Week 1: Finite Automata

Proofs by induction

In these exercices, \mathbb{N} is the set of all integers $\{0,1,2, \ldots\}$ (see page 22 of the text book: integers as recursively defined concepts)

1. Define $f: \mathbb{N} \rightarrow \mathbb{N}$ by recursion

$$
f(0)=0 \quad f(n+1)=f(n)+n
$$

What is $f(2)$? $f(3)$? Use mathematical induction to show that for all $n \in \mathbb{N}$ we have

$$
2 f(n)=n^{2}-n
$$

2. Suppose that we have stamps of 4 kr and 3 kr . Show that any amount of postage over 5 kr can be made with some combinations of these stamps.
3. We define by recursion

$$
0!=1 \quad(n+1)!=(n+1) \times n!
$$

Show that $n!\geq 2^{n}$ for $n \geq 4$ by analogy with the proof of example 1.17, page 21 of the text book.
4. Define the two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$ by recursion

$$
f(0)=0 \quad g(0)=1 \quad f(n+1)=g(n) \quad g(n+1)=f(n)
$$

What is $g(2)$? $f(4)$? Show by mathematical induction that we have, for all $n \in \mathbb{N}$

$$
f(n)+g(n)=1 \quad f(n) g(n)=0
$$

Show that $f(n)=0$ iff $g(n)=1$ iff n is even and $f(n)=1$ iff $g(n)=0$ iff n is odd by mutual induction, by analogy with the proof page 26-27-28 in the text book.
5. We define

$$
f(0)=0, f(1)=1, f(n+2)=f(n+1)+f(n)
$$

(Fibonacci function). We define then $s(0)=0, s(n+1)=s(n)+$ $f(n+1)$. Prove by induction that we have

$$
\forall n \cdot s(n)=f(n+2)-1
$$

We define then

$$
l(0)=2, l(1)=1, l(n+2)=l(n+1)+l(n)
$$

Prove by induction that we have $l(n+1)=f(n)+f(n+2)$.
6. We define a_{2} and a_{1} given x_{1} and x_{2}

$$
\begin{array}{ll}
a_{1}(0)=0 & a_{1}(t+1)=\neg\left(a_{2}(t) \vee x_{1}(t)\right) \\
a_{2}(0)=1 & a_{2}(t+1)=\neg\left(a_{1}(t) \vee x_{2}(t)\right)
\end{array}
$$

We may think of this as a digital circuit. The inputs are $x_{1}(t)$ and $x_{2}(t)$ and the output is $a_{2}(t)$. The predicate $a_{1}(t)$ represents an internal state of the circuit. Let 0 mean that the voltage is low and 1 mean that the voltage is high. The voltage at the input may take any value at any time. Compute the values of $a_{1}(t)$ and $a_{2}(t)$ for the following sequences

$$
x_{1}=000000000111000 \ldots \quad x_{2}=00111000000000 \ldots
$$

that is $x_{1}(0)=x_{1}(1)=\cdots=x_{1}(6)=0, x_{1}(7)=x_{1}(8)=x_{1}(9)=$ $1, \ldots$ If we call a pulse of high voltage a sequence of three 1 s , explain why this circuit can be called a memory (it remembers which input pulsed last).
7. If $\Sigma=\{a, b, c\}$ what is Σ^{1} ? Σ^{2} ? Σ^{0} ?
8. If $\Sigma=\{0,1\}$ find a counterexample to the following alleged theorem: for all $x, y \in \Sigma^{*}$ we have

$$
x^{2} y=x y x
$$

(cf. section 1.3.4)
9. Let $\Sigma=\{0,1\}$ we define $\phi: \Sigma^{*} \rightarrow \Sigma^{*}$ by recursion

$$
\phi(\epsilon)=\epsilon \quad \phi(w 0)=\phi(w) 1 \quad \phi(w 1)=\phi(w) 0
$$

What is $\phi(1011), \phi(1101) ?$ Show that

$$
|\phi(w)|=|w|
$$

by induction on $|w|$.

10 . Let $\Sigma=\{0,1\}$ we define the reverse function on Σ^{*} by the laws

$$
\operatorname{rev}(\epsilon)=\epsilon \quad \operatorname{rev}(a x)=\operatorname{rev}(x) a
$$

What is $\operatorname{rev}(010) ? \operatorname{rev}(10) ?$
Show by induction on y that we have

$$
\operatorname{rev}(y x)=\operatorname{rev}(x) \operatorname{rev}(y)
$$

Show by induction on $n \in \mathbb{N}$ that we have

$$
\operatorname{rev}\left(x^{n}\right)=(\operatorname{rev}(x))^{n}
$$

11. When can we have $x^{2}=y^{3}$ with $x, y \in \Sigma^{*}$, where Σ is a finite set?
