
'

&

$

%

Search algorithm

Clever algorithm even for a single word

Example: find “abac” in “abaababac”

See Knuth-Morris-Pratt and String searching algorithm on

wikipedia

1

'

&

$

%

Subset construction

We have defined for a DFA

L(A) = {x ∈ Σ∗ | δ̂(q0, x) ∈ F}

and for A NFA

L(A) = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}

For any NFA A we can build a DFA AD such that L(A) = L(AD)

2

'

&

$

%

Regular languages

Given an alphabet Σ, a language L ⊆ Σ∗ is regular iff there exists a

DFA A such that L = L(A)

Theorem: A language L is regular iff there exists a NFA N such

that L = L(N)

Proof: If L is regular then L = L(A) for some DFA A. To any

DFA A we can associate a NFA NA such that L(A) = L(NA). If

A = (Q, Σ, δ, q0, F) we simply take NA = (Q, Σ, δ′, q0, F) with

δ′(q, a) = {δ(q, a)}. Notice that δ′ ∈ Q × Σ → Pow(Q).

In the other direction, if L = L(N) for some NFA N then, the

power set construction gives a DFA A such that L(N) = L(A). We

have then L = L(A) and so L is regular. Q.E.D.

3

'

&

$

%

Automata with ε-Transitions

Another extension of the notion of automata that is useful but

adds no more power

Intuitively an ε-transition occurs when one can go from one state to

another without reading any input symbol

0

ε 5 kr

1

choc

stop

A vending machine that may decide to stop

4

'

&

$

%

Automata with ε-Transitions

Σ = {b}

1

b

ε
2

ε

b

3

b

4

ε

5

ε

6

ε-NFA accepting {b,bb,bbb}

The machine can jump by itself from the state 1 to the state 2

5

'

&

$

%

Automata with ε-Transitions

Example: decimal numbers consisting of

1. An optional + or - sign

2. A string of digits

3. A decimal point, and

4. Another string of digits. Either this string, or the string (2)

can be empty, but at least one of them is nonempty.

6

'

&

$

%

Automata with ε-Transitions

A possible ε-NFA for this language is

A
ε,+,−

B

0,1,...,9

·

0,1,...,9

C
0,1,...,9

D

0,1,...,9

E

·

Notice the crucial use of ε transition to represent the “optional”

choice of the sign + or -

7

'

&

$

%

Automata with ε-Transitions

Definition A ε-NFA consists of

1. a finite set of states (often denoted Q)

2. a finite set Σ of symbols (alphabet)

3. a transition function that takes as argument a state and an

element of Σ∪ {ε} and returns a set of states (often denoted δ);

this set can be empty

4. a start state

5. a set of final or accepting states (often denoted F)

We have F ⊆ Q and δ ∈ Q × (Σ ∪ {ε}) → Pow(Q)

8

'

&

$

%

Automata with ε-Transitions

For the example of decimal numbers the transition table is

+,- · 0,1,. . .,9 ε

A {B} ∅ ∅ {B}

B ∅ {C} {B, E} ∅

C ∅ ∅ {D} ∅

D ∅ ∅ {D} ∅

E ∅ {D} ∅ ∅

9

'

&

$

%

ε-Closures

If X ⊆ Q we define the ε-closure ECLOSE(X) inductively

BASIS: If q ∈ X then q is in ECLOSE(X)

INDUCTION: If p is in ECLOSE(X) and r ∈ δ(p, ε) then r is in

ECLOSE(X)

Note that ECLOSE(∅) = ∅

Informally, we follow all transitions out of X that are labeled ε. We

say that X is ε-closed iff X = ECLOSE(X).

Remark: X is ε-closed iff q ∈ X and q
ε
→ q′ implies q′ ∈ X

10

'

&

$

%

ε-Closures

Yet another way to present ECLOSE(X) is with the two rules

q ∈ X

q ∈ ECLOSE(X)

q ∈ ECLOSE(X) q′ ∈ δ(q, ε)

q′ ∈ ECLOSE(X)

Intuitively q′ ∈ ECLOSE(X) iff there exists q0 ∈ X and a sequence

of ε-transitions

q0
ε
→ q1

ε
→ . . .

ε
→ qn = q′

11

'

&

$

%

ε-Closures

We say that Y ⊆ Q is ε-closed iff

If q in Y and q′ in δ(q, ε) then q′ in Y

We have that ECLOSE(X) is the smallest subset of Q containing

X which is ε-closed

12

'

&

$

%

ε-Closures

For the automaton

B
ε

C
ε

F

A

ε

ε

D
a

E
ε

b

G

we have

ECLOSE({A}) = {A,B,C,D,F}

13

'

&

$

%

Functional representation

import List(union)

data Q = A | B | C | D | E | F | G

deriving (Eq,Show)

jump :: Q -> [Q]

jump A = [B,D]

jump B = [C]

jump C = [F]

jump F = []

jump D = []

jump E = [G]

14

'

&

$

%

Functional representation

isSub as bs = and (map (\x -> elem x bs) as)

isClos as = isSub (as >>= jump) as

closure qs =

let qs’ = qs >>= jump

in if isSub qs’ qs then qs

else closure (union qs qs’)

15

'

&

$

%

How to run an ε-NFA

Given any ε-NFA E = (Q, Σ, δ, q0, F) we define

δ̂(q, ε) = ECLOSE({q})

δ̂(q, ay) =
⋃

p∈∆(ECLOSE(q),a) δ̂(p, y)

where ∆(X, a) = ∪q∈Xδ(q, a)

Definition: L(E) = {x ∈ Σ∗ | δ̂(q0, x) ∩ F 6= ∅}

Remark: All sets q.x = δ̂(q, x) are ε-closed

Remark: q.a is ECLOSE(∆(ECLOSE(q),a))

16

'

&

$

%

Representation in functional programming

import List(union)

data Q = A | B | C | D | E

deriving (Eq,Show)

jump :: Q -> [Q]

jump A = [B]

jump B = []

jump C = []

jump D = []

jump E = []

17

'

&

$

%

Representation in functional programming

isSub as bs = and (map (\ x -> elem x bs) as)

isClos as = isSub (as >>= jump) as

closure qs =

let qs’ = qs >>= jump

in if isSub qs’ qs then qs

else closure (union qs qs’)

18

'

&

$

%

Representation in functional programming

next a A | elem a "+-" = [B]

next a B | elem a "0123456789" = [B,E]

next a C | elem a "0123456789" = [D]

next a D | elem a "0123456789" = [D]

next ’.’ B = [C]

next ’.’ E = [D]

next _ _ = []

run [] q = closure [q]

run (a:x) q = closure [q] >>= next a >>= run x

19

'

&

$

%

Representation in functional programming

We can prove by induction on x that run x q is always ε-closed

The main Lemma is that any union of ε-closed sets is a set which is

ε-closed

20

'

&

$

%

Eliminating ε-Transitions

We define then the DFA D = (QD, ΣD, δD, qD, FD) where

QD is the set of ε-closed subsets of Q

ΣD = Σ

δD(X, a) = ECLOSE(∆(X, a))

qD = ECLOSE({q0})

FD = {X ∈ QD | X ∩ F 6= ∅}

Lemma: For any x ∈ Σ∗ we have δ̂(q0, x) = δ̂D(qD, x)

Theorem: L(E) = L(D)

Proof: We have x ∈ L(E) iff δ̂(q0, x) ∩ F 6= ∅ iff δ̂(q0, x) ∈ FD iff

δ̂D(qD, x) ∈ FD iff x ∈ L(D). We use the Lemma to replace δ̂(q0, x)

by δ̂D(qD, x)

21

'

&

$

%

Eliminating ε-Transitions

Similar construction as for building a DFA from a NFA but now we

close at each steps

For the example of decimal numbers we get the following

automaton

{A, B}
+,−

·

0,1,...,9

{B}
0,1,...,9

·

{B, E}

0,1,...,9

·
{C, D}

0,1,...,9

{C}
0,1,...,9

{D}

0,1,...,9

where the state ∅ is not represented

Once again, we get this program mechanically!

22

'

&

$

%

Representation in functional programming

pNext a qs = closure (qs >>= next a)

pRun [] qs = qs

pRun (a:x) qs = pRun x (pNext a qs)

run x q = pRun x (closure [q])

23

'

&

$

%

NFA as labelled graphs

A NFA A = (Q, Σ, δ, q0, F) can be seen as a labelled graph

q1
a
→ q2 iff q2 ∈ δ(q1)

We define also, for x ∈ Σ∗

q1
x
→ q2

by induction on x

If x = ε this means q1 = q2

If x = ay this means that there exists q ∈ Q such that q1
a
→ q and

q
y
→ q2

We have q1
x
→ q2 iff q2 ∈ δ̂(q1, x)

L(A) = {x ∈ Σ∗ | (∃q ∈ F) q0
x
→ q}

24

'

&

$

%

The Product Construction on NFA

Given A1 = (Q1, Σ, δ1, q1, F1) and A2 = (Q2, Σ, δ2, q2, F2) two NFAs

with the same alphabet Σ we define the product A = A1 × A2 as

• the set of state is Q1 × Q2

• δ((r1, r2), a) = δ1(r1, a) × δ2(r2, a). In this way

(r1, r2)
a
→ (s1, s2) iff both r1

a
→ s1 and r2

a
→ s2.

• (r1, r2) is accepting iff r1 ∈ F1 and r2 ∈ F2

• the initial state is (q1, q2)

Lemma: (r1, r2)
x
→ (s1, s2) iff r1

x
→ s1 and r2

x
→ s2

Proposition: L(A1 × A2) = L(A1) ∩ L(A2)

25

'

&

$

%

Complement of a NFA

Be careful!

In general we don’t have L(A′) = Σ∗ − L(A) if

A′ = (Q, Σ, δ, q0, Q − F)

A = (Q, Σ, δ, q0, F)

and A is a NFA

26

'

&

$

%

Automata with ε-Transitions

Σ = {1}

ε

ε

1

1

1

1

1

1

1

1

ε-NFA accepting all words of length multiple of 3 or 5

The automaton guesses the right direction, and then verifies that

|w| is correct!

27

'

&

$

%

Eliminating ε-Transitions

This corresponds to the NFA

1
1

1 11
1

1

1

1

1

28

