# Search algorithm

Clever algorithm even for a single word

Example: find "abac" in "abaababac"

See Knuth-Morris-Pratt and String searching algorithm on wikipedia

### Subset construction

We have defined for a DFA

$$L(A) = \{ x \in \Sigma^* \mid \hat{\delta}(q_0, x) \in F \}$$

and for A NFA

$$L(A) = \{ x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset \}$$

For any NFA A we can build a DFA  $A_D$  such that  $L(A) = L(A_D)$ 

#### Regular languages

Given an alphabet  $\Sigma$ , a language  $L \subseteq \Sigma^*$  is *regular* iff there exists a DFA A such that L = L(A)

**Theorem:** A language L is regular iff there exists a NFA N such that L = L(N)

**Proof:** If L is regular then L = L(A) for some DFA A. To any DFA A we can associate a NFA  $N_A$  such that  $L(A) = L(N_A)$ . If  $A = (Q, \Sigma, \delta, q_0, F)$  we simply take  $N_A = (Q, \Sigma, \delta', q_0, F)$  with  $\delta'(q, a) = \{\delta(q, a)\}$ . Notice that  $\delta' \in Q \times \Sigma \to Pow(Q)$ .

In the other direction, if L = L(N) for some NFA N then, the power set construction gives a DFA A such that L(N) = L(A). We have then L = L(A) and so L is regular. Q.E.D.

# Automata with $\epsilon\text{-}\mathrm{Transitions}$

Another extension of the notion of automata that is useful but adds no more power

Intuitively an  $\epsilon$ -transition occurs when one can go from one state to another without reading any input symbol



A vending machine that may decide to stop



## Automata with $\epsilon$ -Transitions

Example: decimal numbers consisting of

- 1. An optional + or sign
- 2. A string of digits
- 3. A decimal point, and
- 4. Another string of digits. Either this string, or the string (2) can be empty, but at least one of them is nonempty.

## Automata with $\epsilon\text{-}\mathrm{Transitions}$

A possible  $\epsilon\text{-NFA}$  for this language is



Notice the crucial use of  $\epsilon$  transition to represent the "optional" choice of the sign + or -

## Automata with $\epsilon$ -Transitions

**Definition** A  $\epsilon$ -NFA consists of

- 1. a finite set of states (often denoted Q)
- 2. a finite set  $\Sigma$  of symbols (alphabet)
- 3. a transition function that takes as argument a state and an element of  $\Sigma \cup \{\epsilon\}$  and returns a set of states (often denoted  $\delta$ ); this set can be empty

4. a *start state* 

5. a set of final or accepting states (often denoted F)

We have  $F \subseteq Q$  and  $\delta \in Q \times (\Sigma \cup \{\epsilon\}) \to Pow(Q)$ 

## Automata with $\epsilon\text{-}\mathrm{Transitions}$

For the example of decimal numbers the transition table is

|   | +,-     | •       | $0,\!1,\!\ldots,\!9$ | $\epsilon$ |
|---|---------|---------|----------------------|------------|
| A | $\{B\}$ | Ø       | Ø                    | $\{B\}$    |
| В | Ø       | $\{C\}$ | $\{B, E\}$           | Ø          |
| C | Ø       | Ø       | $\{D\}$              | Ø          |
| D | Ø       | Ø       | $\{D\}$              | Ø          |
| E | Ø       | $\{D\}$ | Ø                    | Ø          |

#### $\epsilon$ -Closures

If  $X \subseteq Q$  we define the  $\epsilon$ -closure ECLOSE(X) inductively

**BASIS:** If  $q \in X$  then q is in ECLOSE(X)

**INDUCTION:** If p is in ECLOSE(X) and  $r \in \delta(p, \epsilon)$  then r is in ECLOSE(X)

Note that  $ECLOSE(\emptyset) = \emptyset$ 

Informally, we follow all transitions out of X that are labeled  $\epsilon$ . We say that X is  $\epsilon$ -closed iff X = ECLOSE(X).

**Remark:** X is  $\epsilon$ -closed iff  $q \in X$  and  $q \xrightarrow{\epsilon} q'$  implies  $q' \in X$ 

#### $\epsilon$ -Closures

Yet another way to present ECLOSE(X) is with the two rules

 $\frac{q \in X}{q \in \mathsf{ECLOSE}(X)}$ 

$$\frac{q \in \mathsf{ECLOSE}(X) \qquad q' \in \delta(q, \epsilon)}{q' \in \mathsf{ECLOSE}(X)}$$

Intuitively  $q' \in \mathsf{ECLOSE}(X)$  iff there exists  $q_0 \in X$  and a sequence of  $\epsilon$ -transitions

 $q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{\epsilon} \dots \xrightarrow{\epsilon} q_n = q'$ 

### $\epsilon$ -Closures

We say that  $Y \subseteq Q$  is  $\epsilon$ -closed iff

If q in Y and q' in  $\delta(q,\epsilon)$  then q' in Y

We have that ECLOSE(X) is the *smallest* subset of Q containing X which is  $\epsilon$ -closed



we have

 $ECLOSE(\{A\}) = \{A, B, C, D, F\}$ 

```
Functional representation
import List(union)
data Q = A | B | C | D | E | F | G
deriving (Eq,Show)
jump :: Q -> [Q]
jump A = [B,D]
jump B = [C]
jump C = [F]
jump F = []
jump D = []
jump E = [G]
```

### **Functional representation**

```
isSub as bs = and (map (x \rightarrow elem x bs) as)
```

```
isClos as = isSub (as >>= jump) as
```

```
closure qs =
  let qs' = qs >>= jump
  in if isSub qs' qs then qs
      else closure (union qs qs')
```

## How to run an $\epsilon$ -NFA

Given any 
$$\epsilon$$
-NFA  $E = (Q, \Sigma, \delta, q_0, F)$  we define  
 $\hat{\delta}(q, \epsilon) = \text{ECLOSE}(\{q\})$   
 $\hat{\delta}(q, ay) = \bigcup_{p \in \Delta(\text{ECLOSE}(q), a)} \hat{\delta}(p, y)$   
where  $\Delta(X, a) = \bigcup_{q \in X} \delta(q, a)$   
**Definition:**  $L(E) = \{x \in \Sigma^* \mid \hat{\delta}(q_0, x) \cap F \neq \emptyset\}$   
**Remark:** All sets  $q.x = \hat{\delta}(q, x)$  are  $\epsilon$ -closed  
**Remark:**  $q.a$  is ECLOSE( $\Delta(\text{ECLOSE}(q), a)$ )

```
Representation in functional programming
```

```
import List(union)
```

```
data Q = A | B | C | D | E
deriving (Eq,Show)
```

```
jump :: Q -> [Q]
jump A = [B]
jump B = []
jump C = []
jump D = []
jump E = []
```

```
Representation in functional programming
isSub as bs = and (map (\ x -> elem x bs) as)
isClos as = isSub (as >>= jump) as
closure qs =
let qs' = qs >>= jump
in if isSub qs' qs then qs
    else closure (union qs qs')
```

#### Representation in functional programming

```
next a A | elem a "+-" = [B]
next a B | elem a "0123456789" = [B,E]
next a C | elem a "0123456789" = [D]
next a D | elem a "0123456789" = [D]
next '.' B = [C]
next '.' E = [D]
next _ _ = []
```

```
run (a:x) q = closure [q] >>= next a >>= run x
```

# **Representation in functional programming**

We can prove by induction on x that run x q is always  $\epsilon\text{-closed}$  The main Lemma is that any union of  $\epsilon\text{-closed}$  sets is a set which is  $\epsilon\text{-closed}$ 

### Eliminating $\epsilon$ -Transitions

We define then the DFA  $D = (Q_D, \Sigma_D, \delta_D, q_D, F_D)$  where

```
Q_D is the set of \epsilon-closed subsets of Q
\Sigma_D = \Sigma
\delta_D(X, a) = \text{ECLOSE}(\Delta(X, a))
q_D = \text{ECLOSE}(\{q_0\})
F_D = \{ X \in Q_D \mid X \cap F \neq \emptyset \}
Lemma: For any x \in \Sigma^* we have \hat{\delta}(q_0, x) = \hat{\delta}_D(q_D, x)
Theorem: L(E) = L(D)
Proof: We have x \in L(E) iff \hat{\delta}(q_0, x) \cap F \neq \emptyset iff \hat{\delta}(q_0, x) \in F_D iff
\hat{\delta}_D(q_D, x) \in F_D iff x \in L(D). We use the Lemma to replace \hat{\delta}(q_0, x)
by \delta_D(q_D, x)
```

# Eliminating $\epsilon$ -Transitions

Similar construction as for building a DFA from a NFA but now we close at each steps

For the example of decimal numbers we get the following automaton



where the state  $\emptyset$  is not represented

Once again, we get this program mechanically!

### Representation in functional programming

```
pNext a qs = closure (qs >>= next a)
```

```
pRun [] qs = qs
pRun (a:x) qs = pRun x (pNext a qs)
```

```
run x q = pRun x (closure [q])
```

## NFA as labelled graphs

A NFA  $A = (Q, \Sigma, \delta, q_0, F)$  can be seen as a labelled graph  $q_1 \xrightarrow{a} q_2$  iff  $q_2 \in \delta(q_1)$ We define also, for  $x \in \Sigma^*$  $q_1 \xrightarrow{x} q_2$ by induction on xIf  $x = \epsilon$  this means  $q_1 = q_2$ If x = ay this means that there exists  $q \in Q$  such that  $q_1 \xrightarrow{a} q$  and  $q \xrightarrow{y} q_2$ We have  $q_1 \xrightarrow{x} q_2$  iff  $q_2 \in \hat{\delta}(q_1, x)$  $L(A) = \{ x \in \Sigma^* \mid (\exists q \in F) \ q_0 \xrightarrow{x} q \}$ 

#### The Product Construction on NFA

Given  $A_1 = (Q_1, \Sigma, \delta_1, q_1, F_1)$  and  $A_2 = (Q_2, \Sigma, \delta_2, q_2, F_2)$  two NFAs with the same alphabet  $\Sigma$  we define the product  $A = A_1 \times A_2$  as

- the set of state is  $Q_1 \times Q_2$
- $\delta((r_1, r_2), a) = \delta_1(r_1, a) \times \delta_2(r_2, a)$ . In this way  $(r_1, r_2) \xrightarrow{a} (s_1, s_2)$  iff both  $r_1 \xrightarrow{a} s_1$  and  $r_2 \xrightarrow{a} s_2$ .
- $(r_1, r_2)$  is accepting iff  $r_1 \in F_1$  and  $r_2 \in F_2$
- the initial state is  $(q_1, q_2)$

**Lemma:**  $(r_1, r_2) \xrightarrow{x} (s_1, s_2)$  iff  $r_1 \xrightarrow{x} s_1$  and  $r_2 \xrightarrow{x} s_2$ **Proposition:**  $L(A_1 \times A_2) = L(A_1) \cap L(A_2)$ 

## Complement of a NFA

Be careful!

In general we don't have  $L(A') = \Sigma^* - L(A)$  if  $A' = (Q, \Sigma, \delta, q_0, Q - F)$ 

 $A = (Q, \Sigma, \delta, q_0, F)$ 

and A is a NFA



The automaton guesses the right direction, and then verifies that |w| is correct!

