Main Points of the Course

What has been covered: chapters 1 to $5+7$
Plus abstract states/Myhill-Nerode

Mathematical Definitions

You should know what are, mathematically, DFA, NFA ϵ-NFA, CFG
For instance, a NFA is $\left(Q, \Sigma, q_{0}, \delta, F\right)$ where Q is a finite state (set of states), Σ a finite set (alphabet), $q_{0} \in Q$,

$$
\delta: Q \times \Sigma \rightarrow \operatorname{Pow}(Q)
$$

and $F \subseteq Q$
Another view of NFA is labelled transition system

Mathematical Definitions

You should know also what is a regular expression
Given a regular expression E, what is the language $L(E)$ represented by E

Constructions on FA

The 3 main constructions

1. product of two DFAs (or NFAs), to compute union, intersection of regular languages
2. subset construction NFA \rightarrow DFA
3. minimization DFA \rightarrow DFA (does not work for NFA!!)

Constructions on FA

Some other constructions we have seen
Complement of a language: complement of an automaton (this works only for DFA)

Reverse of a language: reverse of an automaton (work for DFA and NFA; we may get a NFA even if we start with a DFA)

Be careful: given E_{1}, E_{2} we can compute E such that $L(E)=L\left(E_{1}\right) \cap L\left(E_{2}\right)$ but $E_{1} \cap E_{2}$ is not a regular expression (only in a generalised sense)

Similarly given E_{1} we can compute E such that $L(E)$ is $\overline{L(E)}$ the complement of $L\left(E_{1}\right)$ but \bar{E} is not a regular expression

From FA to regular expressions

FA \rightarrow regular expression
We have 3 methods to compute a regular expression E such that $L(E)=L(A)$

1. method similar to Warshall's algorithm: section 3.2.1
2. eliminating states: section 3.2.2
3. writing a system of equations, and method of successive elimination

From FA to CFG

It is direct to associate a CFG to a ϵ-NFA

$$
\begin{gathered}
S_{0} \rightarrow S_{1}\left|+S_{1}\right|-S_{1} \quad S_{1} \rightarrow d S_{1}\left|d S_{4}\right| \cdot S_{2} \\
S_{2} \rightarrow d S_{3} \quad S_{3} \rightarrow \epsilon \mid d S_{3} \quad S_{4} \rightarrow \cdot S_{3} \\
d \rightarrow 0|1| 2|3| 4|5| 6|7| 8 \mid 9
\end{gathered}
$$

From regular expressions to FA

regular expression $\rightarrow \epsilon$-NFA
ϵ-NFA \rightarrow NFA
NFA \rightarrow DFA (subset construction)

From regular expressions to FA

Other more direct approach with abstract states
Example: $0(10)^{*}$

Regular expressions

Basic equalities on regular expressions, like

$$
E(F+G)=E F+E G \quad(a c)^{*} a=a(c a)^{*}
$$

For instance, nice solution to $(a b+a)^{*} a=a(b a+a)^{*}$

$$
(a b+a)^{*} a=(a(b+\epsilon))^{*} a=a((b+\epsilon) a)^{*}=a(b a+a)^{*}
$$

In practice: try to see what are the possible "first" elements in each languages when trying to decide if two languages are equal. (Good exercise: program in Haskell an equality test)

Minimization

Table-filling algorithm well-described in section 4.4.3
Does not work for NFA
You should know that it is uniquely defined: if $L\left(A_{1}\right)=L\left(A_{2}\right)$ and A_{1}, A_{2} are minimal then A_{1} and A_{2} are identical (up to renaming of states), and the states are the abstract states

Non Regular Languages

Intuitively: a language is non regular when unbounded amount of memory is needed for a machine to recognize it

Typical example

$$
S \rightarrow a S b \mid \epsilon
$$

One proves by an argument by contradiction, using the pigeon-hole principle (see page 66) that a finite-state machine cannot recognize $L(G)$

Section 4.1
Another approach: $L(G)$ has infinitely many abstract states

Regular and Context-Free Languages

For regular languages: you should now how to decide

$$
L(A) \neq \emptyset \quad w \in L(A) \quad L\left(A_{1}\right) \subseteq L\left(A_{2}\right)
$$

For context-free languages, you should know how to decide

$$
L(G) \neq \emptyset
$$

There is no algorithm for $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$
No algorithm to compute if G is ambiguous (see section 9.5)

Regular and Context-Free Languages

How to decide

$$
L(G) \neq \emptyset
$$

if G is the grammar

$$
\begin{gathered}
S \rightarrow a B|B C \quad A \rightarrow a A| c \mid a D b \\
B \rightarrow D B|C \quad C \rightarrow b| B
\end{gathered}
$$

we compute the generating symbols
You should know also how to compute the accessible or reachable symbols

Induction on length of derivations

Consider the following grammar G

$$
S \rightarrow a|b| S S S
$$

Show that $L(G)$ is the set of all words in $\{a, b\}^{*}$ of odd length.
$L=L(G)$ is inductively defined by the clauses

- $a, b \in L$
- if $w_{1}, w_{2}, w_{3} \in L$ then $w_{1} w_{2} w_{3} \in L$

Contex-Free Languages

Let M be the set of words of odd length.
We prove $L=M$ by proving $L \subseteq M$ and $M \subseteq L$
$L \subseteq M$ can be proved by induction on the length of $S \Rightarrow^{*} w$:

- $S \Rightarrow a, S \Rightarrow b$ are of length 1 , hence $a, b \in M$
- if $S \Rightarrow S S S \Rightarrow^{*} w_{1} w_{2} w_{3}$. By induction $\left|w_{i}\right|$ is odd and so is $\left|w_{1} w_{2} w_{3}\right|$

Context-Free Languages

We have also to prove $M \subseteq L$
We prove $w \in M$ implies $w \in L$ by induction on $|w|$
If $|w|=1$ then $w=a$ or b
If $|w|>1$ then $w=c_{1} c_{2} w^{\prime}$ with $c_{i}=a$ or b. We know $w^{\prime} \in L$ by induction hypothesis. Also, $a, b \in L$. Hence $w \in L$

Contex-Free Languages

Consider the following grammar G

$$
S \rightarrow A 1 B \quad A \rightarrow 0 A|\epsilon \quad B \rightarrow 1 B| \epsilon
$$

Show that G is not ambiguous
There is no general method to solve this kind of problem (section 9.5)
First we try to understand what is $L(G)$
Here $L(G)=L\left(0^{*} 11^{*}\right)$

Context-Free Languages

We show that if $w \in L(G)$ then w has a unique leftmost derivation by induction on $|w|$

Context-Free Languages

We do a case analysis if w starts with the symbol 0 or not
If $w=0 w^{\prime}$ then the leftmost derivation has to start

$$
S \Rightarrow_{l m} A 1 B \Rightarrow_{l m} 0 A 1 B
$$

with a leftmost derivation of

$$
A 1 B \Rightarrow{ }_{l m}^{*} w^{\prime}
$$

We know by induction hypothesis that w^{\prime} has a unique leftmost derivation

$$
S \Rightarrow{ }_{l m} A 1 B \Rightarrow{ }_{l m}^{*} w^{\prime}
$$

Context-Free Languages

If $w=1 w^{\prime}$ then $w^{\prime}=1^{n}$ the leftmost derivation has to start

$$
S \Rightarrow_{l m} A 1 B \Rightarrow_{l m} 1 B
$$

with a leftmost derivation of

$$
B \Rightarrow{ }_{l m}^{*} w^{\prime}
$$

We show by induction on n that there is a unique leftmost derivation

$$
B \Rightarrow{ }_{l m}^{*} 1^{n}
$$

Variation on Automata: Pushdown Automata

Not seen in the course
NFA + stack $=$ context-free language
A stack is needed for recognizing a language such as

$$
S \rightarrow \epsilon \mid a S b
$$

Variation on Automata: Pushdown Automata

DFA + stack is less powerful
inclusion $L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$ decidable for this fragment (proved in 1998!!)
There is no algorithms for testing $L\left(G_{1}\right) \subseteq L\left(G_{2}\right)$ and so no algorithm for $L\left(A_{1}\right) \subseteq L\left(A_{2}\right)$, if A_{i} NFA with stacks

Variation on Automata: Turing Machines

DFA + tape
The machine can write also on the tape

All recursive languages
Strict hierarchy between languages:
regular \subset context-free \subset recursive
With two stacks we get the same languages as recursive languages. See section 8.2

