Regular Expressions

Regular expressions can be seen as a system of notations for denoting ϵ-NFA
They form an "algebraic" representation of ϵ-NFA
"algebraic": expressions with equations such as $E_{1}+E_{2}=E_{2}+E_{1} \quad E\left(E_{1}+\right.$ $\left.E_{2}\right)=E E_{1}+E E_{2}$

Each regular expression E represents also a language $L(E)$
Very convenient for representing pattern in documents (K. Thompson)

Regular Expressions: Abstract Syntax

Given an alphabet Σ the regular expressions are defined by the following BNF (Backus-Naur Form)

$$
E::=\emptyset|\epsilon| a|E+E| E^{*} \mid E E
$$

This defines the abstract syntax of regular expressions to be contrasted with the concrete syntax (how we write regular expressions; see 3.1.3)

Concrete syntax

$01^{*}+1$ means $\left(0\left(1^{*}\right)\right)+1$
$(01)^{*}+1$ is a different regular expression
$0\left(1^{*}+1\right)$ yet another one

Regular Expressions: Abstract Syntax

Notice that
there is no intersection operation
there is no complement operation
Sometimes there are added (like in the Brzozozski algorithm that we shall explain later)

Regular expressions in functional programming

```
data Reg a =
    Empty | Epsilon | Atom a | Plus (Reg a) (Reg a) |
    Concat (Reg a) (Reg a) | Star (Reg a)
```

For instance

```
Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))
```

is written $b+(b c)^{*}$.

Regular Expressions: Examples

$$
\text { If } \Sigma=\{a, b, c\}
$$

The expressions $(a b)^{*}$ represents the language
$\{\epsilon, a b, a b a b, a b a b a b, \ldots\}$
The expression $(a+b)^{*}$ represents the words built only with a and b. The expression $a^{*}+b^{*}$ represents the set of strings with only as or with only bs (and ϵ is possible)

The expression $(a a a)^{*}$ represents the words built only with a, with a length divisible by 3

Regular Expressions: Examples

If $\Sigma=\{0,1\}$
$(\epsilon+1)(01)^{*}(\epsilon+0)$ is the set of strings that alternate 0 's and 1 's
Another expression for the same language is $(01)^{*}+1(01)^{*}+(01)^{*} 0+1(01)^{*} 0$

Some Operations on Languages

Three operations

1. union $L_{1} \cup L_{2}$ of two languages L_{1} and L_{2}
2. concatenation $L_{1} L_{2}$ this is the set of all words $x_{1} x_{2}$ with $x_{i} \in L_{i}$. If L_{1} or L_{2} is \emptyset this is empty
3. closure L^{*} of a language; L^{*} is the union of ϵ and all words $x_{1} \ldots x_{n}$ with $x_{i} \in L$

Some Operations on Languages

Definition: $L^{0}=\{\epsilon\}, L^{n+1}=L^{n} L$
Notice that $\emptyset^{*}=\{\epsilon\}$ and
$L^{*}=L^{0} \cup L^{1} \cup L^{2} \cup \cdots=\bigcup_{n \in \mathbb{N}} L^{n}$

Semantics of regular expressions

This is defined by induction on the abstract syntax: $x \in L(E)$ iff x is accepted by E

1. $L(\emptyset)=\emptyset, \quad L(\epsilon)=\{\epsilon\}$
2. $L(a)=\{a\}$ if $a \in \Sigma$
3. $L\left(E_{1}+E_{2}\right)=L\left(E_{1}\right) \cup L\left(E_{2}\right)$
4. $L\left(E_{1} E_{2}\right)=L\left(E_{1}\right) L\left(E_{2}\right)$
5. $L\left(E^{*}\right)=L(E)^{*}$

Regular Languages and Regular Expressions

Theorem: If L is a regular language there exists a regular expression E such that $L=L(E)$.

We prove this in the following way.
To any automaton we associate a system of equations (the solution should be regular expressions)

We solve this system like we solve a linear equation system using Arden's Lemma

At the end we get a regular expression for the language recognised by the automaton. This works for DFA, NFA, ϵ-NFA

Regular Languages and Regular Expressions

For the automata with accepting states C and D and defined by

$$
A .0=\{A, B\}, A .1=B, B .0=B .1=C, C .0=C .1=D
$$

We get the system
$E_{A}=(0+1) E_{A}+1 E_{B} \quad E_{B}=(0+1) E_{C} \quad E_{C}=\epsilon+(0+1) E_{D} \quad E_{D}=\epsilon$
where $E_{S}=\left\{w \in \Sigma^{*} \mid S . w \cap F \neq \emptyset\right\}$

Arden's Lemma

Arden's Lemma: A solution of $x=R x+S$ is $x=R^{*} S$. Furthermore, if $\epsilon \notin L(R)$ then this is the only solution of the equation $x=R x+S$.

We have $R^{*}=R R^{*}+\epsilon$ and so $R^{*} S=R R^{*} S+S$
So $x=R^{*} S$ is a solution of $x=R x+S$

Arden's Lemma

For the system

$$
E_{1}=b E_{2} \quad E_{2}=a E_{1}+b E_{3} \quad E_{3}=\epsilon+b E_{1}
$$

we get $E_{1}=b E_{2}, \quad E_{3}=\epsilon+b b E_{2}$ and then

$$
E_{2}=(a b+b b b) E_{2}+b
$$

and hence $E_{2}=(a b+b b b)^{*} b$ and $E_{1}=b(a b+b b b)^{*} b$
This is the same as the method described in 3.2.2 but it is expressed in the language of equations and eliminating variables

Regular Languages and Regular Expressions

We can find a solution of the original system by eliminating states

$$
E_{A}=(0+1) E_{A}+1 E_{B} \quad E_{B}=(0+1) E_{C} \quad E_{C}=\epsilon+(0+1) E_{D} \quad E_{D}=\epsilon
$$

in the following way

$$
\begin{array}{r}
E_{D}=\epsilon, E_{C}=\epsilon+0+1, E_{B}=0+1+(0+1)^{2} \text { and } \\
E_{A}=(0+1)^{*}\left(10+11+1(0+1)^{2}\right)
\end{array}
$$

Regular Languages and Regular Expressions

How to remember the solution of $x=R x+S$?
Notice that we have, if $x=R x+S$?

$$
x=R x+S=R(R x+S)+S=R^{2} x+R S+S
$$

and so
$x=R\left(R^{2} x+R S+S\right)+S=R^{3} x+R^{2} S+R S+S$
and in general
$x=R^{n+1} x+\left(R^{n}+\cdots+R+\epsilon\right) S$

Regular Languages and Regular Expressions

The result depends on the way we solve the system
For $X=a X+b Y, Y=\epsilon+c Y+d X$
If we eliminate X first we get $X=a^{*} b\left(c+d a^{*} b\right)^{*}$
If we eliminate Y first we get $X=\left(a+b c^{*} d\right)^{*} b c^{*}$
Hence $a^{*} b\left(c+d a^{*} b\right)^{*}=\left(a+b c^{*} d\right)^{*} b c^{*}$!

Elimination of states

The books present two other methods.
The first method is similar to Warshall's algorithm (see wikipedia)
The second method is by elimination of states, and is in fact the same as the method of equations that I have presented (even if it does not look so similar at first)

Elimination of states

There is only one formula needed

$$
E_{i j}^{\prime}=E_{i j}+E_{i k}\left(E_{k k}\right)^{*} E_{k j}
$$

when we eliminate the state k
A nice trick (which is not in the book) is to add one extra initial state and one extra final state

Algorithm on regular expressions

Test if a regular expression denotes the empty language

```
data Reg a =
    Empty | Epsilon | Atom a | Plus (Reg a) (Reg a) |
    Concat (Reg a) (Reg a) | Star (Reg a)
isEmpty Empty = True
isEmpty (Plus e1 e2) = isEmpty e1 && isEmpty e2
isEmpty (Concat e1 e2) = isEmpty e1 || isEmpty e2
isEmpty _ = False
```


Algorithm on regular expressions

Test if a regular expression contains ϵ

```
hasEpsilon :: Reg a -> Bool
hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon _ = False
```


Algorithm on regular expressions

```
    Test if L(e)\subseteq{\epsilon}
atMostEps :: Reg a -> Bool
atMostEps Empty = True
atMostEps Epsilon = True
atMostEps (Star e) = atMostEps e
atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2
atMostEps (Concat e1 e2) =
    Empty e1 || Empty e2 || (atMostEps e1 && atMostEps e2)
atMostEps _ = False
```


Algorithm on regular expressions

Test if a regular expression denotes an infinite language

```
infinite :: Reg a -> Bool
infinite (Star e) = not (atMostExp e)
infinite (Plus e1 e2) = infinite e1 || infinite e2
infinite (Concat e1 e2) =
    (infinite e1 && notEmpty e2) || (notEmpty e1 && infinite e2)
infinite _ = False
notEmpty e = not (isEmpty e)
```


Derivative of a regular expression

If L is a language $L \subseteq \Sigma^{*}$ and $a \in \Sigma$ we define the language L / a (derivative of L by a) by

$$
L / a=\left\{x \in \Sigma^{*} \mid a x \in L\right\}
$$

We give an algorithm computing E / a such that $L(E / a)=L(E) / a$ using the equivalence

$$
a x \in L \text { iff } x \in L / a
$$

Derivative of a regular expression

Examples
$(a b a b+a b b a) / a=b a b+b b a$
$(a b a b+a b b a) / b=\emptyset$
$\left(a^{*} b\right) / a=\left(a a^{*} b+b\right) / a=a^{*} b$
$\left((a b)^{*} a\right) / a=\left(a b(a b)^{*} a+a\right) / a=b(a b)^{*} a+\epsilon$

Derivative of a regular expression

```
der :: Eq a => a -> Reg a >> Reg a
der b (Atom b1) = if b == b1 then Epsilon else Empty
der b (Plus e1 e2) = Plus (der b e1) (der b e2)
der b (Concat e1 e2) | hasEpsilon e1 =
    Plus (Concat (der b e1) e2) (der b e2)
der b (Concat e1 e2) = Concat (der b e1) e2
der b (Star e) = Concat (der b e) (Star e)
der b _ = Empty
```


Application

Is a given word in the language defined by a regular expression E ?
isIn :: Eq a => [a] -> Reg a -> Bool
isIn [] e = hasEpsilon e
isIn (a:as) e = isIn as (der a e)
This is essentially Ken Thompson's algorithm
This works if we add intersection and complement

Application: extended regular expressions

```
data Reg a =
```

```
    Empty | Epsilon | Atom a | Plus (Reg a) (Reg a) |
```

 Empty | Epsilon | Atom a | Plus (Reg a) (Reg a) |
 Concat (Reg a) (Reg a) | Star (Reg a) |
 Concat (Reg a) (Reg a) | Star (Reg a) |
 Inter (Reg a) (Reg a) | Compl (Reg a)
 Inter (Reg a) (Reg a) | Compl (Reg a)
 hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Inter e1 e2) = hasEpsilon e1 \&\& hasEpsilon e2
hasEpsilon (Compl e) = not (hasEpsilon e)
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 \&\& hasEpsilon e2
hasEpsilon _ = False

```

\section*{Application: extended regular expressions}
```

der :: Eq a => a -> Reg a -> Reg a
der b (Atom b1) = if b == b1 then Epsilon else Empty
der b (Plus e1 e2) = Plus (der b e1) (der b e2)
der b (Inter e1 e2) = Inter (der b e1) (der b e2)
der b (Compl e) = Compl (der b e)
der b (Concat e1 e2) | hasEpsilon e1 =
Plus (Concat (der b e1) e2) (der b e2)
der b (Concat e1 e2) = Concat (der b e1) e2
der b (Star e) = Concat (der b e) (Star e)
der b _ = Empty

```

\section*{Application}

Is a given word in the language defined by a regular expression \(E\) ? The algorithm is the same
```

isIn :: Eq a => [a] -> Reg -> Bool
isIn [] e = hasEpsilon e
isIn (a:as) e = isIn as (der a e)

```

\section*{Derivatives}

Example: \(x=a b b a\) and \(E=a b b a+a b a b\)
The algorithm works with generalised regular expressions
\[
x=1010 \text { and } E=(01+10)^{*} \cap(101)^{*}
\]

\section*{Regular Languages and Regular Expressions}

Theorem: If \(E\) is a regular expression then \(L(E)\) is a regular language
We prove this by induction on \(E\). The main steps are to prove that
if \(L_{1}, L_{2}\) are regular then so is \(L_{1} \cup L_{2}\) and \(L_{1} L_{2}\)
if \(L\) is regular then so is \(L^{*}\)

\section*{Regular Languages and Regular Expressions}

At the end we shall get an \(\epsilon-N F A\) that we know how to transform into a DFA by the subset construction

There is a beautiful algorithm that builds directly a DFA from a regular expression, due to Brzozozski, and we present also this algorithm

\section*{Regular Languages and Regular Expressions}

Lemma: If \(L_{1}, L_{2}\) are regular then so is \(L_{1} \cup L_{2}\)
We have seen a proof of this with the product construction. This is easy also if \(L_{1}=L\left(A_{1}\right), L_{2}=L\left(A_{2}\right)\) and \(A_{1}, A_{2}\) are \(\epsilon\)-NFAs

Lemma: If \(L_{1}, L_{2}\) are regular then so is \(L_{1} L_{2}\)
Lemma: If \(L\) is regular then so is \(L^{*}\)

\section*{Regular Languages and Regular Expressions}

This can be seen as an algorithm transforming a regular expression \(E\) to an \(\epsilon\)-NFA

Example: we transform \(a^{*}+a b\) to an \(\epsilon\)-NFA
As you can see on this example the automaton we obtain is quite complex
A priori even more complex if we want a DFA
See also Figure 3.18

\section*{Brzozozski's algorithm}

The idea is to use derivatives as states
For instance if \(E=a^{*}+a b\) we have
\(E / a=a^{*}+b, E / b=\emptyset\)
\(E / a a=a^{*}, E / a b=\epsilon, E / b a=E / b b=E / b\)
\(E / a a a=E / a a, E / a a b=E / a b a=E / a b b=E / b\)
We get a DFA with 5 states. The accepting states are the ones that contain \(\epsilon\)

\section*{Brzozozski's algorithm}

Other examples
\(E=(a+\epsilon)^{*}\)
\(E=F 10 F\) where \(F=(0+1)^{*}\)
\(E=F 1(0+1)\)

\section*{Brzozozski's algorithm}

Furthermore this algorithm works even with extended regular expressions that admit intersections and complements

For instance \(E=a(b a)^{*}-(a b)^{*} a\)
\(E / a=(b a)^{*}-\left(b(a b)^{*} a+\epsilon\right), E / b=\emptyset\)
\(E / a a=\emptyset, E / a b=a(a b)^{*}-(a b)^{*} a=E\)
and none of these expressions contains \(\epsilon\), so \(E=\emptyset\) !

\section*{Brzozozski's algorithm}

Example: We can prove in this way
\[
(01+10)^{*} \cap(101)^{*}=\epsilon
\]

More generally we get an algorithm for testing \(E=F\) : we build a tree with nodes \(E / x, F / x\) for finite \(x\)
\[
\text { Examples: } E=(01+10)^{*}, F=(101)^{*}
\]
\[
E=(10)^{*} 1, F=1(01)^{*}
\]

\section*{Algebraic Laws for Languages}
\(L_{1} \cup L_{2}=L_{2} \cup L_{1}\) Union is commutative
Note: Concatenation is not commutative we can find \(L_{1}, L_{2}\) such that \(L_{1} L_{2} \neq L_{2} L_{1}\)
\[
\begin{aligned}
& L\{\epsilon\}=\{\epsilon\} L=L \\
& L \emptyset=\emptyset L=\emptyset \\
& L(M \cup N)=L M \cup L N \\
& (M \cup N) L=M L \cup N L
\end{aligned}
\]

\section*{Algebraic Laws for Languages}
\[
\begin{aligned}
& \emptyset^{*}=\{\epsilon\}^{*}=\{\epsilon\} \\
& L^{+}=L L^{*}=L^{*} L \\
& L ?=L \cup\{\epsilon\} \\
& \left(L^{*}\right)^{*}=L^{*}
\end{aligned}
\]

\section*{Algebraic Laws for Regular Expressions}

We write \(E=F\) for \(L(E)=L(F)\)
For instance
\[
\left(E_{1}+E_{2}\right) E=E_{1} E+E_{2} E
\]
follows from
\[
\left(L_{1} \cup L_{2}\right) L=L_{1} L \cup L_{2} L
\]
by taking \(L_{i}=L\left(E_{i}\right), L=L(E)\)
Similarly \(\left(E^{*}\right)^{*}=E^{*}\)

\section*{Algebraic Laws for Regular Expressions}
\[
\begin{aligned}
& E+(F+G)=(E+F)+G, E+F=F+E, E+E=E, E+0=E \\
& E(F G)=(E F) G, E 0=0 E=0, E \epsilon=\epsilon E=E \\
& E(F+G)=E F+E G,(F+G) E=F E+G E \\
& \epsilon+E E^{*}=E^{*}=\epsilon+E^{*} E
\end{aligned}
\]

\section*{Algebraic Laws for Regular Expressions}

We have also
\(E^{*}=E^{*} E^{*}=\left(E^{*}\right)^{*}\)
\(E^{*}=(E E)^{*}+E(E E)^{*}\)

\section*{Algebraic Laws for Regular Expressions}

How can one prove equalities between regular expressions?
In usual algebra, we can "simplify" an algebraic expression by rewriting
\[
(x+y)(x+z) \rightarrow x x+y x+x z+y z
\]

For regular expressions, there is no such way to prove equalities. There is not even a complete finite set of equations.

\section*{Algebraic Laws for Regular Expressions}

Example: \(L^{*} \subseteq L^{*} L^{*}\) since \(\epsilon \in L^{*}\)
Conversely if \(x \in L^{*} L^{*}\) then \(x=x_{1} x_{2}\) with \(x_{1} \in L^{*}\) and \(x_{2} \in L^{*}\)
\(x \in L^{*}\) is clear if \(x_{1}=\epsilon\) or \(x_{2}=\epsilon\). Otherwise
So \(x_{1}=u_{1} \ldots u_{n}\) with \(u_{i} \in L\)
and \(x_{2}=v_{1} \ldots v_{m}\) with \(v_{j} \in L\)
Then \(x=x_{1} x_{2}=u_{1} \ldots u_{n} v_{1} \ldots v_{m}\) is in \(L^{*}\)

\section*{Algebraic Laws for Regular Expressions}

Two laws that are useful to simplify regular expressions
Shifting rule
\[
E(F E)^{*}=(E F)^{*} E
\]

Denesting rule
\[
\left(E^{*} F\right)^{*} E^{*}=(E+F)^{*}
\]

\section*{Variation of the denesting rule}

One has also
\[
\left(E^{*} F\right)^{*}=\epsilon+(E+F)^{*} F
\]
and this represents the words empty or finishing with \(F\)

\section*{Algebraic Laws for Regular Expressions}

\section*{Example:}
\(a^{*} b\left(c+d a^{*} b\right)^{*}=a^{*} b\left(c^{*} d a^{*} b\right)^{*} c^{*}\)
by denesting
\(a^{*} b\left(c^{*} d a^{*} b\right)^{*} c^{*}=\left(a^{*} b c^{*} d\right)^{*} a^{*} b c^{*}\)
by shifting
\[
\left(a^{*} b c^{*} d\right)^{*} a^{*} b c^{*}=\left(a+b c^{*} d\right)^{*} b c^{*}
\]
by denesting. Hence
\(a^{*} b\left(c+d a^{*} b\right)^{*}=\left(a+b c^{*} d\right)^{*} b c^{*}\)

\section*{Algebraic Laws for Regular Expressions}

Examples: \(10 ? 0 ?=1+10+100\)
\[
(1+01+001)^{*}(\epsilon+0+00)=((\epsilon+0)(\epsilon+0) 1)^{*}(\epsilon+0)(\epsilon+0)
\]
is the same as
\[
(\epsilon+0)(\epsilon+0)(1(\epsilon+0)(\epsilon+0))^{*}=(\epsilon+0+00)(1+10+100)^{*}
\]

Set of all words with no substring of more than two adjacent 0's

\section*{Proving by induction}

Let \(\Sigma\) be \(\{a, b\}\)
Lemma: For all \(n\) we have \(a(b a)^{n}=(a b)^{n} a\)
Proof: by induction on \(n\)
Theorem: \(a(b a)^{*}=(a b)^{*} a\)
Similarly we can prove \((a+b)^{*}=\left(a^{*} b\right)^{*} a^{*}\)

\section*{Complement of a(n ordinary) regular expression}

For building the "complement" of a regular expression, or the "intersection" of two regular expressions, we can use NFA/DFA

For instance to build \(E\) such that \(L(E)=\{0,1\}^{*}-\{0\}\) we first build a DFA for the expression 0 , then the complement DFA. We can compute \(E\) from this complement DFA. We get for instance
\[
\epsilon+1(0+1)^{*}+0(0+1)^{+}
\]```

