
Proofs by induction, Alphabet, Strings [1]

Proofs by Induction

Proposition: If f(0) = 0 and f(n + 1) = f(n) + n + 1 then, for all n ∈ N,
we have f(n) = n(n + 1)/2

Let S(n) be f(n) = n(n + 1)/2

We prove S(0) holds

We prove that S(n) implies S(n + 1)

We deduce that S(1), S(2), S(3), . . . hold and more generally S(n) holds
for all n

1



Proofs by induction, Alphabet, Strings [2]

Proofs by Induction

Proposition: If A ⊆ N and A does not have a least element then A = ∅

Assume that A has no least element

Let S(n) be that, forall a ∈ A we have n < a

We prove S(0) holds: if 0 ∈ A then 0 is the least element of A

We prove that S(n) implies S(n + 1). We assume S(n). If n + 1 ∈ A then
n + 1 is the least element of A

We deduce that S(1), S(2), S(3), . . . hold and more generally S(n) holds
for all n. This implies A = ∅

Any nonempty subset of N has a least element

2



Proofs by induction, Alphabet, Strings [3]

Proofs by Induction

Proposition: If n ≥ 8 then n can be written as a sum of 3’s and 5’s

Let S(n) be “n can be written as a sum of 3’s and 5’s”.

S(7) does not hold. But S(8), S(9), S(10) hold.

Let T (n) be “S(k) hold for k = 8, 9, . . . , n”

We prove T (n) ⇒ T (n + 1) for n ≥ 10

If T (n) holds then S(n− 2) holds and so does S(n + 1).

3



Proofs by induction, Alphabet, Strings [4]

Proofs by Induction

All horses have the same color

P (n): for any set of n horses they are all of the same color

P (1) is clearly true

We claim that P (n) implies P (n + 1)

Take h1, . . . , hn they are all of the same color

Also h2, . . . , hn+1. Hence h1, . . . , hn+1 all have the same color!

4



Proofs by induction, Alphabet, Strings [5]

Proof by Mutual Induction

One can represent a circuit as a set of functions from natural numbers to
{0, 1} defined recursively

For instance

f(0) = 0, g(0) = 1, h(0) = 0

f(n + 1) = g(n), g(n + 1) = f(n), h(n + 1) = 1− h(n)

Proposition: We have h(n) = f(n) for all n

If S(n) is h(n) = f(n) it does not seem possible to prove S(n) ⇒ S(n + 1)
directly

5



Proofs by induction, Alphabet, Strings [6]

Proof by Mutual Induction

We prove, by induction on n the statement T (n)

h(n) = f(n) ∧ h(n) = 1− g(n)

BASIS: h(0) = f(0) ∧ h(0) = 1− g(0)

STEP: T (n) ⇒ T (n + 1)

One needs to strengthen the statement S(n) to the statement T (n)

6



Proofs by induction, Alphabet, Strings [7]

Proof by Mutual Induction

This can be represented as a state machine

The states are the possible values of s(n) = (f(n), g(n), h(n))

The transitions are from the states s(n) to the state s(n + 1)

One can check the invariant f(n) = h(n) on all the states accessible from the
initial state (0, 1, 0).

7



Proofs by induction, Alphabet, Strings [8]

Proofs by Induction

In mathematics, this is almost the only form of induction that is used

In computer science, proofs by induction play a more important rôle

Other data types than natural numbers: lists, trees, . . .

Notion of inductively defined sets (that we shall see later in the course)

8



Proofs by induction, Alphabet, Strings [9]

Other data types

Finitely branching trees

Basis: the empty tree () is a tree

Inductive step: if we have a finite list of trees t1, . . . , tk we can form a new
tree (t1, . . . , tk)

We can then define functions on the set of trees by induction, and prove
properties of these functions by induction

9



Proofs by induction, Alphabet, Strings [10]

Other data types

We can represent graphically the trees like in 1.4.3 and define the functions
ne(t) (number of edges) and nn(t) (number of nodes)

ne() = 0, ne(t1, . . . , tk) = k + ne(t1) + · · ·+ ne(tk)

nn() = 1, nn(t1, . . . , tk) = 1 + nn(t1) + · · ·+ nn(tk)

Proposition: for all tree t we have nn(t) = 1 + ne(t)

Proof by induction with Basis case and Inductive step case

10



Proofs by induction, Alphabet, Strings [11]

Other example

We define the function

rev() = (), rev(t1, . . . , tk) = (rev(tk), . . . , rev(t1))

Proposition: for all tree t we have rev(rev(t)) = t

We prove

Basis: P ()

Inductive step: P (t1, . . . , tk) follow from P (t1), . . . , P (tk)

11



Proofs by induction, Alphabet, Strings [12]

Other data types

Abstract syntax of a language

Arithmetical expression E

Basis: if n natural number then n ∈ E

Inductive step: if e1, e2 ∈ E then minus(e1), plus(e1, e2), times(e1, e2) ∈ E

We can then define the semantics of an arithmetical expression by induction

s(n) = n, s(minus(e)) = −s(e), s(plus(e1, e2)) = s(e1) +
s(e2), s(times(e1, e2)) = s(e1)× s(e2)

12



Proofs by induction, Alphabet, Strings [13]

Central concepts: alphabet and words

Σ given finite set

Alphabet finite set of symbols (events) Σ

String (or word, or trace: finite sequence of symbols (behaviour)

type convention: a, b, c, . . . for symbols (events) and x, y, z, . . . for strings
(words)

13



Proofs by induction, Alphabet, Strings [14]

Words

Σ∗ is the set of all words for a given alphabet Σ

This can be described inductively in at least two different ways

Basis: the empty word ε is in Σ∗

Inductive step: if a ∈ Σ and x ∈ Σ∗ then ax ∈ Σ∗

14



Proofs by induction, Alphabet, Strings [15]

Words

The other description is

Basis: the empty word ε is in Σ∗

Inductive step: if a ∈ Σ and x ∈ Σ∗ then xa ∈ Σ∗

We can define functions and prove properties of these functions by induction

15



Proofs by induction, Alphabet, Strings [16]

Length

The length function is defined by

Basis: |ε| = 0

Inductive step |ax| = 1 + |x|

|p0p1p0p0p1| = 5

16



Proofs by induction, Alphabet, Strings [17]

Concatenation

The concatenation function xy is defined by

Basis: εy = y

Inductive step: (ax)y = a(xy)

Proposition: for all x, y we have |xy| = |x|+ |y|

Example: if x = p0p1 and y = p0p0p1 then

xy = p0p1p0p0p1 and yx = p0p0p1p0p1

In general xy 6= yx: concatenation is not commutative

17



Proofs by induction, Alphabet, Strings [18]

Concatenation

Proposition: for all x we have xε = εx = x

Proposition: for all x, y, z we have x(yz) = (xy)z

We write it simply xyz

18



Proofs by induction, Alphabet, Strings [19]

Power

We define xn by

x0 = ε and xn+1 = xnx

We define it by induction on n

For instance (p0p1)3 = p0p1p0p1p0p1

19



Proofs by induction, Alphabet, Strings [20]

Languages

Given an alphabet Σ

A language is simply a subset of Σ∗

Common languages, programming languages, can be seen as sets of words

A language can be finite or infinite

20



Proofs by induction, Alphabet, Strings [21]

Reverse functions

Intuitively rev(a1 . . . an) = an . . . a1

We can define rev(x) by induction

rev(ε) = ε

rev(ax) = rev(x)a

Lemma: rev(xy) = rev(y)rev(x)

21



Proofs by induction, Alphabet, Strings [22]

Some terminology

x is a prefix of y iff there exists z such that y = xz

x is a suffix of y iff there exists z such that y = zx

x is a palindrome iff x = rev(x)

22



Proofs by induction, Alphabet, Strings [23]

A proof by induction

Proposition: If x = zk and y = zl then xy = yx = zk+l

Theorem: We have xy = yx iff there exists z, k, l such that x = zk and
y = zl

Exercice: What are the words x such that there exists y such that x3 = y2

23



Proofs by induction, Alphabet, Strings [24]

Function bewteen languages

We consider functions f : Σ∗ → Θ∗ such that

f(ε) = ε

f(xy) = f(x)f(y)

If x = a1 . . . ak we have f(x) = f(a1) . . . f(ak)

Such a function f is a coding iff f is injective

Example: file compression

24


