Search algorithm

Clever algorithm even for a single word
Example: find "abac" in "abaababac"
See Knuth-Morris-Pratt and String searching algorithm on wikipedia

Subset construction

We have defined for a DFA
$L(A)=\left\{x \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, x\right) \in F\right\}$
and for A NFA
$L(A)=\left\{x \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, x\right) \cap F \neq \emptyset\right\}$
For any NFA A we can build a DFA A_{D} such that $L(A)=L\left(A_{D}\right)$

Regular languages

Given an alphabet Σ, a language $L \subseteq \Sigma^{*}$ is regular iff there exists a DFA A such that $L=L(A)$

Theorem: A language L is regular iff there exists a $N F A N$ such that $L=L(N)$

Proof: If L is regular then $L=L(A)$ for some DFA A. To any DFA A we can associate a NFA N_{A} such that $L(A)=L\left(N_{A}\right)$. If $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we simply take $N_{A}=\left(Q, \Sigma, \delta^{\prime}, q_{0}, F\right)$ with $\delta^{\prime}(q, a)=\{\delta(q, a)\}$. Notice that $\delta^{\prime} \in Q \times \Sigma \rightarrow \operatorname{Pow}(Q)$.

In the other direction, if $L=L(N)$ for some NFA N then, the power set construction gives a DFA A such that $L(N)=L(A)$. We have then $L=L(A)$ and so L is regular. Q.E.D.

Automata with ϵ-Transitions

Another extension of the notion of automata that is useful but adds no more power

Intuitively an ϵ-transition occurs when one can go from one state to another without reading any input symbol

A vending machine that may decide to stop

Automata with ϵ-Transitions

$$
\Sigma=\{b\}
$$

The machine can jump by itself from the state 1 to the state 2

Automata with ϵ-Transitions

Example: decimal numbers consisting of

1. An optional + or - sign
2. A string of digits
3. A decimal point, and
4. Another string of digits. Either this string, or the string (2) can be empty, but at least one of them is nonempty.

Automata with ϵ-Transitions

A possible ϵ-NFA for this language is

Notice the crucial use of ϵ transition to represent the "optional" choice of the sign + or -

Automata with ϵ-Transitions

Definition A ϵ-NFA consists of

1. a finite set of states (often denoted Q)
2. a finite set Σ of symbols (alphabet)
3. a transition function that takes as argument a state and an element of $\Sigma \cup\{\epsilon\}$ and returns a set of states (often denoted δ); this set can be empty
4. a start state
5. a set of final or accepting states (often denoted F)

We have $F \subseteq Q$ and $\delta \in Q \times(\Sigma \cup\{\epsilon\}) \rightarrow \operatorname{Pow}(Q)$

Automata with ϵ-Transitions

For the example of decimal numbers the transition table is

	,+-	\cdot	$0,1, \ldots, 9$	ϵ
A	$\{B\}$	\emptyset	\emptyset	$\{B\}$
B	\emptyset	$\{C\}$	$\{B, E\}$	\emptyset
C	\emptyset	\emptyset	$\{D\}$	\emptyset
D	\emptyset	\emptyset	$\{D\}$	\emptyset
E	\emptyset	$\{D\}$	\emptyset	\emptyset

ϵ-Closures

If $X \subseteq Q$ we define the ϵ-closure $\operatorname{ECLOSE}(X)$ inductively
BASIS: If $q \in X$ then q is in $\operatorname{ECLOSE}(X)$
INDUCTION: If p is in $\operatorname{ECLOSE}(X)$ and $r \in \delta(p, \epsilon)$ then r is in ECLOSE (X)

Note that $\operatorname{ECLOSE}(\emptyset)=\emptyset$
Informally, we follow all transitions out of X that are labeled ϵ. We say that X is ϵ-closed iff $X=\operatorname{ECLOSE}(X)$.

Remark: X is ϵ-closed iff $q \in X$ and $q \xrightarrow{\epsilon} q^{\prime}$ implies $q^{\prime} \in X$

ϵ-Closures

Yet another way to present $\operatorname{ECLOSE}(X)$ is with the two rules

$$
\begin{gathered}
\frac{q \in X}{q \in \operatorname{ECLOSE}(X)} \\
\frac{q \in \operatorname{ECLOSE}(X) \quad q^{\prime} \in \delta(q, \epsilon)}{q^{\prime} \in \operatorname{ECLOSE}(X)}
\end{gathered}
$$

Intuitively $q^{\prime} \in \operatorname{ECLOSE}(X)$ iff there exists $q_{0} \in X$ and a sequence of ϵ-transitions
$q_{0} \xrightarrow{\epsilon} q_{1} \xrightarrow{\epsilon} \ldots \xrightarrow{\epsilon} q_{n}=q^{\prime}$

ϵ-Closures

We say that $Y \subseteq Q$ is ϵ-closed iff
If q in Y and q^{\prime} in $\delta(q, \epsilon)$ then q^{\prime} in Y
We have that $\operatorname{ECLOSE}(X)$ is the smallest subset of Q containing X which is ϵ-closed

ϵ-Closures

For the automaton

we have
$\operatorname{ECLOSE}(\{A\})=\{\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\}$

Functional representation

```
import List(union)
\(\operatorname{data} Q=A|B| C|D| E|F| G\)
    deriving (Eq,Show)
    jump :: Q -> [Q]
    jump \(A=[B, D]\)
    jump \(B=[C]\)
    jump \(C=[F]\)
    jump \(\mathrm{F}=[]\)
    jump D = []
    jump E = [G]
```


Functional representation

```
isSub as bs = and (map (\x -> elem x bs) as)
isClos as = isSub (as >>= jump) as
closure qs =
    let qs' = qs >>= jump
    in if isSub qs' qs then qs
        else closure (union qs qs')
```


How to run an ϵ-NFA

Given any ϵ-NFA $E=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we define
$\hat{\delta}(q, \epsilon)=\operatorname{ECLOSE}(\{q\})$
$\hat{\delta}(q, a y)=\bigcup_{p \in \Delta(\operatorname{ECLOSE}(q), a)} \hat{\delta}(p, y)$
where $\Delta(X, a)=\cup_{q \in X} \delta(q, a)$
Definition: $L(E)=\left\{x \in \Sigma^{*} \mid \hat{\delta}\left(q_{0}, x\right) \cap F \neq \emptyset\right\}$
Remark: All sets $q \cdot x=\hat{\delta}(q, x)$ are ϵ-closed
Remark: $q . a$ is $\operatorname{ECLOSE}(\Delta(\operatorname{ECLOSE}(q), a))$

Representation in functional programming

```
import List(union)
data Q = A | B | C | D | E
    deriving (Eq,Show)
    jump :: Q -> [Q]
    jump A = [B]
    jump B = []
jump C = []
jump D = []
jump E = []
```


Representation in functional programming

```
isSub as bs = and (map (\ x -> elem x bs) as)
isClos as = isSub (as >>= jump) as
closure qs =
    let qs' = qs >>= jump
    in if isSub qs' qs then qs
        else closure (union qs qs')
```


Representation in functional programming

```
next a A | elem a "+-" = [B]
next a B | elem a "0123456789" = [B,E]
next a C | elem a "0123456789" = [D]
next a D | elem a "0123456789" = [D]
next '.' B = [C]
next '.' E = [D]
next _ _ = []
    run [] q = closure [q]
    run (a:x) q = closure [q] >>= next a >>= run x
```


Representation in functional programming

We can prove by induction on x that run xq is always ϵ-closed
The main Lemma is that any union of ϵ-closed sets is a set which is ϵ-closed

Eliminating ϵ-Transitions

We define then the DFA $D=\left(Q_{D}, \Sigma_{D}, \delta_{D}, q_{D}, F_{D}\right)$ where
Q_{D} is the set of ϵ-closed subsets of Q
$\Sigma_{D}=\Sigma$
$\delta_{D}(X, a)=\operatorname{ECLOSE}(\Delta(X, a))$
$q_{D}=\operatorname{ECLOSE}\left(\left\{q_{0}\right\}\right)$
$F_{D}=\left\{X \in Q_{D} \mid X \cap F \neq \emptyset\right\}$
Lemma: For any $x \in \Sigma^{*}$ we have $\hat{\delta}\left(q_{0}, x\right)=\hat{\delta_{D}}\left(q_{D}, x\right)$
Theorem: $L(E)=L(D)$
Proof: We have $x \in L(E)$ iff $\hat{\delta}\left(q_{0}, x\right) \cap F \neq \emptyset$ iff $\hat{\delta}\left(q_{0}, x\right) \in F_{D}$ iff $\hat{\delta_{D}}\left(q_{D}, x\right) \in F_{D}$ iff $x \in L(D)$. We use the Lemma to replace $\hat{\delta}\left(q_{0}, x\right)$ by $\hat{\delta_{D}}\left(q_{D}, x\right)$

Eliminating ϵ-Transitions

Similar construction as for building a DFA from a NFA but now we close at each steps

For the example of decimal numbers we get the following automaton

where the state \emptyset is not represented
Once again, we get this program mechanically!

Representation in functional programming

```
pNext a qs = closure (qs >>= next a)
```

pRun [] qs = qs
pRun (a:x) qs $=p R u n x$ (pNext a qs)
run $\mathrm{x} q=\mathrm{pRun} \mathrm{x}$ (closure [q])

NFA as labelled graphs

A NFA $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ can be seen as a labelled graph
$q_{1} \xrightarrow{a} q_{2}$ iff $q_{2} \in \delta\left(q_{1}\right)$
We define also, for $x \in \Sigma^{*}$
$q_{1} \xrightarrow{x} q_{2}$
by induction on x
If $x=\epsilon$ this means $q_{1}=q_{2}$
If $x=a y$ this means that there exists $q \in Q$ such that $q_{1} \xrightarrow{a} q$ and $q \xrightarrow{y} q_{2}$

We have $q_{1} \xrightarrow{x} q_{2}$ iff $q_{2} \in \hat{\delta}\left(q_{1}, x\right)$
$L(A)=\left\{x \in \Sigma^{*} \mid(\exists q \in F) q_{0} \xrightarrow{x} q\right\}$

The Product Construction on NFA

Given $A_{1}=\left(Q_{1}, \Sigma, \delta_{1}, q_{1}, F_{1}\right)$ and $A_{2}=\left(Q_{2}, \Sigma, \delta_{2}, q_{2}, F_{2}\right)$ two NFAs with the same alphabet Σ we define the product $A=A_{1} \times A_{2}$ as

- the set of state is $Q_{1} \times Q_{2}$
- $\delta\left(\left(r_{1}, r_{2}\right), a\right)=\delta_{1}\left(r_{1}, a\right) \times \delta_{2}\left(r_{2}, a\right)$. In this way $\left(r_{1}, r_{2}\right) \xrightarrow{a}\left(s_{1}, s_{2}\right)$ iff both $r_{1} \xrightarrow{a} s_{1}$ and $r_{2} \xrightarrow{a} s_{2}$.
- $\left(r_{1}, r_{2}\right)$ is accepting iff $r_{1} \in F_{1}$ and $r_{2} \in F_{2}$
- the initial state is $\left(q_{1}, q_{2}\right)$

Lemma: $\left(r_{1}, r_{2}\right) \xrightarrow{x}\left(s_{1}, s_{2}\right)$ iff $r_{1} \xrightarrow{x} s_{1}$ and $r_{2} \xrightarrow{x} s_{2}$
Proposition: $L\left(A_{1} \times A_{2}\right)=L\left(A_{1}\right) \cap L\left(A_{2}\right)$

Complement of a NFA

Be careful!
In general we don't have $L\left(A^{\prime}\right)=\Sigma^{*}-L(A)$ if
$A^{\prime}=\left(Q, \Sigma, \delta, q_{0}, Q-F\right)$
$A=\left(Q, \Sigma, \delta, q_{0}, F\right)$
and A is a NFA

Automata with ϵ-Transitions

$$
\Sigma=\{1\}
$$

ϵ-NFA accepting all words of length multiple of 3 or 5
The automaton guesses the right direction, and then verifies that $|w|$ is correct!

Eliminating ϵ-Transitions

This corresponds to the NFA

