(1)

510996

TYPES

Types for Proofs and Programs

Coordination Action
FP6-2002-IST-C

Deliverable: Short Course

Monads and more

Intensive course by Tarmo Uustalu, Institute of Cybernetics, Tallinn, Estonia. Intended audience: Postgraduates and researchers in Theoretical Computer Science.

Slides:

- Monday (upupdated)
- Tuesday (update)
- Wednesday
- Friday

Slides about tree transducers

Course contents:

1. Monads and why they matter for a working programming language person
2. Combining monads: monad transformers, distributive laws, the coproduct of monads
3. Finer and coarser: Lawvere theories and arrows
4. Comonads and context-dependent computation
5. Notions of computation on trees

Time and place

Monday 14 May - Wednesday + Friday, 9:00-11:00 in C60 (may change), CS \& IT.

Contact

Thorsten Altenkirch

Last modified: Thu May 24 10:06:18 BST 2007

Monads and More: Part 1

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007 University of Udine, 2-6 July 2007

Outline

- Monads and why they matter for a working functional programmer: monads, Kleisli categories, monadic computation, strong and commutative monads, monadic semantics
- Combining monads: monads from adjunctions, distributive laws, the coproduct of monads
- Finer and coarser: Lawvere theories, arrows and Freyd categories
- Comonadic notions of computation: comonads and coKleisli categories, comonadic computation, in particular dataflow computation, lax/strong symmetric monoidal comonads, comonadic semantics
- Notions of computation on trees

Prerequisites

- Basics of functional programming and typed lambda calculi
- From category theory:
- functors, natural transformations
- adjunctions
- symmetric monoidal (closed) categories
- Cartesian (closed) categories, coproducts
- initial algebra, final coalgebra of a functor

Monads

- A monad on a category \mathcal{C} is given by a
- a functor $T: \mathcal{C} \rightarrow \mathcal{C}$ (the underlying functor),
- a natural transformation $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow T$ (the unit),
- a natural transformation $\mu: T T \rightarrow T$ (the multiplication)
satisfying these conditions:

- This definition says that (T, η, μ) is a monoid in the endofunctor category $[\mathcal{C}, \mathcal{C}]$.

An alternative formulation: Kleisli triples

- A more combinatory formulation is the following.
- A monad (Kleisli triple) is given by
- an object mapping $T:|\mathcal{C}| \rightarrow|\mathcal{C}|$,
- for any object A, a map $\eta_{A}: A \rightarrow T A$,
- for any map $k: A \rightarrow T B$, a map $k^{\star}: T A \rightarrow T B$ (the Kleisli extension operation)
satisfying these conditions:
- if $k: A \rightarrow T B$, then $k^{*} \circ \eta_{A}=k$,
- $\eta_{A}^{\star}=\mathrm{id}_{T A}$,
- if $k: A \rightarrow T B, \ell: B \rightarrow T C$, then $\left(\ell^{\star} \circ k\right)^{\star}=\ell^{\star} \circ k^{\star}$.
- (Notice there are no explicit functoriality and naturality conditions.)

Monads vs. Kleisli triples

- There is a bijection between monads and Kleisli triples.
- Given T, η, μ, one defines
- if $k: A \rightarrow T B$, then $k^{\star}=_{\mathrm{df}} T A \xrightarrow{T k} T T B \xrightarrow{\mu_{B}} T B$.
- Given T (on objects only), η and $-^{\star}$, one defines
- if $f: A \rightarrow B$, then

$$
\begin{aligned}
T f & =\mathrm{df}\left(A \xrightarrow{f} B \xrightarrow{\eta_{B}} T B\right)^{\star}: T A \rightarrow T B, \\
-\mu_{A} & ={ }_{\mathrm{df}}\left(T A \xrightarrow{\text { id }_{T A}} T A\right)^{\star}: T T A \rightarrow T A .
\end{aligned}
$$

Kleisli category of a monad

- A monad T on a category \mathcal{C} induces a category $\mathbf{K I}(T)$ called the Kleisli category of T defined by
- an object is an object of \mathcal{C},
- a map of from A to B is a map of \mathcal{C} from A to $T B$,
- $\mathrm{id}_{A}^{T}=\mathrm{df} A \xrightarrow{\eta_{A}} T A$,
- if $k: A \rightarrow^{T} B, \ell: B \rightarrow^{T} C$, then

$$
\ell \circ^{T} k=\mathrm{df} A \xrightarrow{k} T B \xrightarrow{T \ell} T T C \xrightarrow{\mu_{C}} T C
$$

- From \mathcal{C} there is an identity-on-objects inclusion functor J to $\mathbf{K I}(T)$, defined on maps by
- if $f: A \rightarrow B$, then

$$
J f={ }_{\mathrm{df}} A \xrightarrow{f} B \xrightarrow{\eta_{B}} T B=A \xrightarrow{\eta_{A}} T A \xrightarrow{T f} T B .
$$

Computational interpretation

- Think of \mathcal{C} as the category of pure functions and of $T A$ as the type of effectful computations of values of a type A.
- $\mathrm{KI}(T)$ is then the category of effectful functions.
- $\eta_{A}: A \rightarrow T A$ is the identity function on A viewed as trivially effectful.
- Jf:A TB is a general pure function $f: A \rightarrow B$ viewed as trivially effectful.
- $\mu_{A}: T T A \rightarrow T A$ flattens an effectful computation of an effectful computation.
- $k^{\star}: T A \rightarrow T B$ is an effectful function $k: A \rightarrow T B$ extended into one that can input an effectful computation.

Examples

- Exceptions monad:
- $T A={ }_{\mathrm{df}} A+E$ where E is some object (of exceptions),
- $\eta_{A}={ }_{\mathrm{df}} A \xrightarrow{\mathrm{inl}} A+E$,
- $\mu_{A}={ }_{\mathrm{df}}(A+E)+E \xrightarrow{[\mathrm{id}, \mathrm{inr}]} A+E$,
- if $k: A \rightarrow B+E$, then $k^{\star}={ }_{\mathrm{df}} A+E \xrightarrow{[k, \text { inr }]} B+E$.
- Output monad:
- $T A={ }_{\mathrm{df}} A \times E$ where (E, e, m) is some monoid (of output traces), e.g., the type of lists of a fixed element type with nil and append,
- $\eta_{A}={ }_{\mathrm{df}} A \xrightarrow{\mathrm{ur}} A \times 1 \xrightarrow{\mathrm{id} \times e} A \times E$,
- $\mu_{A}={ }_{\mathrm{df}}(A \times E) \times E \xrightarrow{\mathrm{a}} A \times(E \times E) \xrightarrow{\mathrm{id} \times m} A \times E$,
- if $k: A \rightarrow B \times E$, then
$k^{\star}={ }_{\mathrm{df}} A \times E \xrightarrow{k \times \text { id }}(B \times E) \times E \xrightarrow{a} B \times(E \times E) \xrightarrow{\text { id } \times m} B \times E$.
- Reader monad:
- $T A={ }_{\mathrm{df}} E \Rightarrow A$ where E is some object (of environments),
- $\eta_{A}={ }_{\mathrm{df}} \Lambda(A \times E \xrightarrow{\mathrm{fst}} A)$,
- $\mu_{A}={ }_{\mathrm{df}} \Lambda((E \Rightarrow(E \Rightarrow A)) \times E$

$$
\xrightarrow{\langle\mathrm{ev}, \text { snd }\rangle}(E \Rightarrow A) \times E \xrightarrow{\mathrm{ev}} A),
$$

- if $k: A \rightarrow E \Rightarrow B$, then $k^{\star}={ }_{\mathrm{df}} \Lambda((E \Rightarrow A) \times E$

$$
\xrightarrow{\langle\mathrm{ev}, \text { snd }\rangle} A \times E \xrightarrow{k \times \text { id }}(E \Rightarrow B) \times E \xrightarrow{\mathrm{ev}} B) .
$$

- Side-effect monad:
- TA $={ }_{\mathrm{df}} S \Rightarrow A \times S$ where S is some object (of states),
- $\eta_{A}={ }_{\mathrm{df}} \Lambda(A \times S \xrightarrow{i d} A \times S)$,
- $\mu_{A}={ }_{\mathrm{df}} \Lambda(S \Rightarrow((S \Rightarrow A \times S) \times S) \times S$

$$
\left.\xrightarrow{\mathrm{ev}}\left(S^{\prime} \Rightarrow A \times S\right) \times S \xrightarrow{\mathrm{ev}} A \times S\right),
$$

- if $k: A \rightarrow S \Rightarrow B \times S$, then $k^{\star}={ }_{\mathrm{df}} \Lambda((S \Rightarrow A \times S) \times S$

$$
\xrightarrow{\mathrm{ev}} A \times S \xrightarrow{k \times \mathrm{id}}(S \Rightarrow B \times S) \times S \xrightarrow{\mathrm{ev}} B \times S) .
$$

- Continuations monad:
- $T A={ }_{\mathrm{df}}(A \Rightarrow R) \Rightarrow R$ where R is some object (of answers),
- $\eta_{A}={ }_{\mathrm{df}} \Lambda(A \times(A \Rightarrow R) \xrightarrow{\mathrm{c}}(A \Rightarrow R) \times R \xrightarrow{e v} R)$,
- if $k: A \rightarrow(B \Rightarrow R) \Rightarrow R$, then

$$
\begin{aligned}
k^{\star}= & \mathrm{df}_{\mathrm{df}} \Lambda(((A \Rightarrow R) \Rightarrow R) \times(B \Rightarrow R) \\
& \xrightarrow[\mathrm{id} \times \Lambda\left(\Lambda^{-1}(k) \circ \mathrm{c}\right)]{\longrightarrow}((A \Rightarrow R) \Rightarrow R) \times(A \Rightarrow R) \xrightarrow{\text { ev }} R) .
\end{aligned}
$$

Strong functors

- A strong functor on a category $(\mathcal{C}, I, \otimes)$ is given by
- an endofunctor F on \mathcal{C},
- together with a natural transformation $\mathrm{sl}_{A, B}: A \otimes F B \rightarrow F(A \otimes B)$ (the (tensorial) strength) satisfying

$(A \otimes B) \otimes F C \longrightarrow F((A \otimes B) \otimes C)$

$A \otimes(B \otimes F C) \xrightarrow[|d A \otimes \otimes I|_{B, C}]{ } A \otimes F(B \otimes C) \underset{s_{A, B \otimes C}}{ } F(A \otimes(B \otimes C))$
- A strong natural transformation between two strong functors $(F, \mathrm{sl}),\left(G, \mathrm{sl}^{\prime}\right)$ is a natural transformation $\tau: F \rightarrow G$ satisfying

Strong monads

- A strong monad on a monoidal category $(\mathcal{C}, I, \otimes)$ is a monad (T, η, μ) together with a strength sl for T for which η and μ are strong, i.e., satisfy

(Note that Id is always strong and, if F, G are strong, then $G F$ is strong.)

Commutative monads

- If $(\mathcal{C}, I, \otimes)$ is symmetric monoidal, then a strong functor $(F, \mathrm{~s})$ is actually bistrong: it has a costrength $\operatorname{sr}_{A, B}: F A \otimes B \rightarrow F(A \otimes B)$ with properties symmetric to those of a strength defined by

$$
\mathrm{sr}_{A, B}={ }_{\mathrm{df}} F A \otimes B \xrightarrow{\mathrm{c}_{F_{A, B}}} B \otimes F A \xrightarrow{\mathrm{~s}_{B, A}} F(B \otimes A) \xrightarrow{F c_{B, A}} F(A \otimes B)
$$

- A bistrong monad ($T, \mathrm{sl}, \mathrm{sr}$) is called commutative, if it satisfies

Examples

- Exceptions monad:
- $T A={ }_{\mathrm{df}} A+E$ where E is an object,
- $\mathrm{sl}_{A, B}={ }_{\mathrm{df}} A \times(B+E) \xrightarrow{\mathrm{dr}} A \times B+A \times E \xrightarrow{\text { id }+ \text { snd }} A \times B+E$.
- Output monad:
- $T A={ }_{\mathrm{df}} A \times E$ where (E, e, m) is a monoid,
- $\mathrm{sl}_{A, B}={ }_{\mathrm{df}} A \times(B \times E) \xrightarrow{\mathrm{a}^{-1}}(A \times B) \times E$.
- Reader monad:
- $T A={ }_{\mathrm{df}} E \Rightarrow A$ where E is an object,
- $\mathrm{sl}_{A, B}={ }_{\mathrm{df}} \Lambda((A \times(E \Rightarrow B)) \times E$

$$
\xrightarrow{\mathrm{a}} A \times((E \Rightarrow B) \times E) \xrightarrow{\text { id } \times \mathrm{ev}} A \times B) .
$$

Tensorial vs. functorial strength

- A functorially strong functor on a monoidal closed category $(\mathcal{C}, I, \otimes, \multimap)$ is an endofunctor F on \mathcal{C} with a natural transformation $\mathrm{fs}_{A, B}: A \multimap B \rightarrow F A \multimap F B$ internalizing the functorial action of F.
- There is a bijective correspondence between tensorially and functorially strong endofunctors, in fact an equivalence between their categories.
- Given fs, one defines sl by

$$
\mathrm{sl}_{A, B}={ }_{\mathrm{df}} A \otimes F B \xrightarrow{\mathrm{coev} \otimes i \mathrm{id}}(B \multimap A \otimes B) \otimes F B \xrightarrow{\wedge^{-1}(\mathrm{fs})} F(A \otimes B)
$$

- Given sl, one defines fs by

$$
\mathrm{fs}_{A, B}={ }_{\mathrm{df}} \Lambda((A \multimap B) \otimes F A \xrightarrow{\mathrm{sl}} F((A \multimap B) \otimes A) \xrightarrow{F \mathrm{ev}} F B)
$$

On Set, every monad is $(1, \times)$ strong

- Any endofunctor on Set has a unique functorial strength and any natural transformation between endofuctors on Set is functorially strong.
- Hence any monad on Set is both functorially and tensorially strong.

Effects

- Of course we want the Kleisli category of a monad to contain more maps than the base category.
- To describe those, we must single out some proper sources of effectfulness. How to choose those is a topic on its own.
- E.g., for the exceptions monad, an important map is raise $={ }_{\mathrm{df}} E \xrightarrow{\mathrm{inr}} A+E$.

Semantics of pure typed lambda calculus

- Pure typed lambda calculus can be interpreted into any Cartesian closed category \mathcal{C}, e.g., Set.
- The interpretation is this:

$$
\begin{array}{rll}
\llbracket K \rrbracket & ={ }_{\mathrm{df}} & \text { an object of } \mathcal{C} \\
\llbracket A \times B \rrbracket & =\mathrm{df}_{\mathrm{df}} & \llbracket A \rrbracket \times \llbracket B \rrbracket \\
\llbracket A \Rightarrow B \rrbracket & ={ }_{\mathrm{df}} & \llbracket A \rrbracket \Rightarrow \llbracket B \rrbracket \\
\llbracket \underline{C} \rrbracket & ={ }_{\mathrm{df}} & \llbracket C_{0} \rrbracket \times \ldots \times \llbracket C_{n-1} \rrbracket \\
\llbracket(\underline{x}) x_{i} \rrbracket & ={ }_{\mathrm{df}} & \pi_{i} \\
\llbracket(\underline{x}) \text { let } x \leftarrow t \text { in } u \rrbracket & ={ }_{\mathrm{df}} & \llbracket(\underline{x}, x) u \rrbracket \circ\langle\mathrm{id}, \llbracket(x) t \rrbracket\rangle \\
\llbracket(\underline{x}) f s t(t) \rrbracket & ={ }_{\mathrm{df}} & \text { fst } \circ \llbracket(\underline{x}) t \rrbracket \\
\llbracket(\underline{x}) \operatorname{snd}(t) \rrbracket & ==_{\mathrm{df}} & \text { snd } \because \llbracket(\underline{x}) t \rrbracket \\
\llbracket(\underline{x})\left(t_{0}, t_{1}\right) \rrbracket & ={ }_{\mathrm{df}} & \left\langle\llbracket(\underline{x}) t_{0} \rrbracket, \llbracket(\underline{x}) t_{1} \rrbracket\right\rangle \\
\llbracket(\underline{x}) \lambda x t \rrbracket & ={ }_{\mathrm{df}} & \Lambda(\llbracket(\underline{x}, x) t \rrbracket) \\
\llbracket(\underline{x}) t u \rrbracket & ==_{\mathrm{df}} & \mathrm{ev} \circ\langle\llbracket(\underline{x}) t \rrbracket, \llbracket(\underline{x}) u \rrbracket\rangle
\end{array}
$$

- This interpretation is sound: derivable typing judgements of the pure typed lambda calculus are valid, i.e.,

$$
\underline{x}: \underline{C} \vdash t: A \text { implies } \llbracket(\underline{x}) t \rrbracket: \llbracket \underline{C} \rrbracket \rightarrow \llbracket A \rrbracket
$$

and the same holds true about all derivable equalities.

- This interpretation is also complete.

Pre-[Cartesian closed] structure of the Kleisli

 category of a strong monad- Given a Cartesian (closed) category \mathcal{C} and a $(1, \times)$ strong monad T on it, how much of that structure carries over to $\mathbf{K I}(T)$?
- We can manufacture "pre-products" in $\mathbf{K I}(T)$ using the products of \mathcal{C} and the strength sl like this:

$$
\begin{array}{rll}
A_{0} \times^{T} A_{1} & =A_{\mathrm{df}} \times A_{1} \\
\mathrm{fst}^{T} & ={ }_{\mathrm{df}} \quad \eta \circ \mathrm{fst} \\
\mathrm{snd}^{T} & ={ }_{\mathrm{df}} \quad \eta \circ \mathrm{snd} \\
\left\langle k_{0}, k_{1}\right\rangle^{T} & ={ }_{\mathrm{df}} & \mathrm{sl}^{\star} \circ \mathrm{sr} \circ\left\langle k_{0}, k_{1}\right\rangle
\end{array}
$$

$$
\begin{gathered}
k: C \rightarrow T A \quad \ell: C \times A \rightarrow T B \\
\ell \bullet T={ }_{\mathrm{df}} \\
C \xrightarrow{\langle\mathrm{id} C, k\rangle} C \times T A \xrightarrow{\mathrm{sl}_{C, A}} T(C \times A) \xrightarrow{\ell^{\star}} T B
\end{gathered}
$$

$$
\mathrm{fst}^{T}={ }_{\mathrm{df}} A_{0} \times A_{1} \xrightarrow{\mathrm{fst}} A_{0} \xrightarrow{\eta} T A_{0}
$$

$$
\mathrm{snd}^{T}={ }_{\mathrm{df}} A_{0} \times A_{1} \xrightarrow{\text { snd }} A_{1} \xrightarrow{\eta} T A_{1}
$$

$$
k_{0}: C \rightarrow T A_{0} \quad k_{1}: C \rightarrow T A_{1}
$$

$\left\langle k_{0}, k_{1}\right\rangle^{T}={ }_{\text {df }}$

$$
C \xrightarrow{\left\langle k_{0}, k_{1}\right\rangle} T A_{0} \times T A_{1} \xrightarrow{\operatorname{sr}_{A_{0}}, T A_{1}} T\left(A_{0} \times T A_{1}\right) \xrightarrow{\text { sl }_{A_{0}, A_{1}}^{\mid}} T\left(A_{0} \times A_{1}\right)
$$

- The typing rules of products hold, but not all laws.
- In particular, we do not get the β-law of products. Effects cannot be undone!
- E.g., taking T to be the exception monad defined by $T A={ }_{\mathrm{df}} A+E$ for some fixed E we do not have $\operatorname{snd}^{T} \circ^{T}\left\langle k_{0}, k_{1}\right\rangle^{T}=k_{1}$.
- Take $k_{0}={ }_{\text {df }}$ raise $=$ inr : $E \rightarrow T A$, $k_{1}={ }_{\mathrm{df}} \mathrm{id}^{T}=\mathrm{inl}: E \rightarrow T E$
Then $\left\langle k_{0}, k_{1}\right\rangle^{T}=\operatorname{inr}: E \rightarrow T(A \times E)$ and hence snd $^{T} \circ^{\top}\left\langle k_{0}, k_{1}\right\rangle^{T}=\mathrm{inr} \neq \mathrm{inl}=k_{1}$.
- In fact, \times^{\top} is not even a bifunctor unless T is commutative, although it is functorial in each argument separately. Effects do not commute in general!
- "Pre-exponents" are defined from the exponents of \mathcal{C} by

$$
\begin{array}{rll}
A \Rightarrow^{T} B & ={ }_{\mathrm{df}} & A \Rightarrow T B \\
\mathrm{ev}^{T} & ={ }_{\mathrm{df}} & \mathrm{ev} \\
\Lambda^{T}(k) & ={ }_{\mathrm{df}} & \eta \circ \Lambda(k)
\end{array}
$$

$$
\mathrm{ev}_{A, B}^{T}={ }_{\mathrm{df}}(A \Rightarrow T B) \times A \xrightarrow{\mathrm{ev}_{A, T B}} T B
$$

$$
k: C \times A \rightarrow T B
$$

$\Lambda^{T}(k)={ }_{\mathrm{df}} \quad C \xrightarrow{\Lambda(k)} A \Rightarrow T B \xrightarrow{\eta} T(A \Rightarrow T B)$

- It is not true that $A \Rightarrow^{T}-: \mathbf{K I}(T) \rightarrow \mathbf{K I}(T)$ is right adjoint to $-\times^{T} A: \mathbf{K I}(T) \rightarrow \mathbf{K I}(T)$. So \Rightarrow^{T} is not a true exponent wrt. the preproduct \times^{T}.
- But $A \Rightarrow^{T}-: \mathbf{K I}(T) \rightarrow \mathcal{C}$ is right adjoint to $J(-\times A): \mathcal{C} \rightarrow \mathbf{K I}(T):$

$$
\begin{gathered}
\frac{J(C \times A) \rightarrow^{T} B}{\underline{C \times A \rightarrow T B}} \\
\underline{\overline{C \rightarrow A \Rightarrow T B}} \\
C \rightarrow A \Rightarrow^{T} B
\end{gathered}
$$

We that say $A \Rightarrow^{T} B$ is the Kleisli exponent of A, B.

- More about the pre-[Cartesian closed] structure of Kleisli categories in the story about arrows.

CoCartesian structure of the Kleisli category of a monad

- If C is coCartesian (has coproducts), then $\mathbf{K I}(T)$ is coCartesian too, since J as a left adjoint preserves colimits.
- Concretely, the coproduct on $\mathbf{K I}(T)$ is defined by

$$
\begin{array}{rll}
A_{0}+{ }^{T} A_{1} & ={ }_{\mathrm{df}} & A_{0}+A_{1} \\
\mathrm{inl}^{T} & ={ }_{\mathrm{df}} & \eta \circ \mathrm{inl} \\
\mathrm{inr}^{T} & { }_{\mathrm{df}} & \eta \circ \mathrm{inr} \\
{\left[k_{0}, k_{1}\right]^{T}} & =_{\mathrm{df}} & {\left[k_{0}, k_{1}\right]}
\end{array}
$$

Semantics of an effectful language

- In the semantics of an effectful language, the semantic universe is the Kleisli category $\mathbf{K I}(T)$ of the appropriate strong monad T on a Cartesian closed base category \mathcal{C}.
- The pure fragment is interpreted into $\mathbf{K I}(T)$ as if the language was pure, using the pre-[Cartesian closed] structure:

$$
\begin{aligned}
& \llbracket K \rrbracket^{T}={ }_{\mathrm{df}} \quad \text { an object of } \mathbf{K I}(T) \\
& =\text { that object of } \mathcal{C} \\
& \llbracket A \times B \rrbracket^{T}={ }_{\mathrm{df}} \quad \llbracket A \rrbracket^{T} \times^{T} \llbracket B \rrbracket^{T} \\
& \llbracket A \Rightarrow B \rrbracket^{T}={ }_{\mathrm{df}} \quad \llbracket A \rrbracket^{T} \Rightarrow^{T} \llbracket B \rrbracket^{T} \pi \llbracket B \rrbracket^{T} \\
& =\llbracket A \rrbracket^{T} \Rightarrow T \llbracket B \rrbracket^{T} \\
& \llbracket \underline{C} \rrbracket^{T}={ }_{\mathrm{df}} \quad \llbracket C_{0} \rrbracket^{T} \times^{T} \ldots \times^{T} \llbracket C_{n-1} \rrbracket^{T} \\
& =\llbracket C_{0} \rrbracket^{T} \times \ldots \times \llbracket C_{n-1} \rrbracket^{T}
\end{aligned}
$$

$$
\llbracket(\underline{x}) x_{i} \rrbracket^{T}={ }_{\mathrm{df}} \quad \pi_{i}^{T}
$$

$$
\llbracket(\underline{x}) \text { let } x \leftarrow t \text { in } u \rrbracket^{T}={ }_{\mathrm{df}} \llbracket(\underline{x}, x) u \rrbracket^{T} \circ^{T}\left\langle\mathrm{id}^{T}, \llbracket(x) t \rrbracket^{T}\right\rangle^{T}
$$

$$
\llbracket(\underline{x}) f s t(t) \rrbracket^{T}=\mathrm{df} \quad \mathrm{fst}^{T} \circ^{T} \llbracket(\underline{x}) t \rrbracket^{T}
$$

$$
=\left(\llbracket(\underline{x}, x) u \rrbracket^{T}\right)^{\star} \circ \text { sl } \circ\left\langle\mathrm{id}, \llbracket(x) t \rrbracket^{T}\right\rangle
$$

$$
=\overline{T f s t} \circ \llbracket(\underline{x}) t \rrbracket^{T}
$$

$$
\llbracket(\underline{x}) \operatorname{snd}(t) \rrbracket^{T}=\mathrm{df} \quad \operatorname{snd}^{T} \circ^{T} \llbracket(\underline{x}) t \rrbracket^{T}
$$

$$
=T \text { snd } \circ \llbracket(\underline{x}) t \rrbracket^{T}
$$

$$
\begin{aligned}
& \llbracket(\underline{x})\left(t_{0}, t_{1}\right) \rrbracket^{T}={ }_{\mathrm{df}} \quad\left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{T}, \llbracket(\underline{x}) t_{1} \rrbracket^{T}\right\rangle^{T} \\
& =\mathrm{sl}{ }^{\star} \circ \mathrm{sr} \circ\left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{T}, \llbracket(\underline{x}) t_{1} \rrbracket^{T}\right\rangle \\
& \llbracket(\underline{x}) \lambda x t \rrbracket^{T}={ }_{\mathrm{df}} \quad \Lambda^{T}\left(\llbracket(\underline{x}, x) t \rrbracket^{T}\right) \\
& =\eta \circ \Lambda\left(\llbracket(\underline{x}, x) t \rrbracket^{T}\right) \\
& \llbracket(\underline{x}) t u \rrbracket^{T}={ }_{\mathrm{df}} \quad \mathrm{ev}^{T} \circ^{T}\left\langle\llbracket(\underline{x}) t \rrbracket^{T}, \llbracket(\underline{x}) u \rrbracket^{T}\right\rangle^{T} \\
& =\mathrm{ev}^{\star} \circ \mathrm{s} \mathbf{l}^{\star} \circ \mathrm{sr} \circ\left\langle\llbracket(\underline{x}) t \rrbracket^{T}, \llbracket(\underline{x}) u \rrbracket^{T}\right\rangle
\end{aligned}
$$

- As $\mathbf{K I}(T)$ is only pre-Cartesian closed, for this pure fragment, soundness of typing holds, i.e.,

$$
\underline{x}: \underline{C} \vdash t: A \text { implies } \llbracket(\underline{x}) t \rrbracket^{T}: \llbracket \underline{C} \rrbracket^{T} \rightarrow^{T} \llbracket A \rrbracket^{T}
$$

but not all equations of the pure typed lambda-calculus are validated.

- In particular,

$$
\vdash t: A \text { implies } \llbracket t \rrbracket^{T}: 1 \rightarrow^{T} \llbracket A \rrbracket^{T}
$$

so a closed term t of a type A denotes an element of $T \llbracket A \rrbracket^{T}$.

- Any effect-constructs must be interpreted specifically validating their desired typing rules and equations. E.g., for a language with exceptions we would use the exceptions monad and define

$$
\begin{aligned}
\llbracket(\underline{x}) \text { raise }(e) \rrbracket^{T}=\mathrm{df}^{\text {raise } \circ^{T}} & \llbracket(\underline{x}) e \rrbracket^{T} \\
& =\operatorname{raise}^{\star} \circ \llbracket(\underline{x}) e \rrbracket^{T}
\end{aligned}
$$

Kleisli adjunction

- Given a monad T on category \mathcal{C}, in the opposite direction to that of $J: \mathcal{C} \rightarrow \mathbf{K I}(T)$ there is a functor
$U: \mathbf{K I}(T) \rightarrow \mathcal{C}$ defined by
- $U A={ }_{\mathrm{df}} T A$,
- if $k: A \rightarrow^{T} B$, then $U k={ }_{\mathrm{df}} T A \xrightarrow{k^{\star}} T B$.
- U is right adjoint to J.

$$
\begin{array}{cl}
\mathrm{KI}(T) \\
J_{\uparrow}\left(\begin{array}{c}
\\
\mathcal{C}^{2}
\end{array}\right. & \underline{\overline{A \rightarrow T B}} \\
\overline{A \rightarrow U B}
\end{array}
$$

- Importantly, $U J=T$. Indeed,
- $U J A=T A$,
- if $f: A \rightarrow B$, then $U J f=\left(\eta_{B} \circ f\right)^{\star}=T f$.
- Moreover, the unit of the adjunction is η.
- $J \dashv U$ is the initial adjunction factorizing T in this way. There is also a final one, known as the Eilenberg-Moore

Kleisli categories

- In general one can define a Kleisli category on \mathcal{C} to be
- a category \mathcal{D} with the same objects as \mathcal{C}
- together with an identity-on-objects functor $J: \mathcal{C} \rightarrow \mathcal{D}$ with right adjoint U.
- To give a monad is the same as to give Kleisli category.
- We already know that a monad T induces a Kleisli category $\mathcal{D}={ }_{\text {df }} \mathbf{K I}(T)$.
- Given a Kleisli category \mathcal{D}, we obtain a monad by taking $T={ }_{\mathrm{df}} U J$.

Monad maps

- A monad map between monads T, S on a category \mathcal{C} is a natural transformation $\tau: T \dot{\rightarrow} S$ satisfying

- Alternatively, a map between two monads (Kleisli triples) T, S is, for any object A, a map $\tau_{A}: T A \rightarrow S A$ satisfying
- $\tau_{A} \circ \eta_{A}^{T}=\eta_{A}^{S}$,
- if $k: A \rightarrow T B$, then $\tau_{B} \circ k^{\star T}=\left(\tau_{B} \circ k\right)^{\star S} \circ \tau_{A}$.
(No explicit naturality condition on τ.)
- The two definitions are equivalent.
- Monads on \mathcal{C} and maps between them form a category $\operatorname{Monad}(\mathcal{C})$.

Monad maps vs. functors between Kleisli categories

- There is a bijection between monad maps τ between T, S and functors $V: \mathbf{K I}(T) \rightarrow \mathbf{K I}(S)$ satisfying $V J^{T}=J^{S}$.
- Given τ, one defines V by
- $V A={ }_{\mathrm{df}} A$,
- if $k: A \rightarrow T B$, then $V k==_{\mathrm{df}} A \xrightarrow{k} T B \xrightarrow{\tau_{B}} S B$.
- Given V, one defines τ by

$$
\text { - } \tau_{A}={ }_{\mathrm{df}} V\left(T A \xrightarrow{\mathrm{id}_{T A}}{ }^{T} A\right): T A \rightarrow^{S} A .
$$

Monads and More: Part 2

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007 University of Udine, 2-6 July 2007

Monads from adjuctions (Huber)

- For any pair of adjoint functors $L: \mathcal{C} \rightarrow \mathcal{D}, R: \mathcal{D} \rightarrow \mathcal{C}$, $L \dashv R$ with unit $\eta: \mathrm{Id}_{\mathcal{C}} \rightarrow R L$ and counit $\varepsilon: L R \rightarrow \mathrm{Id}_{\mathcal{D}}$, the functor $R L$ carries a monad structure defined by
- $\eta^{R L}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta} R L$,
- $\mu^{R L}={ }_{\mathrm{df}} R L R L \xrightarrow{R \varepsilon L} R L$.
- The Kleisli and Eilenberg-Moore adjunctions witness that any monad on \mathcal{C} admits a factorization like this.

Examples

- State monad:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} A \times S, R B={ }_{\mathrm{df}} S \Rightarrow B$,

$$
\frac{A \times S \rightarrow B}{\overline{A \rightarrow S \Rightarrow B}}
$$

- $R L A=S \Rightarrow A \times S$,
- An exotic one:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} \mu X . A+X \times S \cong A \times \operatorname{List} S$, $R B={ }_{\mathrm{df}} \nu Y . B \times(S \Rightarrow Y)$,

$$
\frac{\mu X . A+X \times S \rightarrow B}{A \rightarrow \nu Y . B \times(S \Rightarrow Y)}
$$

- $R L A=\nu Y .(\mu X . A+X \times S) \times(S \Rightarrow Y) \cong$ $\nu Y . A \times$ List $S \times(S \Rightarrow Y)$.
- What notion of computation does this correspond to?
- Continuations monad:
- $L: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}, L A={ }_{\mathrm{df}} A \Rightarrow E$, $R: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{C}, R B={ }_{\mathrm{df}} B \Rightarrow E$,

$$
\begin{aligned}
& \hline \overline{A \Rightarrow E \leftarrow B} \\
& \hline \overline{\bar{E} \leftarrow B \times A} \\
& \overline{\overline{A \times B \rightarrow E}} \\
& \hline A \rightarrow B \Rightarrow E
\end{aligned}
$$

- $R L A=(A \Rightarrow E) \Rightarrow E$.

Monads from adjunctions ctd.

- Given two functors $L: \mathcal{C} \rightarrow \mathcal{D}$ and $R: \mathcal{D} \rightarrow C, L \dashv R$ and a monad T on \mathcal{D}, we obtain that $R T L$ is a monad on \mathcal{C}.
- This is because T factorizes as $U J$ where $J \vdash U$ is the Kleisli adjunction.
That means an adjoint situation $J L \vdash R U$ implying that $R U J L=R T L$ is a monad.
- The monad structure is

$$
\begin{aligned}
& \text { - } \eta^{R T L}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta} R L \xrightarrow{R \eta^{T} L} R T L, \\
& \text { - } \mu^{R T L}={ }_{\mathrm{df}} R T L R T L \xrightarrow{R T \varepsilon T L} R T T L \xrightarrow{\mu^{T}} R T L .
\end{aligned}
$$

Examples

- State monad transformer:
- $L, R: \mathcal{C} \rightarrow \mathcal{C}, L A={ }_{\mathrm{df}} A \times S, R B={ }_{\mathrm{df}} S \Rightarrow B$,
- T - a monad on \mathcal{C},
- $R T L A=S \Rightarrow T(A \times S)$,
- In particular, for T the exceptions monad we get $R T L A=S \Rightarrow(A \times S)+E$.
- Continuations monad transformer:
- $L: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}, L A={ }_{\mathrm{df}} A \Rightarrow E$, $R: \mathcal{C}^{\mathrm{op}} \rightarrow \mathcal{C}, R B={ }_{\mathrm{df}} B \Rightarrow E$,
- T - a monad on $\mathcal{C}^{\text {op }}$, i.e., a comonad on \mathcal{C},
- $R T L A={ }_{\mathrm{df}} T(A \Rightarrow E) \rightarrow E$.

Free algebras, free monads

- Given a endofunctor H on a category \mathcal{C}, let ($H^{*} A,\left[\eta_{A}^{H}, \tau_{A}^{H}\right]$) be the initial algebra of $A+H-$ (if it exists), so that, for any $A+H$--algebra $(C,[g, h])$, there is a unique map $f: H^{*} A \rightarrow C$ satisfying
- $H^{*} A$ is the type of wellfounded H-trees with mutable leaves from A, i.e., of H-terms over variables from A.
- $\left(\left(H^{*} A, \tau_{A}^{H}\right), \eta_{A}^{H}\right)$ is the free H-algebra on A, i.e., $A \mapsto\left(H^{*} A, \tau^{H} A\right): \mathcal{C} \rightarrow \operatorname{alg}(H)$ is left adjoint to the forgetful functor $U: \operatorname{alg}(H) \rightarrow \mathcal{C}$.

$$
\frac{\underline{\left(H^{*} A, \tau_{A}\right) \rightarrow(C, h)}}{\frac{A \rightarrow C}{\overline{A \rightarrow U(C, h)}}}
$$

and η^{H} is the unit of the adjunction.

- The pointed functor $\left(H^{*}, \eta^{H}\right)$ carries a monad structure.
- The Kleisli extension $k^{*}: H^{*} A \rightarrow H^{*} B$ of any given map $k: A \rightarrow H^{*} B$ is defined as the unique map f satisfying

Intuitively, this is grafting of trees into the mutable leaves of a tree or substitution of terms into the variables of a term.

- $\left(\left(H^{*}, \eta^{H}, \mu^{H}\right), \tau^{H}\right)$ is the free monad on H, i.e., $H \mapsto\left(H^{*}, \eta^{H}, \mu^{H}\right):[\mathcal{C}, \mathcal{C}] \rightarrow \operatorname{Monad}(\mathcal{C})$ is left adjoint to the forgetful functor $U: \operatorname{Monad}(\mathcal{C}) \rightarrow[\mathcal{C}, \mathcal{C}]$

$$
\frac{\underline{\left(H^{*}, \eta^{H}, \mu^{H}\right) \rightarrow\left(S, \eta^{S}, \mu^{S}\right)}}{\frac{H \rightarrow S}{H \rightarrow U\left(S, \eta^{S}, \mu^{S}\right)}}
$$

and τ is the unit of the adjunction.

Free completely iterative algebras, free completely

 iterative monads (Adámek, Milius, Velebil)- The final coalgebras $H^{\infty} A$ of $A+H$ - (the free completely iterative H-algebras over A) for each A also a give a monad (the free completely iterative monad on H).

Examples

- If $H X=1+X \times X$, then $H^{*} A$ is the type of wellfounded binary trees with a termination option and with mutable leaves from A
(i.e., terms in the signature with one nullary, one binary operator over variables from A).
- If $H X={ }_{\text {df }}$ List $X \cong \coprod_{i \in \mathbb{N}} X^{i}$, then $H^{*} A$ is the type of wellfounded rose trees with mutable leaves from A (i.e., terms in the signature with one operator of every finite arity over variables from A).

Monads from parameterized monads via initial algebras / final coalgebras (U.)

- A parameterized monad on \mathcal{C} is a functor $F: \mathcal{C} \rightarrow \operatorname{Monad}(\mathcal{C})$.
- If F is a parameterized monad then the functors $F^{*}, F^{\infty}: \mathcal{C} \rightarrow \mathcal{C}$ defined by $F^{*} A={ }_{\mathrm{df}} \mu X . F X A$ and $F^{\infty} A={ }_{\mathrm{df}} \nu X . F X A$ carry a monad structure.
- In fact more can be said about them, but here we won't.

Examples

- Free monads:
- $F X A={ }_{\mathrm{df}} A+H X$ where $H: \mathcal{C} \rightarrow \mathcal{C}$,
- $F^{*} A={ }_{\mathrm{df}} \mu X . A+H X, F^{\infty} A={ }_{\mathrm{df}} \nu X . A+H X$.
- These are the types of wellfounded/nonwellfounded H-trees with mutable leaves from A.
- Rose tree types:
- $F X A={ }_{\mathrm{df}} A \times H X$ where $H: \mathcal{C} \rightarrow \operatorname{Monoid}(\mathcal{C})$,
- $F^{*} A={ }_{\mathrm{df}} \mu X . A \times H X, F^{\infty} A={ }_{\mathrm{df}} \nu X . A \times H X$.
- If $H X={ }_{\mathrm{df}}$ List X, these are the types of wellfounded/nonwellfounded A-labelled rose trees.
- Types of hyperfunctions with a fixed domain:
- $F X A={ }_{\mathrm{df}} H X \Rightarrow A$ where $H: \mathcal{C} \rightarrow \mathcal{C}^{\mathrm{op}}$,
- $F^{*} A={ }_{\mathrm{df}} \mu X . H X \Rightarrow A, F^{\infty} A={ }_{\mathrm{df}} \nu X . H X \Rightarrow A$.
- If $F X={ }_{\mathrm{df}} X \Rightarrow E$, these are the types of wellfounded/nonwellfounded hyperfunctions from E to A. (Of course these types do no exist in Set.)

Distributive laws

- If T, S are monads on \mathcal{C}, it is not generally the case that $S T$ is a monad. But sometimes it is.
- A distributive law of a monad T over a monad S is a natural transformation $\lambda: T S \rightarrow S T$ satisfying

- A distributive law λ of T over S gives a monad structure on the endofunctor $S T$:
- $\eta^{S T}={ }_{\mathrm{df}} \mathrm{Id} \xrightarrow{\eta^{S} \eta^{T}} S T$,
- $\mu^{S T}={ }_{\mathrm{df}} S T S T \xrightarrow{S \lambda T} S S T T \xrightarrow{\mu^{S} \mu^{T}} S T$.

Examples

- The exceptions monad distributes over any monad.
- S - a monad,
- $T A={ }_{\mathrm{df}} A+E$ where E is an object,
- $\lambda={ }_{\mathrm{df}} S A+E \xrightarrow{\mathrm{id}+\eta^{s}} S A+S E \xrightarrow{[\text { Sinl,Sinr }]} S(A+E)$,
- $S T A=S(A+E)$.
- For T the state monad, this gives
$S T=S \Rightarrow(A+E) \times S$, which is a different combination of exceptions and state than we saw before.
- The output monad distributes over any $(1, \times)$ strong monad.
- $(S$, sl) - a strong monad,
- $T A={ }_{\mathrm{df}} A \times E$ where E is a monoid,
- $\lambda={ }_{\mathrm{df}} S A \times E \xrightarrow{\mathrm{sr}} S(A \times E)$,
- $S T A=S(A \times E)$.
- Any $(1, \times)$ strong monad distributes over the environment monad.
- ($T, \mathrm{sl})$ - a strong monad,
- $S A={ }_{\mathrm{df}} E \Rightarrow A$ where E is an object,
- $\lambda={ }_{\mathrm{df}} \Lambda(T(E \Rightarrow A) \times E \xrightarrow{\mathrm{sr}} T((E \Rightarrow A) \times E) \xrightarrow{T \mathrm{ev}} T A)$,
- $S T A=E \Rightarrow T A$.

Coproduct of monads

- An interesting canonical way to combine monads is the coproduct of monads.
- A coproduct of two monads T_{0} and T_{1} on \mathcal{C} is their coproduct in Monad(C).
- I.e., it is a monad $T_{0}+{ }^{\mathrm{m}} T_{1}$ together with two monad maps inl ${ }^{\mathrm{m}}: T_{0} \rightarrow{ }^{\mathrm{m}} T_{0}+{ }^{\mathrm{m}} T_{1}, \mathrm{inr}^{\mathrm{m}}: T_{0} \rightarrow{ }^{\mathrm{m}} T_{0}+{ }^{\mathrm{m}} T_{1}$ such that for any monad S and monad maps $\tau_{0}: T_{0} \rightarrow{ }^{\mathrm{m}} S, \tau_{1}: T_{1} \rightarrow{ }^{\mathrm{m}} S$ there exists a unique monad map $T_{0}+{ }^{\mathrm{m}} T_{1} \rightarrow{ }^{\mathrm{m}} S$ satisfying

$$
T_{0} \stackrel{\mathrm{in} \mathrm{~m}^{\mathrm{m}}}{\longrightarrow} T_{0}+{ }^{\mathrm{m}} T_{1} \stackrel{\mathrm{inr}^{\mathrm{m}}}{\tau_{0}} T_{1}
$$

- The coproduct of two monads cannot be computed "pointwise", it is not the coproduct of the underlying functors.
- In fact, most of the time the coproduct of the underlying functors of two monads is not even a monad.

Coproduct of free monads

- The coproduct of the free monads on functors H_{0}, H_{1} is the free monad on their coproduct:

$$
H_{0}^{\star}+{ }^{\mathrm{m}} H_{1}^{\star}=\left(H_{0}+H_{1}\right)^{*}
$$

(obvious, since the free monad delivering functor is a left adjoint and hence preserves colimits, in particular coproducts).

Coproduct of a free monad and an arbitrary monad

 (Power)- More generally, the coproduct of a free monad H^{*} with an arbitary monad S is this (if $(H S)^{*}$ exists):

$$
H^{*}+{ }^{\mathrm{m}} S=S(H S)^{*}
$$

i.e.,

$$
\left(H^{*}+{ }^{\mathrm{m}} S\right) A=S(\mu X . A+H S X)=\mu X . S(A+H X)
$$

- For $H X={ }_{\mathrm{df}} E, H^{*} A=\mu X . A+E \cong A+E$ (exceptions monad) and $\left(H^{*}+{ }^{\mathrm{m}} S\right) A=\mu X . S(A+E) \cong S(A+E)$. This is the same combination of exceptions with any other monad as obtained from the canonical distributive law of the exceptions monad over another monad.

Ideal monads (Adámek, Milius, Velebil)

- Idea: to generalize the separation of variables from operator terms in term algebras.
- An ideal monad on \mathcal{C} is a monad (T, η, μ) together with an endofunctor T^{\prime} on \mathcal{C} and a natural transformation $\mu^{\prime}: T^{\prime} T \rightarrow T^{\prime}$ such that
- $T=\mathrm{Id}+T^{\prime}$,
- $\eta=\mathrm{inl}$,
- $\mu=\left[i d\right.$, inr $\left.\circ \mu^{\prime}\right]$.

$$
\begin{aligned}
& T \stackrel{\mathrm{inl} T}{>} T T=\left(\mathrm{ld}+T^{\prime}\right) T \stackrel{\mathrm{inr} T}{\rightleftarrows} T^{\prime} T \\
& T=\mathrm{ld}+T^{\prime}<\left.\right|_{\mathrm{inr}} ^{\mu^{\prime}} \\
& T^{\prime}
\end{aligned}
$$

- An ideal monad map between $T=\mathrm{Id}+T^{\prime}$ and $S=\mathrm{Id}+S^{\prime}$ is monad map $\tau: T \dot{\rightarrow} S$ together with a nat. transf. $\tau^{\prime}: T^{\prime} \dot{\rightarrow} S^{\prime}$ satisfying $\tau=\mathrm{id}+\tau^{\prime}$.

Examples

- Free monads are ideal:
- TA $={ }_{\mathrm{df}} \mu X . A+H X$ where $H: \mathcal{C} \rightarrow \mathcal{C}$
- $T A \cong A+H T A$
- The finite powerset monad is not ideal:
- $T A={ }_{\text {df }} \mathcal{P}_{\mathrm{f}}$
- $T A \cong A+1+\mathcal{P}_{\geq 2} A$, but $\mathcal{P}_{\geq 2}$ is not a functor: If for some $f: A \rightarrow B$ and $a_{0}, a_{1} \in A$ we have $f\left(a_{0}\right)=f\left(a_{1}\right)$, then $\mathcal{P}_{\mathrm{f}} f$ sends a 2 -element set $\left\{a_{0}, a_{1}\right\}$ to singleton.
- The finite multiset monad is not ideal:
- $T A={ }_{\mathrm{df}} \mathcal{M}_{\mathrm{f}}$
- $T A \cong A+1+\mathcal{M}_{\geq 2} A$, but μ does not restrict to a nat. transf. $\mathcal{M}_{\geq 2} \mathcal{M}_{\mathrm{f}} \rightarrow \mathcal{M}_{\geq 2}$: If $a \in A$, then $\mu_{A}\{\{a\}, \bar{\emptyset}\}=\{a\}$.
- The nonempty finite multiset monad is ideal:
- $T A={ }_{\mathrm{df}} \mathcal{M}_{\geq 1}$
- $T A \cong A+\mathcal{M}_{\geq 2} A$
- The nonempty list monad is ideal too.

Coproduct of ideal monads (Ghani, U.)

- Given two ideal monads $S_{0}=\mathrm{Id}+S_{0}^{\prime}$ and $S_{1}=\mathrm{Id}+S_{1}^{\prime}$, their coproduct is the ideal monad $T=\mathrm{Id}+T_{0}^{\prime}+T_{1}^{\prime}$ defined by

$$
\left.\left(T_{0}^{\prime} A, T_{1}^{\prime} A\right)==_{\mathrm{df}} \mu\left(X_{0}, X_{1}\right) \cdot\left(S_{0}^{\prime}\left(A+X_{1}\right)\right), S_{1}^{\prime}\left(A+X_{0}\right)\right)
$$

Monads and More: Part 3

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007 University of Udine, 2-6 July 2007

Arrows (Hughes)

- Arrows are a generalization of strong monads on symmetric monoidal categories (in their Kleisli triple form).
- An arrow on a symmetric monoidal category $(\mathcal{C}, I, \otimes)$ is given by
- an object mapping $R:|\mathcal{C}| \times|\mathcal{C}| \rightarrow \mid$ Set \mid,
- for any objects A, B of \mathcal{C}, a map arr: $\operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow R(A, B)$ of Set,
- for any objects A, B, C of \mathcal{C}, a map $\lll R(A, B) \times R(B, C) \rightarrow R(A, C)$ of Set,
- for any objects A, B, C of \mathcal{C}, a map second $_{C}: R(A, B) \rightarrow R(C \otimes A, C \otimes B)$ of Set satisfying the conditions on the next slide.
- (ctd. from the previous slide)
- if $k \in R(A, B)$, then $\operatorname{arrid}_{B} \lll k=k$,
- if $k \in R(A, B)$, then $k \lll \operatorname{arrid}_{A}=k$,
- if $k \in R(A, B), \ell \in R(B, C), m \in R(C, D)$, then $(m \lll \ell) \lll k=m \lll(\ell \lll k)$,
- if $f: A \rightarrow B, g: B \rightarrow C$, then
$\operatorname{arr}(g \circ f)=\operatorname{arr} g \lll \operatorname{arr} f$,
- if $f: A \rightarrow B$, then second $C(\operatorname{arr} f)=\operatorname{arr}\left(\operatorname{id}_{C} \times f\right)$,
- if $k \in R(A, B), \ell \in R(B, C)$,
$\operatorname{second}_{D}(\ell \lll k)=\operatorname{second}_{D} \ell \lll \operatorname{second}_{D} k$,
- if $k \in R(A, B), f: C \rightarrow D$, then
$\operatorname{arr}\left(f \times \operatorname{id}_{B}\right) \lll \operatorname{second}_{C} k=\operatorname{second}_{D} k \lll \operatorname{arr}\left(f \times \operatorname{id}_{A}\right)$,
- if $k \in R(A, B), k \lll \operatorname{arrul}_{A}=\mathrm{ul}_{B} \lll \operatorname{second}_{l} k$,
- if $k \in R(A, B)$, second $C\left(\operatorname{second}_{D} k\right) \lll a_{C, D, A}=$ a $_{C, D, B} \lll$ second $_{C \otimes D} k$.

Examples

- Arrows from strong monoidal functors:
- $R(A, B)={ }_{\mathrm{df}} \operatorname{Hom}_{\mathcal{C}}(F A, F B)$ where F is a monoidal endofunctor on \mathcal{C} (i.e., there is a natural isomorphism $\mathrm{m}_{A, B}: F A \otimes F B \rightarrow F(A \otimes B)$,
- if $f: A \rightarrow B$, then arr $f=F f: F A \rightarrow F B$,
- if $k: F A \rightarrow F B, \ell: F B \rightarrow F C$, then
$\ell \lll k={ }_{\mathrm{df}} F A \xrightarrow{k} F B \xrightarrow{\ell} F C$,
- if $k: F A \rightarrow F B$, then second $k={ }_{\mathrm{df}} F(C \otimes A) \xrightarrow{\mathrm{m}^{-1}}$
$F C \otimes F A \xrightarrow{\text { id } \otimes k} F C \otimes F B \xrightarrow{\mathrm{~m}} F(C \otimes B)$.
- Kleisli maps of strong monads:
- $R(A, B)={ }_{\mathrm{df}} \operatorname{Hom}_{\mathcal{C}}(A, T B)$ where T is a strong monad,
- if $f: A \rightarrow B$, then arr $f=J f: A \rightarrow T B$ where J is the Kleisli inclusion of T,
- if $k: A \rightarrow T B, \ell: B \rightarrow T C$, then
$\ell \lll k={ }_{\mathrm{df}} A \xrightarrow{k} T B \xrightarrow{\ell^{\star}} T C$,
- if $k: A \rightarrow T B$, then
second $k={ }_{\mathrm{df}} C \otimes A \xrightarrow{\mathrm{id} \otimes k} C \otimes T B \xrightarrow{\mathrm{sr}} T(C \otimes B)$.
- CoKleisli maps of comonads on Cartesian categories:
- $R(A, B)={ }_{\mathrm{df}} \operatorname{Hom}_{\mathcal{C}}(D A, B)$ where D is a comonad on \mathcal{C},
- if $f: A \rightarrow B$, then arr $f=J f: D A \rightarrow B$ where J is the coKleisli inclusion of D,
- if $k: D A \rightarrow B, \ell: D B \rightarrow C$, then

$$
\ell \lll k={ }_{\mathrm{df}} D A \xrightarrow{k^{\dagger}} D B \xrightarrow{\ell} C
$$

- if $k: D A \rightarrow B$, then
second $k={ }_{\mathrm{df}} D(C \times A) \xrightarrow{\langle D f \mathrm{ft}, D \text { snd }\rangle} D C \times D A \xrightarrow{\varepsilon \times k} C \times B$.
- Output once more:
- $R(A, B)={ }_{\mathrm{df}} E \times \operatorname{Hom}_{\mathcal{C}}(A, B)$ where (E, e, m) is a monoid in Set,
- if $f: A \rightarrow B$, then arr $f=(e, f): E \times \operatorname{Hom}_{\mathcal{C}}(A, B)$,
- if $(x, f): E \times \operatorname{Hom}_{\mathcal{C}}(A, B),(y, g): E \times \operatorname{Hom}_{\mathcal{C}}(B, C)$, then
$(y, g) \lll(x, f)={ }_{\mathrm{df}}(m(x, y), g \circ f) \in E \times \operatorname{Hom}_{\mathcal{C}}(A, C)$,
- if $(x, f): E \times \operatorname{Hom}_{\mathcal{C}}(A, B)$, then
second $(x, f)={ }_{\mathrm{df}}(x, C \otimes f) \in E \times \operatorname{Hom}_{C}(C \otimes A, C \otimes B)$.

Arrows in the monoid form (Jacobs, Heunen,

 Hasuo)- An alternative definition mimicks the definition of monads in the standard, i.e., monoid form.
- An arrow on a symmetric monoidal category $(\mathcal{C}, I, \otimes)$ is a strong monoid in the category of endoprofunctors on $(\mathcal{C}, I, \otimes)$.
- A profunctor from \mathcal{C} to \mathcal{D} is a functor $\mathcal{C}^{\mathrm{op}} \times \mathcal{D} \rightarrow$ Set.

The identity profunctor on \mathcal{C} is
Id $={ }_{\mathrm{df}} \mathrm{Hom}_{\mathcal{C}}: \mathrm{C}^{\mathrm{op}} \times \mathrm{C} \rightarrow$ Set.
The composition of profunctors $R: \mathcal{C} \rightarrow \mathcal{D}$ and
$S: \mathcal{D} \rightarrow \mathcal{E}$ is $S R(A, C)={ }_{\mathrm{df}} \int^{B} R(A, B) \times S(B, C)$.

- Accordingly, the data of an arrow are the following.
- The carrier of an arrow is a profunctor R from \mathcal{C} to \mathcal{C}, i.e., a functor $R: \mathcal{C}^{\mathrm{op}} \times \mathcal{C} \rightarrow$ Set.
- The unit is a natural transformation from Id to R, i.e., a family of maps $\operatorname{arr}_{A, B}: \operatorname{Hom}_{\mathcal{C}}(A, B) \rightarrow R(A, B)$ natural in A, B.
The multiplication is a nat. transf. from $R R$ to R, i.e., a family of maps $<_{A, B, C}: R(A, B) \times R(B, C) \rightarrow R(A, C)$ natural in A, C and dinatural in B.
The strength is a family of
second $_{A, B, C}:: R(A, B) \rightarrow R(C \otimes A, C \otimes B)$ natural in A, B and dinatural in C.

Symmetric premonoidal categories (Power,

Robinson)

- Intuitively, a symmetric premonoidal category is the same as a symmetric monoidal category, except that the tensor is not necessarily a bifunctor, it must only be functorial in each argument separately.
- More officially: A symmetric premonoidal category is given by
- a category \mathcal{K},
- an object $/$ of \mathcal{K},
- for any object A, a functor $A \rtimes-: \mathcal{K} \rightarrow \mathcal{K}$,
- natural isomorphisms a, ul, ur, c satisfying the laws of a symmetric monoidal category and have all their components central (see further).
- Symmetry yields symmetric functors $-\ltimes A: \mathcal{K} \rightarrow \mathcal{K}$ where $A_{0} \ltimes A_{1}=A_{0} \rtimes A_{1}$ (which we also denote more symmetrically by $A_{0} \otimes A_{1}$).
- A morphism $f: A \rightarrow B$ is called central if, for any $g: C \rightarrow D$, both

Freyd categories

- A Freyd category on a symmetric monoidal category \mathcal{C} is given by
- a symmetric premonoidal category $\left(\mathcal{K}, I^{\mathcal{K}}, \otimes^{\mathcal{K}}\right)$ with the same objects as \mathcal{C}
- together with an identity-on-objects inclusion functor $J: \mathcal{C} \rightarrow \mathcal{K}$ that preserves centrality and strictly preserves its the (I, \otimes) structure as premonoidal (meaning that $\left.I^{\mathcal{K}}=I, A \otimes{ }^{\mathcal{K}} B=A \otimes B\right)$.

Freyd categories vs. arrows (Jacobs, Heunen, Hasuo)

- Freyd categories are in a bijection with arrows.
- For an arrow R on a symmetric monoidal category $(\mathcal{C}, I, \otimes)$, the Freyd category $\left(\left(\mathcal{K}, I^{\mathcal{K}}, \otimes^{\mathcal{K}}\right), J\right)$ is defined by
- an object is an object of \mathcal{C},
- a map from A to B is an element of $R(A, B)$,
- $\mathrm{id}_{A}^{\mathcal{K}}={ }_{\mathrm{df}} \operatorname{arrid}_{A}$,
- if $k: A \rightarrow{ }^{\mathcal{K}} B, \ell: B \rightarrow{ }^{\mathcal{K}} C$, then $\ell o^{\mathcal{K}} k={ }_{\mathrm{df}} \ell \lll k$,
- $I^{\mathcal{K}}=I, A \otimes^{\mathcal{K}} B={ }_{\mathrm{df}} A \otimes B$,
- if $k: A \rightarrow{ }^{\mathcal{K}} B$, then $C \rtimes^{\mathcal{K}} k={ }_{\mathrm{df}}$ second k,
- if $f: A \rightarrow B$, then $J f={ }_{\mathrm{df}} \operatorname{arr} f$.
- Given a Freyd category $\left(\left(\mathcal{K}, I^{\mathcal{K}}, \otimes^{\mathcal{K}}\right), J\right)$ on \mathcal{C}, the corresponding arrow R is defined by
- $R(A, B)={ }_{\mathrm{df}} \operatorname{Hom}_{\mathcal{K}}(A, B)$,
- if $f: A^{\prime} \rightarrow A, g: B \rightarrow B^{\prime}, k \in \operatorname{Hom}_{\mathcal{K}}(A, B)$, then $R(f, g) k={ }_{\mathrm{df}} J g \lll k \lll J f$,
- if $f: A \rightarrow B$, then arr $f={ }_{\text {df }} J f \in \operatorname{Hom}_{\mathcal{K}}(A, B)$,
- if $k \in \operatorname{Hom}_{\mathcal{K}}(A, B), \ell \in \operatorname{Hom}_{\mathcal{K}}(B, C)$, then
$\ell \lll k={ }_{\mathrm{df}} \ell{ }^{\circ} \mathcal{K} k \in \operatorname{Hom}_{\mathcal{K}}(A, C)$,
- if $k \in \operatorname{Hom}_{\mathcal{K}}(A, B)$, then
second $k={ }_{\mathrm{df}} C \rtimes^{\mathcal{K}} k \in \operatorname{Hom}_{K}(C \otimes A, C \otimes B)$.

When is Freyd Kleisli? (Power)

- Given a Freyd category $\left(\left(\mathcal{K}, I^{\mathcal{K}}, \otimes^{\mathcal{K}}\right), J\right)$ on a symmetric monoidal category $(\mathcal{C}, I, \otimes)$, when is it the Kleisli category of a strong monad?
- A simple condition is in terms of Kleisli exponents.
- Suppose $J(-\ltimes A): \mathcal{C} \rightarrow \mathcal{K}$ has a right adjoint $A \Rightarrow^{\mathcal{K}}-$. In this case we say the Freyd category is closed. Then also $T B={ }_{\mathrm{df}} I \Rightarrow^{\mathcal{K}} B$ is a strong monad with Kleisli exponents and $\left(\left(\mathcal{K}, I^{\mathcal{K}}, \otimes^{\mathcal{K}}\right), J\right)$ is its Kleisli category.

Monads and More: Part 4

Tarmo Uustalu, Institute of Cybernetics, Tallinn

University of Nottingham, 14-18 May 2007 University of Udine, 2-6 July 2007

Comonads

- Comonads are the dual of monads.
- A comonad is a
- a functor $D: \mathcal{C} \rightarrow \mathcal{C}$ (the underlying functor),
- a natural transformation $\eta: D \rightarrow \mathrm{Id}_{\mathcal{C}}$ (the counit),
- a natural transformation $\delta: D \rightarrow D D$ (the comultiplication)
satisfying these conditions:

- In other words, a comonad is comonoid in $[\mathcal{C}, \mathcal{C}]$ (a monoid in $\left.[\mathcal{C}, \mathcal{C}]^{\text {op }}\right)$.

CoKleisli triples

- A coKleisli triple is given by
- an object mapping $D:|\mathcal{C}| \rightarrow|\mathcal{C}|$,
- for any object A, a $\operatorname{map} \varepsilon_{A}: D A \rightarrow A$,
- for any map $k: D A \rightarrow B$, a map $k^{\dagger}: D A \rightarrow D B$ (the coKleisli extension operation)
satisfying
- if $k: D A \rightarrow B$, then $\varepsilon_{B} \circ k^{\dagger}=k$,
- $\varepsilon_{A}^{\dagger}=\mathrm{id} \mathrm{DA}_{D A}$,
- if $k: D A \rightarrow B, \ell: D B \rightarrow C$, then $\left(\ell \circ k^{\dagger}\right)^{\dagger}=\ell^{\dagger} \circ k^{\dagger}$.
- There is a bijection between comonads and coKleisli triples.

CoKleisli category of a comonad

- A comonad D on a category \mathcal{C} induces a category $\operatorname{CoKI}(D)$ called the coKleisli category of D defined by
- an object is an object of \mathcal{C},
- a map of from A to B is a map of \mathcal{C} from $D A$ to B,
- $\mathrm{id}_{A}^{D}={ }_{\mathrm{df}} D A \xrightarrow{\varepsilon_{A}} A$,
- if $k: A \rightarrow^{D} B, \ell: B \rightarrow^{D} C$, then

$$
\ell \circ^{D} k={ }_{\mathrm{df}} D A \xrightarrow{\mu_{A}} D D A \xrightarrow{D k} D B \xrightarrow{\ell} C .
$$

- From \mathcal{C} there is an identity-on-objects inclusion functor J to $\operatorname{CoKI}(D)$, defined on maps by
- if $f: A \rightarrow B$, then

$$
J f==_{\mathrm{df}} D A \xrightarrow{\varepsilon_{A}} A \xrightarrow{f} B=D A \xrightarrow{D f} D B \xrightarrow{\varepsilon_{B}} B .
$$

- The functor J has a left adjoint $U: \operatorname{CoKI}(D) \rightarrow \mathcal{C}$ given by $U A={ }_{\mathrm{df}} D A$, if $k: A \rightarrow^{D} B$, then $U k={ }_{\mathrm{df}} D A \xrightarrow{k^{\dagger}} D B$.

Comonadic notions of computation

- We think of \mathcal{C} as the category of pure functions and of $D A$ as the type of coeffectful computations of values of type A (values in context).
- $\operatorname{CoKI}(D)$ is the category of coeffectful or context-dependent functions.
- $\varepsilon_{A}: D A \rightarrow A$ is the identity on A seen as trivially context-dependent (discarding the context).
- Jf: $D A \rightarrow B$ is a general pure function $f: A \rightarrow B$ regarded as trivially context-dependen.
- $\delta_{A}: D A \rightarrow D D A$ blows the context of a value up (duplicates the context).
- $k^{\dagger}: D A \rightarrow D B$ is a context-dependent function $k: D A \rightarrow B$ extended into one that can output a value of in a context (e.g., for a postcomposed context-dependent function).

Examples

- Product comonad, for dependency on an environment:
- $D A={ }_{\mathrm{df}} A \times E$ where E is an object of \mathcal{C},
- $\varepsilon_{A}={ }_{\mathrm{df}} A \times E \xrightarrow{\mathrm{fst}} A$,
- $\delta_{A}={ }_{\mathrm{df}} A \times E \xrightarrow{\langle\text { id,snd }\rangle}(A \times E) \times E$,
- if $k: A \times E \rightarrow B$, then $k^{\dagger}={ }_{\mathrm{df}} A \times E \xrightarrow{\langle k \text { snd }\rangle} B \times E$.
- This is the dual of the exceptions monad.
- It is not very interesting, as $\operatorname{CoKI}(D) \cong \mathbf{K I}(T)$ for $T A={ }_{\mathrm{df}} E \Rightarrow A$ (the reader monad).
- Exponent comonad:
- $D A={ }_{\mathrm{df}} E \Rightarrow A$ where (E, e, m) is a monoid in \mathcal{C},
- $\varepsilon_{A}={ }_{\mathrm{df}}(E \Rightarrow A) \xrightarrow{\mathrm{ur}^{-1}}(E \Rightarrow A) \times 1$

$$
\xrightarrow[a]{\text { id } \times e}(E \Rightarrow A) \times E \xrightarrow{\text { ev }} A,
$$

- $\delta_{A}={ }_{\mathrm{df}} \Lambda(\Lambda(((E \Rightarrow A) \times E) \times E \xrightarrow{\mathrm{a}}(E \Rightarrow A) \times(E \times E)$

$$
\xrightarrow{\mathrm{id} \times m}(E \Rightarrow A) \times E \xrightarrow{\mathrm{ev}} A)),
$$

- Interesting special cases are $(E, e, m)={ }_{\mathrm{df}}(\mathrm{Nat}, 0,+)$ and $(E, e, m)={ }_{\mathrm{df}}($ Nat, $0, \max)$.
- "Costate" comonad:
- $D A={ }_{\mathrm{df}}(S \Rightarrow A) \times S$ where S is an object of \mathcal{C},
- $\varepsilon_{A}={ }_{\mathrm{df}}(S \Rightarrow A) \times S \xrightarrow{\mathrm{ev}} A$,
- if $k:(S \Rightarrow A) \times S \rightarrow B$, then

$$
k^{\dagger}={ }_{\mathrm{df}}(S \Rightarrow A) \times S \xrightarrow{\wedge(k) \times \text { id }}(S \Rightarrow B) \times S .
$$

- This comonad arises from the adjunction $S \times-\dashv S \Rightarrow-$

Symmetric monoidal functors

- A strong/lax symmetric monoidal functor between symmetric monoidal categories $(\mathcal{C}, I, \otimes)$ and $\left({ }^{D}, I^{\prime}, \otimes^{\prime}\right)$ is
- a functor on $F: \mathcal{C} \rightarrow^{D}$
- together with an isomorphism/mape: $I^{\prime} \rightarrow F I$
- and a natural isomorphism/transformation with components $\mathrm{m}_{A, B}: F A \otimes^{\prime} F B \rightarrow F(A \otimes B)$
satisfying

- A symmetric monoidal natural transformation between two (strong or lax) symmetric monoidal functors $(F, \mathrm{e}, \mathrm{m}),\left(G, \mathrm{e}^{\prime}, \mathrm{m}^{\prime}\right)$ is a natural transformation $\tau: F \dot{\rightarrow} G$ satisfying

Symmetric monoidal comonads

- A strong/lax symmetric monoidal comonad on a symmmetric monoidal category $(\mathcal{C}, I, \otimes)$ is a comonad (D, ε, δ) where D is a strong/lax symmetric monoidal functor (with I, \otimes preserved by e, m) and ε, δ are symmetric monoidal natural transformations, i.e., satisfy

- (Note that Id is always symmetric monoidal and F, G being symmetric monoidal imply that $G F$ is symmetric monoidal too.)
- A strong/lax symmetric semimonoidal comonad is as a strong/lax symmetric monoidal comonad, but without e (on a category which may be without I).

Dataflow computations

Dataflow computation $=$ discrete-time signal transformations $=$ stream functions.

The output value at a time instant (stream position) is determined by the input value at the same instant (position) plus further input values.

Example dataflow programs

$$
\begin{aligned}
\text { pos } & =0 \text { fby }(\text { pos }+1) \\
\text { sum } x & =x+(0 \text { fby }(\operatorname{sum} x)) \\
\text { fact } & =1 \text { fby }(\text { fact } *(\text { pos }+1)) \\
\text { fibo } & =0 \text { fby }(\text { fibo }+(1 \text { fby fibo }))
\end{aligned}
$$

pos	0	1	2	3	4	5	6	\ldots
sum pos	0	1	3	6	10	15	21	\ldots
fact	1	1	2	6	24	120	720	\ldots
fibo	0	1	1	2	3	5	8	\ldots

We want to consider functions $\operatorname{Str} A \rightarrow \operatorname{Str} B$ as impure functions from A to B.

Streams are naturally isomorphic to functions from natural numbers: $\operatorname{Str} A={ }_{\mathrm{df}} \nu X . A \times X \cong \mathrm{Nat} \Rightarrow A$.
General stream functions $\operatorname{Str} A \rightarrow \operatorname{Str} B$ are thus in natural bijection with maps $\operatorname{Str} A \times N a t \rightarrow B$.

Comonad for general stream functions

- Functor:

$$
D A={ }_{\mathrm{df}}(\mathrm{Nat} \Rightarrow A) \times \mathrm{Nat} \cong \operatorname{List} A \times \operatorname{Str} A
$$

- Input streams with past/present/future:

$$
a_{0}, a_{1}, \ldots, a_{n-1}, a_{n}, a_{n+1}, a_{n+2}, \ldots
$$

- Counit:

$$
\begin{array}{cc}
\varepsilon_{A}: \quad(\text { Nat } \Rightarrow A) \times \text { Nat } & \rightarrow A \\
(a, n) & \mapsto a(n)
\end{array}
$$

- CoKleisli extension:

$$
\begin{array}{cc}
k:(\text { Nat } \Rightarrow A) \times \text { Nat } \rightarrow B \\
\hline k^{\star}:(\text { Nat } \Rightarrow A) \times \text { Nat } & \rightarrow(\text { Nat } \Rightarrow B) \times \text { Nat } \\
(a, n) & \mapsto(\lambda m k(a, m), n)
\end{array}
$$

Comonad for causal stream functions

- Functor:

$$
D A={ }_{\mathrm{df}} \text { NEList } \cong \operatorname{List} A \times A
$$

- Input streams with past and present but no future
- Counit:

$$
\begin{array}{cc}
\varepsilon_{A}: & \text { NEListA }
\end{array} \quad \rightarrow A
$$

- CoKleisli extension:

$k: N E L i s t A \rightarrow B$				
$k^{\star}:$	NEList A	\rightarrow NEList B		
	$\left[a_{0}, \ldots, a_{n}\right]$	\mapsto		

Comonad for anticausal stream functions

- Input streams with present and future but no past
- Functor:

$$
D A={ }_{\mathrm{df}} \operatorname{Str} A \cong A \times \operatorname{Str} A
$$

Relabelling tree transformations

- Let $H: \mathcal{C} \rightarrow \mathcal{C}$. Define Tree $A={ }_{\mathrm{df}} \mu X . A \times H X$. We are interested in relabelling functions Tree $A \rightarrow$ Tree B. (Alt. we can define $\operatorname{Tree}^{\infty} A={ }_{\mathrm{df}} \nu X . A \times H X$ and interest ourselves in relabelling functions Tree ${ }^{\infty} A \rightarrow$ Tree $^{\infty} B$.)
- Comonad for general relabelling functions:

$$
D A={ }_{\mathrm{df}} \operatorname{Tree}^{\prime} A \times A \cong \operatorname{Path} A \times \operatorname{Tree} A
$$

where Path $A={ }_{\mathrm{df}} \mu X .1+A \times H^{\prime}($ Tree $A) \times X$ (Huet's zipper).

- E.g., for $H X={ }_{\text {df }} 1+X \times X, H^{\prime} X \cong 2 \times X$ and Path $A \cong \mu X .1+A \times 2 \times \operatorname{Tree} A \times X$.
- Comonad for bottom-up relabelling functions:

$$
D A==_{\mathrm{df}} \operatorname{Tree} A
$$

Cartesian preclosed structure of the coKleisli

 category of a strong/lax (semi)monoidal comonad- Let D be a comonad on a Cartesian closed category \mathcal{C}.
- Since $J: \mathcal{C} \rightarrow \operatorname{CoKI}(D)$ is a right adjoint and preserves limits, $\operatorname{CoKI}(D)$ inherits products from \mathcal{C}. Explicitly, we can define

$$
\begin{array}{rll}
A \times{ }^{D} B & ={ }_{\mathrm{df}} & A \times B \\
\pi_{0}^{D} & ={ }_{\mathrm{df}} & \text { fst } \circ \varepsilon \\
\pi_{1}^{D} & =_{\mathrm{df}} & \text { snd } \circ \varepsilon \\
\left\langle k_{0}, k_{1}\right\rangle^{D} & & { }_{\mathrm{df}}
\end{array} \quad\left\langle k_{0}, k_{1}\right\rangle
$$

- If D is $(1, \times)$ strong/lax symmetric semimonoidal, then we can also define

$$
\begin{aligned}
& A \Rightarrow^{D} B={ }_{\mathrm{df}} \quad D A \Rightarrow B \\
& \mathrm{ev}^{D}={ }_{\mathrm{df}} \quad \mathrm{ev} \circ\langle\varepsilon \circ D \mathrm{fst}, D \mathrm{snd}\rangle \\
& \Lambda^{D}(k)={ }_{\mathrm{df}} \quad \Lambda(k \circ \mathrm{~m}) \\
& D((D A \Rightarrow B) \times A) \xrightarrow{\langle\varepsilon \circ D \mathrm{fst}, D \mathrm{snd}\rangle}(D A \Rightarrow B) \times D A \xrightarrow{\mathrm{ev}} B
\end{aligned}
$$

$$
\frac{D C \times D A \xrightarrow{\mathrm{~m}} D(C \times A) \xrightarrow{k} B}{D C \xrightarrow{\wedge(k o m)} D A \Rightarrow B}
$$

- Using a strength (if available) is not a good idea: We have no multiplication

$$
D C \times D A \xrightarrow{\mathrm{sl}} D(C \times D A) \xrightarrow{D \mathrm{sr}} D D(C \times A) \xrightarrow{?} D(C \times A)
$$

and applying ε or $D \varepsilon$ gives a solution where the order of arguments of a function is important and coeffects do not combine:

$$
D C \times D A \xrightarrow{\text { id } \times \varepsilon} D C \times A \xrightarrow{\mathrm{sl}} D(C \times A)
$$

or

$$
D C \times D A \xrightarrow{\varepsilon \times \mathrm{id}} C \times D A \xrightarrow{\mathrm{sr}} D(C \times A)
$$

- If D is strong semimonoidal (in which case it is automatically strong symmetric semimonoidal as well), then $A \Rightarrow^{D}$ - is right adjoint to $-\times^{D} A$ and hence \Rightarrow^{D} is an exponent functor:

$$
\frac{\frac{D(C \times A) \rightarrow B}{\overline{D C \times D A \rightarrow B}}}{\overline{D C \rightarrow D A \Rightarrow B}}
$$

- This is the case, e.g., if $D A \cong \nu X . A \times(E \Rightarrow X)$ for some $E($ e.g., $D A \cong \operatorname{Str} A \cong \nu X . A \times(1 \Rightarrow X)$.
- More typically, D is only lax symmetric semimonoidal.
- Then it suffices to have m satisfying

where $\Delta=\langle\mathrm{id}, \mathrm{id}\rangle: A \rightarrow A \times A$ is part of the comonoid structure on the objects of \mathcal{C}, to get that $m \circ\langle D \mathrm{fst}, D$ snd $\rangle=$ id and that \Rightarrow^{D} is a weak exponent operation on objects. It is not functorial (not even in each argument separately).

Partial uniform parameterized fixpoint operator

 Let $F: \mathcal{C} \rightarrow \mathcal{C}$. Define $D A={ }_{\mathrm{df}} \nu Z . A \times F Z$.Call a coKleisli map $k: A \times B \rightarrow^{D} B$ guarded if for some k^{\prime} we have

$$
\begin{aligned}
& (A \times B) \times F D(A \times B) \xrightarrow{\text { fstxid }} A \times F D(A \times B)
\end{aligned}
$$

For any guarded $k: A \times B \rightarrow^{D} B$, there is a unique map fix $(k): A \rightarrow^{D} B$ satisfying

fix is a partial Conway operator defined on guarded maps, i.e., besides the fixpoint property, for any guarded $k: A \times{ }^{D} B \rightarrow^{D} B$,

$$
\operatorname{fix}(k)=k \circ^{D}\left\langle\mathrm{id}^{D}, \operatorname{fix}(k)\right\rangle^{D}
$$

it satisfies naturality in A, dinaturality in B, and the diagonal property: for any guarded $k: A \times^{D} B \times^{D} B \rightarrow^{D} B$,

$$
\operatorname{fix}\left(k \circ^{D}\left(\mathrm{id}^{D} \times{ }^{D} \Delta^{D}\right)\right)=\operatorname{fix}(\operatorname{fix}(k))
$$

Wrt. pure maps, fix is also uniform (i.e., strongly dinatural in B instead of dinatural), i.e., for any guarded $k: A \times{ }^{D} B \rightarrow^{D} B, \ell: A \times{ }^{D} B^{\prime} \rightarrow^{D} B^{\prime}$ and $h: B \rightarrow B^{\prime}$

$$
J h \circ^{D} k=\ell \circ^{D}\left(\mathrm{id}^{D} \times^{D} \mathrm{Jh}\right) \quad \Longrightarrow \quad J h \circ^{D} \operatorname{fix}(k)=\operatorname{fix}(\ell)
$$

Comonadic semantics

- As in the case of monadic semantics, we interpret the lambda-calculus into $\operatorname{CoKI}(D)$ in the standard way (using its Cartesian preclosed structure), getting

$$
\begin{array}{ccc}
\llbracket K \rrbracket^{D}=\mathrm{df} & \text { an object of } \operatorname{CoKI}(D) \\
=\text { that object of } \mathcal{C} \\
\llbracket A \times B \rrbracket^{D}==_{\mathrm{df}} & \llbracket A \rrbracket^{D} \times^{D} \llbracket B \rrbracket^{D} \\
=\llbracket A \rrbracket^{D} \times \llbracket B \rrbracket^{D} \\
\llbracket A \Rightarrow B \rrbracket^{D}==_{\mathrm{df}} & \llbracket A \rrbracket^{D} \Rightarrow^{D} \llbracket B \rrbracket^{D} \\
& =D \llbracket A \rrbracket^{D} \Rightarrow \llbracket B \rrbracket^{D} \\
\llbracket C \rrbracket^{D} & ={ }_{\mathrm{df}} & \llbracket C_{0} \rrbracket^{D} \times \ldots \times \llbracket C_{n-1} \rrbracket^{D} \\
& & =\llbracket C_{0} \rrbracket \times \ldots \times \llbracket C_{n-1} \rrbracket
\end{array}
$$

$$
\begin{aligned}
& \llbracket(\underline{x}) x_{i} \rrbracket^{D}={ }_{\mathrm{df}} \pi_{i}^{D} \\
& \llbracket(\underline{x}) f s t(t) \rrbracket^{D}={ }_{\mathrm{df}} \quad \pi_{0}^{D} \circ^{D} \llbracket(\underline{x}) t \rrbracket^{D} \\
& =\mathrm{fst} \circ \llbracket(\underline{x}) t \rrbracket^{D} \\
& \llbracket(\underline{x}) \operatorname{snd}(t) \rrbracket^{D}={ }_{\mathrm{df}} \quad \pi_{1}^{D} \circ^{D} \llbracket(\underline{x}) t \rrbracket^{D} \\
& =\text { snd } \circ \llbracket(\underline{x}) t \rrbracket^{D} \\
& \llbracket(\underline{x})\left(t_{0}, t_{1}\right) \rrbracket^{D}={ }_{\mathrm{df}}\left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{D}, \llbracket(\underline{x}) t_{1} \rrbracket^{D}\right\rangle^{D} \\
& =\left\langle\llbracket(\underline{x}) t_{0} \rrbracket^{D}, \llbracket(\underline{x}) t_{1} \rrbracket^{D}\right\rangle \\
& \llbracket(\underline{x}) \lambda x t \rrbracket^{D}={ }_{\mathrm{df}} \quad \Lambda^{D}\left(\llbracket(\underline{x}, x) t \rrbracket^{D}\right) \\
& =\Lambda\left(\llbracket(\underline{x}, x) t \rrbracket^{D} \circ \mathrm{~m}\right) \\
& \llbracket(\underline{x}) t u \rrbracket^{D}={ }_{\mathrm{df}} \quad \mathrm{ev}^{D} \circ^{D}\left\langle\llbracket(\underline{x}) t \rrbracket^{D}, \llbracket(\underline{x}) u \rrbracket^{D}\right\rangle^{D} \\
& =\mathrm{ev} \circ\left\langle\llbracket(\underline{x}) t \rrbracket^{D},\left(\llbracket(\underline{x}) u \rrbracket^{D}\right)^{\dagger}\right\rangle
\end{aligned}
$$

- Coeffect-specific constructs are interpreted specifically.
- E.g., for the constructs of a general/causal/anticausal dataflow language we can use the appropriate comonad and define:

$$
\begin{aligned}
\llbracket(\underline{x}) t \text { fby } u \rrbracket^{D} & ={ }_{\mathrm{df}} & \text { fby } \left.\circ\left\langle\llbracket(\underline{x}) t \rrbracket^{D},(\llbracket(\underline{x}) u) \rrbracket^{D}\right)^{\dagger}\right\rangle^{D} \\
\llbracket(\underline{x}) t \text { next } u \rrbracket^{D} & ={ }_{\mathrm{df}} & \text { next } \circ\left(\llbracket(\underline{x}) t \rrbracket^{D}\right)^{\dagger}
\end{aligned}
$$

- Again, we have soundness of typing, in the form $\underline{x}: \underline{C} \vdash t: A$ implies $\llbracket(\underline{x}) t \rrbracket^{D}: \llbracket \underline{C} \rrbracket^{D} \rightarrow^{D} \llbracket A \rrbracket^{D}$, but not all equations of the lambda-calculus are validated.
- For a closed term $\vdash t: A$, soundness of typing says that $\llbracket t \rrbracket^{D}: 1 \rightarrow^{D} \llbracket A \rrbracket^{D}$, i.e., $D 1 \rightarrow \llbracket A \rrbracket^{D}$, so closed terms are evaluated relative to a coeffect over 1.
- In case of general or causal stream functions, an element of $D 1$ is a list over 1, i.e., a natural number, the time elapsed.
- If D is strong or lax symmetric monoidal (not just semimonoidal), we have a canonical choice e : $1 \rightarrow D 1$.
- Comonadic dataflow language semantics: The first-order language agrees perfectly with Lucid and Lustre by its semantics.
The meaning of higher-order dataflow computation has been unclear. We get a neat semantics from mathematical considerations (cf. Colaço, Pouzet's design with two flavors of function spaces).

Symmetric monoidal comonads (and strong

 monads) in linear / modal logic- Strong symmetric monoidal comonads are central in the semantics of intuitionistic linear logic and modal logic to interpret the! and $\square(\diamond)$ operators.
- Linear logic: Benton, Bierman, de Paiva, Hyland; Bierman; Benton; Mellies; Maneggia; etc.
- Modal logic: Bierman, de Paiva.
- Applications to staged computation and semantics of names: Pfenning, Davies, Nanevski.

