Kurs: MAN321/TMV026 Ändliga automater och formella språk Plats: M-huset Tid: 08.30-12.30 Datum: 2007-08-27 No help documents Telefonvakt: Thierry Coquand, 7721030 The questions can be answered in english or in swedish. total 30; \geq 13: 3, \geq 19: 4, \geq 25: 5 total 30; \geq 13: G, \geq 21: VG

- 1. Let Σ be an alphabet. What is, mathematically, a deterministic finite automaton on Σ (1p)? Explain what is the language determined by such a finite automaton (1p). Explain why such a language is a context-free language (1p).
- 2. Minimize the following automaton (2p)

	a	b
$\rightarrow 0$	1	3
1	0	3
2	1	4
*3	5	5
4	3	3
*5	5	5

- 3. Build a NFA with 3 states that accepts the language $\{ab, abc\}^*$. (2p)
- 4. Build a DFA corresponding to the regular expression $(ab)^* + a^*$. (3p)
- 5. Let Σ be $\{0, 1\}$. We recall that the regular expressions are on Σ are given by the grammar

 $E ::= 0 \mid 1 \mid \emptyset \mid \epsilon \mid E + E \mid EE \mid E^*$

Give a regular expression E such that

$$L(E) = \Sigma^* - L(10(0+1)^*) \quad (2p)$$

- 6. Build a DFA that recognizes exactly the word in $\{0,1\}^*$ ending with the string 1110. (2p)
- 7. Is the following grammar ambiguous? Why (2p)?

 $S \to AB \mid aaB, \qquad A \ \to \ a \mid Aa, \qquad B \to b$

Construct an unambiguous grammar which is equivalent to this grammar (2p).

8. Consider the grammar

 $S \rightarrow aaB, \quad A \rightarrow bBb \mid \epsilon, \quad B \rightarrow Aa$

Show that the string *aabbabba* is *not* in the language generated by this grammar (3p).

- 9. Find context-free grammars for the languages
 - (a) $L = \{ a^n b^n c^k \mid n \le k \}$ (1p)
 - (b) $L = \{ a^n b^m \mid n \neq m \}$ (1p)
- 10. Let L, M, N be languages on an alphabet Σ^* (that is, we have L, M, N subsets of Σ^*). Explain why we have $L(M \cap N) \subseteq LM \cap LN$ (2p). Give an example showing that we do not have $LM \cap LN \subseteq L(M \cap N)$ in general (2p).
- 11. Let Σ be an alphabet and let L_1, L_2 be subsets of Σ^* . Assume that $L_1 \cap L_2 = \emptyset$ and L_1 is finite and that $L_1 \cup L_2$ is regular. Can we deduce that L_2 is regular (3p)?