Proofs by Induction

Proposition: If $f(0)=0$ and $f(n+1)=f(n)+n+1$ then, for all $n \in \mathbb{N}$, we have $f(n)=n(n+1) / 2$

Let $S(n)$ be $f(n)=n(n+1) / 2$
We prove $S(0)$ holds
We prove that $S(n)$ implies $S(n+1)$
We deduce that $S(1), S(2), S(3), \ldots$ hold and more generally $S(n)$ holds for all n

Proofs by Induction

Proposition: If $A \subseteq \mathbb{N}$ and A does not have a least element then $A=\emptyset$
Assume that A has no least element
Let $S(n)$ be that, forall $a \in A$ we have $n<a$
We prove $S(0)$ holds: if $0 \in A$ then 0 is the least element of A
We prove that $S(n)$ implies $S(n+1)$. We assume $S(n)$. If $n+1 \in A$ then $n+1$ is the least element of A

We deduce that $S(1), S(2), S(3), \ldots$ hold and more generally $S(n)$ holds for all n. This implies $A=\emptyset$

Any nonempty subset of \mathbb{N} has a least element

Proofs by Induction

Proposition: If $n \geq 8$ then n can be written as a sum of 3 's and 5 's
Let $S(n)$ be " n can be written as a sum of 3's and 5's".
$S(7)$ does not hold. But $S(8), S(9), S(10)$ hold.
Let $T(n)$ be " $S(k)$ hold for $k=8,9, \ldots, n$ "
We prove $T(n) \Rightarrow T(n+1)$ for $n \geq 10$
If $T(n)$ holds then $S(n-2)$ holds and so does $S(n+1)$.

Proofs by Induction

All horses have the same color
$P(n)$: for any set of n horses they are all of the same color
$P(1)$ is clearly true
We claim that $P(n)$ implies $P(n+1)$
Take h_{1}, \ldots, h_{n} they are all of the same color
Also h_{2}, \ldots, h_{n+1}. Hence h_{1}, \ldots, h_{n+1} all have the same color!

Proof by Mutual Induction

One can represent a circuit as a set of functions from natural numbers to $\{0,1\}$ defined recursively

For instance

$$
\begin{aligned}
& f(0)=0, g(0)=1, h(0)=0 \\
& f(n+1)=g(n), g(n+1)=f(n), h(n+1)=1-h(n)
\end{aligned}
$$

Proposition: We have $h(n)=f(n)$ for all n
If $S(n)$ is $h(n)=f(n)$ it does not seem possible to prove $S(n) \Rightarrow S(n+1)$ directly

Proof by Mutual Induction

We prove, by induction on n the statement $T(n)$
$h(n)=f(n) \wedge h(n)=1-g(n)$
BASIS: $h(0)=f(0) \wedge h(0)=1-g(0)$
STEP: $T(n) \Rightarrow T(n+1)$
One needs to strengthen the statement $S(n)$ to the statement $T(n)$

Proof by Mutual Induction

This can be represented as a state machine
The states are the possible values of $s(n)=(f(n), g(n), h(n))$
The transitions are from the states $s(n)$ to the state $s(n+1)$
One can check the invariant $f(n)=h(n)$ on all the states accessible from the initial state $(0,1,0)$.

Proofs by Induction

In mathematics, this is almost the only form of induction that is used In computer science, proofs by induction play a more important rôle

Other data types than natural numbers: lists, trees, ...
Notion of inductively defined sets (that we shall see later in the course)

Other data types

Finitely branching trees
Basis: the empty tree () is a tree
Inductive step: if we have a finite list of trees t_{1}, \ldots, t_{k} we can form a new tree $\left(t_{1}, \ldots, t_{k}\right)$

We can then define functions on the set of trees by induction, and prove properties of these functions by induction

Other data types

We can represent graphically the trees like in 1.4.3 and define the functions $n e(t)$ (number of edges) and $n n(t)$ (number of nodes)

$$
\begin{aligned}
& n e()=0, \quad n e\left(t_{1}, \ldots, t_{k}\right)=k+n e\left(t_{1}\right)+\cdots+n e\left(t_{k}\right) \\
& n n()=1, \quad n n\left(t_{1}, \ldots, t_{k}\right)=1+n n\left(t_{1}\right)+\cdots+n n\left(t_{k}\right)
\end{aligned}
$$

Proposition: for all tree t we have $n n(t)=1+n e(t)$
Proof by induction with Basis case and Inductive step case

Other example

We define the function
$\operatorname{rev}()=(), \operatorname{rev}\left(t_{1}, \ldots, t_{k}\right)=\left(\operatorname{rev}\left(t_{k}\right), \ldots, \operatorname{rev}\left(t_{1}\right)\right)$
Proposition: for all tree t we have $\operatorname{rev}(\operatorname{rev}(t))=t$
We prove
Basis: $P()$
Inductive step: $P\left(t_{1}, \ldots, t_{k}\right)$ follow from $P\left(t_{1}\right), \ldots, P\left(t_{k}\right)$

Other data types

Abstract syntax of a language
Arithmetical expression E
Basis: if n natural number then $n \in E$
Inductive step: if $e_{1}, e_{2} \in E$ then $\operatorname{minus}\left(e_{1}\right), \operatorname{plus}\left(e_{1}, e_{2}\right), \operatorname{times}\left(e_{1}, e_{2}\right) \in E$
We can then define the semantics of an arithmetical expression by induction
$s(n)=n, s(\operatorname{minus}(e))=-s(e), \quad s\left(p l u s\left(e_{1}, e_{2}\right)\right)=s\left(e_{1}\right)+$ $s\left(e_{2}\right), s\left(\operatorname{times}\left(e_{1}, e_{2}\right)\right)=s\left(e_{1}\right) \times s\left(e_{2}\right)$

Central concepts: alphabet and words

Σ given finite set
Alphabet finite set of symbols (events) Σ
String (or word, or trace: finite sequence of symbols (behaviour)
type convention: a, b, c, \ldots for symbols (events) and x, y, z, \ldots for strings (words)

Words

Σ^{*} is the set of all words for a given alphabet Σ
This can be described inductively in at least two different ways
Basis: the empty word ϵ is in Σ^{*}
Inductive step: if $a \in \Sigma$ and $x \in \Sigma^{*}$ then $a x \in \Sigma^{*}$

Words

The other description is
Basis: the empty word ϵ is in Σ^{*}
Inductive step: if $a \in \Sigma$ and $x \in \Sigma^{*}$ then $x a \in \Sigma^{*}$
We can define functions and prove properties of these functions by induction

Length

The length function is defined by
Basis: $|\epsilon|=0$
Inductive step $|a x|=1+|x|$
$\left|p_{0} p_{1} p_{0} p_{0} p_{1}\right|=5$

Concatenation

The concatenation function $x y$ is defined by
Basis: $\epsilon y=y$
Inductive step: $(a x) y=a(x y)$
Proposition: for all x, y we have $|x y|=|x|+|y|$
Example: if $x=p_{0} p_{1}$ and $y=p_{0} p_{0} p_{1}$ then
$x y=p_{0} p_{1} p_{0} p_{0} p_{1}$ and $y x=p_{0} p_{0} p_{1} p_{0} p_{1}$
In general $x y \neq y x$: concatenation is not commutative

Concatenation

Proposition: for all x we have $x \epsilon=\epsilon x=x$
Proposition: for all x, y, z we have $x(y z)=(x y) z$
We write it simply $x y z$

Power

We define x^{n} by
$x^{0}=\epsilon$ and $x^{n+1}=x^{n} x$
We define it by induction on n
For instance $\left(p_{0} p_{1}\right)^{3}=p_{0} p_{1} p_{0} p_{1} p_{0} p_{1}$

Languages

Given an alphabet Σ
A language is simply a subset of Σ^{*}
Common languages, programming languages, can be seen as sets of words
A language can be finite or infinite

Reverse functions

Intuitively $\operatorname{rev}\left(a_{1} \ldots a_{n}\right)=a_{n} \ldots a_{1}$
We can define $\operatorname{rev}(x)$ by induction
$\operatorname{rev}(\epsilon)=\epsilon$
$\operatorname{rev}(a x)=\operatorname{rev}(x) a$
Lemma: $\operatorname{rev}(x y)=\operatorname{rev}(y) \operatorname{rev}(x)$

Some terminology

x is a prefix of y iff there exists z such that $y=x z$
x is a suffix of y iff there exists z such that $y=z x$
x is a palindrome iff $x=\operatorname{rev}(x)$

A proof by induction

Proposition: If $x=z^{k}$ and $y=z^{l}$ then $x y=y x=z^{k+l}$
Theorem: We have $x y=y x$ iff there exists z, k, l such that $x=z^{k}$ and $y=z^{l}$

Exercice: What are the words x such that there exists y such that $x^{3}=y^{2}$

Function bewteen languages

We consider functions $f: \Sigma^{*} \rightarrow \Theta^{*}$ such that
$f(\epsilon)=\epsilon$
$f(x y)=f(x) f(y)$
If $x=a_{1} \ldots a_{k}$ we have $f(x)=f\left(a_{1}\right) \ldots f\left(a_{k}\right)$
Such a function f is a coding iff f is injective
Example: file compression

