Proposition: If f(0) = 0 and f(n+1) = f(n) + n + 1 then, for all $n \in \mathbb{N}$, we have f(n) = n(n+1)/2

Let S(n) be f(n) = n(n+1)/2

We prove S(0) holds

We prove that S(n) implies S(n+1)

We deduce that $S(1),\ S(2),\ S(3),\ldots$ hold and more generally S(n) holds for all n

Proposition: If $A \subseteq \mathbb{N}$ and A does not have a least element then $A = \emptyset$

Assume that A has no least element

Let S(n) be that, forall $a \in A$ we have n < a

We prove S(0) holds: if $0 \in A$ then 0 is the least element of A

We prove that S(n) implies S(n+1). We assume S(n). If $n+1 \in A$ then n+1 is the least element of A

We deduce that $S(1), S(2), S(3), \ldots$ hold and more generally S(n) holds for all n. This implies $A = \emptyset$

Any nonempty subset of \mathbb{N} has a least element

Proposition: If $n \ge 8$ then n can be written as a sum of 3's and 5's

Let S(n) be "*n* can be written as a sum of 3's and 5's".

S(7) does not hold. But S(8), S(9), S(10) hold.

Let T(n) be "S(k) hold for $k = 8, 9, \ldots, n$ "

We prove $T(n) \Rightarrow T(n+1)$ for $n \ge 10$

If T(n) holds then S(n-2) holds and so does S(n+1).

All horses have the same color

P(n): for any set of n horses they are all of the same color

 ${\cal P}(1)$ is clearly true

We claim that P(n) implies P(n+1)

Take h_1, \ldots, h_n they are all of the same color

Also h_2, \ldots, h_{n+1} . Hence h_1, \ldots, h_{n+1} all have the same color!

Proof by Mutual Induction

One can represent a *circuit* as a set of functions from natural numbers to $\{0,1\}$ defined recursively

For instance

f(0) = 0, g(0) = 1, h(0) = 0

f(n+1) = g(n), g(n+1) = f(n), h(n+1) = 1 - h(n)

Proposition: We have h(n) = f(n) for all n

If S(n) is h(n)=f(n) it does not seem possible to prove $S(n)\Rightarrow S(n+1)$ directly

Proof by Mutual Induction

We prove, by induction on n the statement T(n)

$$h(n) = f(n) \land h(n) = 1 - g(n)$$

BASIS:
$$h(0) = f(0) \land h(0) = 1 - g(0)$$

STEP: $T(n) \Rightarrow T(n+1)$

One needs to strengthen the statement S(n) to the statement T(n)

Proof by Mutual Induction

This can be represented as a state machine

The states are the possible values of s(n) = (f(n), g(n), h(n))

The transitions are from the states s(n) to the state s(n+1)

One can check the invariant f(n) = h(n) on all the states *accessible* from the initial state (0, 1, 0).

In *mathematics*, this is almost the only form of induction that is used

In computer science, proofs by induction play a more important rôle

Other *data types* than natural numbers: lists, trees, ...

Notion of *inductively defined sets* (that we shall see later in the course)

Other data types

Finitely branching trees

```
Basis: the empty tree () is a tree
```

Inductive step: if we have a finite list of trees t_1, \ldots, t_k we can form a new tree (t_1, \ldots, t_k)

We can then *define* functions on the set of trees by induction, and *prove* properties of these functions by induction

Other data types

We can represent graphically the trees like in 1.4.3 and define the functions ne(t) (number of *edges*) and nn(t) (number of *nodes*)

$$ne() = 0, \quad ne(t_1, \dots, t_k) = k + ne(t_1) + \dots + ne(t_k)$$

$$nn() = 1, \quad nn(t_1, \dots, t_k) = 1 + nn(t_1) + \dots + nn(t_k)$$

Proposition: for all tree t we have nn(t) = 1 + ne(t)

Proof by *induction* with *Basis* case and *Inductive step* case

Other example

We define the function

 $rev() = (), rev(t_1, \ldots, t_k) = (rev(t_k), \ldots, rev(t_1))$

Proposition: for all tree t we have rev(rev(t)) = t

We prove

Basis: P()

Inductive step: $P(t_1, \ldots, t_k)$ follow from $P(t_1), \ldots, P(t_k)$

Other data types

Abstract syntax of a language

Arithmetical expression E

Basis: if n natural number then $n \in E$

Inductive step: if $e_1, e_2 \in E$ then $minus(e_1), \ plus(e_1, e_2), \ times(e_1, e_2) \in E$

We can then define the *semantics* of an arithmetical expression by induction

 $s(n) = n, s(minus(e)) = -s(e), s(plus(e_1, e_2)) = s(e_1) + s(e_2), s(times(e_1, e_2)) = s(e_1) \times s(e_2)$

Central concepts: alphabet and words

 Σ given finite set

Alphabet finite set of symbols (events) Σ

String (or word, or trace: finite sequence of symbols (behaviour)

type convention: a, b, c, \ldots for symbols (events) and x, y, z, \ldots for strings (words)

Words

 Σ^* is the set of all words for a given alphabet Σ

This can be described inductively in at least two different ways

Basis: the empty word ϵ is in Σ^*

Inductive step: if $a \in \Sigma$ and $x \in \Sigma^*$ then $ax \in \Sigma^*$

Words

```
The other description is
```

```
Basis: the empty word \epsilon is in \Sigma^*
```

```
Inductive step: if a \in \Sigma and x \in \Sigma^* then xa \in \Sigma^*
```

We can *define* functions and *prove* properties of these functions by induction

Length

The length function is defined by Basis: $|\epsilon| = 0$ Inductive step |ax| = 1 + |x| $|p_0p_1p_0p_0p_1| = 5$

Concatenation

The *concatenation* function xy is defined by

Basis: $\epsilon y = y$

Inductive step: (ax)y = a(xy)

Proposition: for all x, y we have |xy| = |x| + |y|

Example: if $x = p_0 p_1$ and $y = p_0 p_0 p_1$ then

 $xy = p_0 p_1 p_0 p_0 p_1$ and $yx = p_0 p_0 p_1 p_0 p_1$

In general $xy \neq yx$: concatenation is not commutative

Concatenation

Proposition: for all x we have $x\epsilon = \epsilon x = x$

Proposition: for all x, y, z we have x(yz) = (xy)z

We write it simply xyz

Power

We define x^n by

 $x^0 = \epsilon$ and $x^{n+1} = x^n x$

We define it by induction on \boldsymbol{n}

For instance $(p_0p_1)^3 = p_0p_1p_0p_1p_0p_1$

[19]

Languages

Given an alphabet Σ

A language is simply a subset of Σ^*

Common languages, programming languages, can be seen as sets of words

A language can be finite or infinite

Reverse functions

Intuitively $rev(a_1 \dots a_n) = a_n \dots a_1$ We can define rev(x) by induction $rev(\epsilon) = \epsilon$ rev(ax) = rev(x)aLemma: rev(xy) = rev(y)rev(x)

Some terminology

- x is a *prefix* of y iff there exists z such that y = xz
- x is a *suffix* of y iff there exists z such that y = zx
- x is a *palindrome* iff x = rev(x)

A proof by induction

Proposition: If $x = z^k$ and $y = z^l$ then $xy = yx = z^{k+l}$

Theorem: We have xy = yx iff there exists z, k, l such that $x = z^k$ and $y = z^l$

Exercice: What are the words x such that there exists y such that $x^3 = y^2$

Function bewteen languages

We consider functions $f:\Sigma^*\to \Theta^*$ such that

 $f(\epsilon) = \epsilon$ f(xy) = f(x)f(y)If $x = a_1 \dots a_k$ we have $f(x) = f(a_1) \dots f(a_k)$ Such a function f is a coding iff f is injective

Example: file compression