Regular expressions

Consider the regular sets denotated by the following pairs of regular expressions, with $\Sigma=\{a, b, c\}$. For each pair, say whether the two corresponding languages are equal. If not, give an example of a word in one that is not in the other

- $(a+b)^{*}$ and $a^{*}+b^{*}$
- $a(b c a)^{*} b c$ and $a b(c a b)^{*} c$
- \emptyset^{*} and ϵ^{*}
- $\left(a^{*} b^{*}\right)^{*}$ and $\left(a^{*} b\right)^{*}$
- $(a b+a)^{*} a$ and $a(b a+a)^{*}$

Pumping Lemma

If $w \in\{0,1\}^{*}$ we write $\# i(w)$ the number of occurences of i in w (with $i=$ 0 or 1). Show that the following language is not regular

$$
L=\left\{w \in\{0,1\}^{*} \mid \# 0(w)=2 \times \# 1(w)\right\}
$$

and similarly, that the following language is not regular

$$
M=\left\{w \in\{0,1\}^{*} \mid \# 0(w) \leq \# 1(w) \leq \# 0(w)+1\right\}
$$

(hint: look at example 4.2). Show however the following language is regular

$$
N=\left\{w \in\{0,1\}^{*} \mid \# 0(w) \times \# 1(w) \text { is even }\right\}
$$

Equivalence relations

We recall that a partition σ of a set X is a set of nonempty subsets $A \subseteq X$ such that

- For any $x \in X$ there exists $A \epsilon \sigma$ such that $x \epsilon A$,
- If $A, B \epsilon \sigma$ and $A \cap B \neq \emptyset$ then $A=B$.

An element of σ is also called a block or cell of the partition σ.
To any partition σ of a set X we associate the equivalence relation $R(\sigma)$ defined by

$$
R(\sigma) x y \equiv(\exists A \epsilon \sigma)[x \in A \wedge y \epsilon A] .
$$

Exercice 1: We say that σ and τ are independent iff for any A block of σ and B block of τ we have $A \cap B \neq \emptyset$. Show that if τ and σ are independent then for any x, y there exists z such that $R(\tau) x z$ and $R(\sigma) z y$.

Exercice 2: If R and S are equivalence relations show that $R \cap S$ is an equivalence relation. If σ and τ are two partition, we define δ to be the set of $C \subseteq X$ such that there exists $A \epsilon \sigma$ and $B \epsilon \tau$ such that $A \cap B \neq \emptyset$ and $C=A \cap B$. Show that δ is a partition and that $R(\delta)=R(\sigma) \cap R(\tau)$.

Minimal automata

Minimize the following automata

	a	b
$\rightarrow 1$	6	3
2	5	6
$* 3$	4	5
$* 4$	3	2
5	2	1
6	1	4
	a	b
$\rightarrow 1$	2	3
2	5	6
$* 3$	1	4
$* 4$	6	3
5	2	1
6	5	4

