabelling functions:

DA =df TreeA

Cartesian preclosed structure of the coKleisli
category of a strong/lax (semi)monoidal comonad

Let D be a comonad on a Cartesian closed category C.

Since J : C → CoKl(D) is a right adjoint and preserves
limits, CoKl(D) inherits products from C. Explicitly, we
can define

A×D B =df A× B
πD

0 =df fst ◦ ε
πD

1 =df snd ◦ ε
〈k0, k1〉D =df 〈k0, k1〉

If D is (1,×) strong/lax symmetric semimonoidal, then
we can also define

A ⇒D B =df DA ⇒ B
evD =df ev ◦ 〈ε ◦ Dfst, Dsnd〉

ΛD(k) =df Λ(k ◦m)

D((DA ⇒ B)× A)
〈ε◦Dfst,Dsnd〉

!! (DA ⇒ B)× DA ev !! B

DC × DA
m !! D(C × A) k !! B

DC
Λ(k◦m)

!! DA ⇒ B

Using a strength (if available) is not a good idea: We
have no multiplication

DC × DA
sl !! D(C × DA) Dsr !! DD(C × A) ? !! D(C × A)

and applying ε or Dε gives a solution where the order of
arguments of a function is important and coeffects do not
combine:

DC × DA
id×ε !! DC × A

sl !! D(C × A)

or

DC × DA
ε×id !! C × DA

sr !! D(C × A)

If D is strong semimonoidal (in which case it is
automatically strong symmetric semimonoidal as well),
then A⇒D − is right adjoint to −×D A and hence ⇒D

is an exponent functor:

D(C × A)→ B

DC × DA→ B
DC → DA⇒ B

This is the case, e.g., if DA ∼= νX .A× (E ⇒ X) for some
E (e.g., DA ∼= StrA ∼= νX .A× (1⇒ X)).

More typically, D is only lax symmetric semimonoidal.

Then it suffices to have m satisfying

DA

∆DA

!!

DA

D∆A
!!

DA× DA mA,A
"" D(A, A)

where ∆ = 〈id, id〉 : A → A× A is part of the comonoid
structure on the objects of C, to get that
m ◦ 〈Dfst, Dsnd〉 = id and that ⇒D is a weak exponent
operation on objects. It is not functorial (not even in
each argument separately).

Partial uniform parameterized fixpoint operator
Let F : C → C. Define DA =df νZ .A× FZ .

Call a coKleisli map k : A× B →D B guarded if for some k ′

we have

D(A× B) k !!

∼=
""

B

(A× B)× FD(A× B)
fst×id !! A× FD(A× B)

k ′

##

For any guarded k : A× B →D B , there is a unique map
fix(k) : A→D B satisfying

A
fix(k)

!!

〈idD ,fix(k)〉D $$!!
!!

!!
!!

! B

A× B
k

%%"""""""""

fix is a partial Conway operator defined on guarded maps, i.e.,
besides the fixpoint property, for any guarded
k : A×D B →D B ,

fix(k) = k ◦D 〈idD , fix(k)〉D

it satisfies naturality in A, dinaturality in B , and the diagonal
property: for any guarded k : A×D B ×D B →D B ,

fix(k ◦D (idD ×D ∆D)) = fix(fix(k))

Wrt. pure maps, fix is also uniform (i.e., strongly dinatural in
B instead of dinatural), i.e., for any guarded
k : A×D B →D B , ! : A×D B ′ →D B ′ and h : B → B ′

Jh ◦D k = ! ◦D (idD ×D Jh) =⇒ Jh ◦D fix(k) = fix(!)

Comonadic semantics
As in the case of monadic semantics, we interpret the
lambda-calculus into CoKl(D) in the standard way (using
its Cartesian preclosed structure), getting

!K"D =df an object of CoKl(D)
= that object of C

!A× B"D =df !A"D ×D !B"D
= !A"D × !B"D

!A⇒ B"D =df !A"D ⇒D !B"D
= D!A"D ⇒ !B"D

!C"D =df !C0"D × . . .× !Cn−1"D
= !C0"× . . .× !Cn−1"

!(x) xi"D =df πD
i

= πi ◦ ε
!(x) fst(t)"D =df πD

0 ◦D !(x) t"D

= fst ◦ !(x) t"D

!(x) snd(t)"D =df πD
1 ◦D !(x) t"D

= snd ◦ !(x) t"D

!(x) (t0, t1)"D =df 〈!(x) t0"D , !(x) t1"D〉D
= 〈!(x) t0"D , !(x) t1"D〉

!(x) λxt"D =df ΛD(!(x , x) t"D)
= Λ(!(x , x) t"D ◦ m)

!(x) t u"D =df evD ◦D 〈!(x) t"D , !(x) u"D〉D
= ev ◦ 〈!(x) t"D , (!(x) u"D)†〉

Coeffect-specific constructs are interpreted specifically.

E.g., for the constructs of a general/causal/anticausal
dataflow language we can use the appropriate comonad
and define:

!(x) t fby u"D =df fby ◦ 〈!(x) t"D , (!(x) u)"D)†〉D
!(x) t next u"D =df next ◦ (!(x) t"D)†

Again, we have soundness of typing, in the form
x : C ! t : A implies !(x)t"D : !C"D →D !A"D , but not
all equations of the lambda-calculus are validated.

For a closed term ! t : A, soundness of typing says that
!t"D : 1→D !A"D , i.e., D1→ !A"D , so closed terms are
evaluated relative to a coeffect over 1.

In case of general or causal stream functions, an element
of D1 is a list over 1, i.e., a natural number, the time
elapsed.

If D is strong or lax symmetric monoidal (not just
semimonoidal), we have a canonical choice e : 1→ D1.

Comonadic dataflow language semantics: The first-order
language agrees perfectly with Lucid and Lustre by its
semantics.
The meaning of higher-order dataflow computation has
been unclear. We get a neat semantics from
mathematical considerations (cf. Colaço, Pouzet’s design
with two flavors of function spaces).

Symmetric monoidal comonads (and strong
monads) in linear / modal logic

Strong symmetric monoidal comonads are central in the
semantics of intuitionistic linear logic and modal logic to
interpret the ! and ! (") operators.

Linear logic: Benton, Bierman, de Paiva, Hyland;
Bierman; Benton; Mellies; Maneggia; etc.

Modal logic: Bierman, de Paiva.

Applications to staged computation and semantics of
names: Pfenning, Davies, Nanevski.

