Main Points of the Course

What has been covered: chapters 1 to 5 + 7

Plus abstract states/Myhill-Nerode

[1]

Mathematical Definitions

You should know what are, mathematically, DFA, NFA ϵ -NFA, CFG

For instance, a NFA is $(Q, \Sigma, q_0, \delta, F)$ where Q is a finite state (set of states), Σ a finite set (alphabet), $q_0 \in Q$,

$$\delta: Q \times \Sigma \to Pow(Q)$$

and $F \subseteq Q$

Another view of NFA is labelled transition system

Mathematical Definitions

You should know also what is a regular expression

Given a regular expression E, what is the language L(E) represented by E

[3]

Constructions on FA

The 3 main constructions

- 1. product of two DFAs (or NFAs), to compute union, intersection of regular languages
- 2. subset construction NFA \rightarrow DFA
- 3. minimization DFA \rightarrow DFA (does *not* work for NFA!!)

Constructions on FA

Some other constructions we have seen

Complement of a language: complement of an automaton (this works *only* for DFA)

Reverse of a language: reverse of an automaton (work for DFA and NFA; we may get a NFA even if we start with a DFA)

Be careful: given E_1, E_2 we can compute E such that $L(E) = L(E_1) \cap L(E_2)$ but $E_1 \cap E_2$ is not a regular expression (only in a generalised sense)

Similarly given E_1 we can compute E such that L(E) is L(E) the complement of $L(E_1)$ but \overline{E} is *not* a regular expression

From FA to regular expressions

 $FA \rightarrow regular expression$

We have 3 methods to compute a regular expression E such that L(E) = L(A)

- 1. method similar to Warshall's algorithm: section 3.2.1
- 2. eliminating states: section 3.2.2
- 3. writing a system of equations, and method of successive elimination

From FA to CFG

It is direct to associate a CFG to a ϵ -NFA

$$S_{0} \to S_{1} | + S_{1} | - S_{1} \qquad S_{1} \to dS_{1} | dS_{4} | \cdot S_{2}$$
$$S_{2} \to dS_{3} \qquad S_{3} \to \epsilon | dS_{3} \qquad S_{4} \to \cdot S_{3}$$
$$d \to 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9$$

7

[7]

From regular expressions to FA

regular expression $\rightarrow \epsilon$ -NFA

 $\epsilon\text{-NFA} \to \text{NFA}$

NFA \rightarrow DFA (subset construction)

From regular expressions to FA

Other more direct approach with abstract states

Example: $0(10)^*$

Regular expressions

Basic equalities on regular expressions, like

$$E(F+G) = EF + EG \qquad (ac)^*a = a(ca)^*$$

For instance, nice solution to $(ab + a)^*a = a(ba + a)^*$

$$(ab + a)^*a = (a(b + \epsilon))^*a = a((b + \epsilon)a)^* = a(ba + a)^*$$

In practice: try to see what are the possible "first" elements in each languages when trying to decide if two languages are equal. (Good exercise: program in Haskell an equality test)

CFG

Minimization

Table-filling algorithm well-described in section 4.4.3

Does not work for NFA

You should know that it is uniquely defined: if $L(A_1) = L(A_2)$ and A_1, A_2 are minimal then A_1 and A_2 are identical (up to renaming of states), and the states are the abstract states

Non Regular Languages

Intuitively: a language is non regular when unbounded amount of memory is needed for a machine to recognize it

Typical example

 $S \to aSb \mid \epsilon$

One proves by an argument by contradiction, using the pigeon-hole principle (see page 66) that a finite-state machine cannot recognize L(G)

Section 4.1

Another approach: L(G) has infinitely many abstract states

Regular and Context-Free Languages

For regular languages: you should now how to decide

$$L(A) \neq \emptyset$$
 $w \in L(A)$ $L(A_1) \subseteq L(A_2)$

For context-free languages, you should know how to decide

 $L(G) \neq \emptyset$

There is no algorithm for $L(G_1) \subseteq L(G_2)$

No algorithm to compute if G is *ambiguous* (see section 9.5)

Regular and Context-Free Languages

How to decide

 $L(G) \neq \emptyset$

if G is the grammar

 $S \to aB \mid BC \quad A \to aA \mid c \mid aDb$ $B \to DB \mid C \quad C \to b \mid B$

we compute the *generating* symbols

You should know also how to compute the *accessible* or *reachable* symbols

Induction on length of derivations

Consider the following grammar ${\cal G}$

$$S \rightarrow a \mid b \mid SSS$$

Show that L(G) is the set of all words in $\{a, b\}^*$ of *odd* length.

L = L(G) is inductively defined by the clauses

- $a, b \in L$
- if $w_1, w_2, w_3 \in L$ then $w_1 w_2 w_3 \in L$

Let M be the set of words of odd length.

We prove L = M by proving $L \subseteq M$ and $M \subseteq L$

 $L \subseteq M$ can be proved by induction on the length of $S \Rightarrow^* w$:

- $S \Rightarrow a, \ S \Rightarrow b$ are of length 1, hence $a, b \in M$
- if $S \Rightarrow SSS \Rightarrow^* w_1w_2w_3$. By induction $|w_i|$ is odd and so is $|w_1w_2w_3|$

We have also to prove $M\subseteq L$

We prove $w \in M$ implies $w \in L$ by induction on |w|

If |w| = 1 then w = a or b

If |w| > 1 then $w = c_1 c_2 w'$ with $c_i = a$ or b. We know $w' \in L$ by induction hypothesis. Also, $a, b \in L$. Hence $w \in L$

Consider the following grammar G

$$S \to A1B \qquad A \to 0A \mid \epsilon \qquad B \to 1B \mid \epsilon$$

Show that G is *not* ambiguous

There is *no* general method to solve this kind of problem (section 9.5)

First we try to understand what is L(G)

Here $L(G) = L(0^*11^*)$

We show that if $w \in L(G)$ then w has a unique leftmost derivation by induction on |w|

We do a case analysis if \boldsymbol{w} starts with the symbol $\boldsymbol{0}$ or not

If w = 0w' then the leftmost derivation has to start

 $S \Rightarrow_{lm} A1B \Rightarrow_{lm} 0A1B$

with a leftmost derivation of

$$A1B \Rightarrow_{lm}^* w'$$

We know by induction hypothesis that w' has a unique leftmost derivation

$$S \Rightarrow_{lm} A1B \Rightarrow^*_{lm} w'$$

[20]

If w = 1w' then $w' = 1^n$ the leftmost derivation has to start

$$S \Rightarrow_{lm} A1B \Rightarrow_{lm} 1B$$

with a leftmost derivation of

$$B \Rightarrow_{lm}^* w'$$

We show by induction on \boldsymbol{n} that there is a unique leftmost derivation

$$B \Rightarrow_{lm}^* 1^n$$

Variation on Automata: Pushdown Automata

Not seen in the course

NFA + stack = context-free language

A stack is needed for recognizing a language such as

 $S \to \epsilon \mid aSb$

Variation on Automata: Pushdown Automata

DFA + stack is less powerful

inclusion $L(A_1) \subseteq L(A_2)$ decidable for this fragment (proved in 1998!!)

There is no algorithms for testing $L(G_1) \subseteq L(G_2)$ and so no algorithm for $L(A_1) \subseteq L(A_2)$, if A_i NFA with stacks

Variation on Automata: Turing Machines

 $\mathsf{DFA} + \mathsf{tape}$

The machine can write also on the tape

All recursive languages

Strict hierarchy between languages:

regular \subset context-free \subset recursive

With two stacks we get the same languages as recursive languages. See section 8.2