
Regular Expressions [1]

Regular Expressions

Regular expressions can be seen as a system of notations for denoting ε-NFA

They form an “algebraic” representation of ε-NFA

“algebraic”: expressions with equations such as E1+E2 = E2+E1 E(E1+
E2) = EE1 + EE2

Each regular expression E represents also a language L(E)

Very convenient for representing pattern in documents (K. Thompson)

1

Regular Expressions [2]

Regular Expressions: Abstract Syntax

Given an alphabet Σ the regular expressions are defined by the following BNF
(Backus-Naur Form)

E ::= ∅ | ε | a | E + E | E∗ | EE

This defines the abstract syntax of regular expressions to be contrasted with
the concrete syntax (how we write regular expressions; see 3.1.3)

2

Regular Expressions [3]

Concrete syntax

01∗ + 1 means (0(1∗)) + 1

(01)∗ + 1 is a different regular expression

0(1∗ + 1) yet another one

3

Regular Expressions [4]

Regular Expressions: Abstract Syntax

Notice that

there is no intersection operation

there is no complement operation

Sometimes there are added (like in the Brzozozski algorithm that we shall
explain later)

4

Regular Expressions [5]

Regular expressions in functional programming

data Reg a =
Empty | Epsilon | Atom a | Plus (Reg a) (Reg a) |
Concat (Reg a) (Reg a) | Star (Reg a)

For instance

Plus (Atom "b") (Star (Concat (Atom "b") (Atom "c")))

is written b + (bc)∗.

5

Regular Expressions [6]

Regular Expressions: Examples

If Σ = {a, b, c}

The expressions (ab)∗ represents the language

{ε, ab, abab, ababab, . . . }

The expression (a + b)∗ represents the words built only with a and b. The
expression a∗ + b∗ represents the set of strings with only as or with only bs (and
ε is possible)

The expression (aaa)∗ represents the words built only with a, with a length
divisible by 3

6

Regular Expressions [7]

Regular Expressions: Examples

If Σ = {0, 1}

(ε + 1)(01)∗(ε + 0) is the set of strings that alternate 0’s and 1’s

Another expression for the same language is (01)∗+1(01)∗+(01)∗0+1(01)∗0

7

Regular Expressions [8]

Some Operations on Languages

Three operations

1. union L1 ∪ L2 of two languages L1 and L2

2. concatenation L1L2 this is the set of all words x1x2 with xi ∈ Li. If L1 or L2

is ∅ this is empty

3. closure L∗ of a language; L∗ is the union of ε and all words x1 . . . xn with
xi ∈ L

8

Regular Expressions [9]

Some Operations on Languages

Definition: L0 = {ε}, Ln+1 = LnL

Notice that ∅∗ = {ε} and

L∗ = L0 ∪ L1 ∪ L2 ∪ · · · =
⋃

n∈N Ln

9

Regular Expressions [10]

Semantics of regular expressions

This is defined by induction on the abstract syntax: x ∈ L(E) iff x is accepted
by E

1. L(∅) = ∅, L(ε) = {ε}

2. L(a) = {a} if a ∈ Σ

3. L(E1 + E2) = L(E1) ∪ L(E2)

4. L(E1E2) = L(E1)L(E2)

5. L(E∗) = L(E)∗

10

Regular Expressions [11]

Regular Languages and Regular Expressions

Theorem: If L is a regular language there exists a regular expression E such
that L = L(E).

We prove this in the following way.

To any automaton we associate a system of equations (the solution should be
regular expressions)

We solve this system like we solve a linear equation system using Arden’s
Lemma

At the end we get a regular expression for the language recognised by the
automaton. This works for DFA, NFA, ε-NFA

11

Regular Expressions [12]

Regular Languages and Regular Expressions

For the automata with accepting states C and D and defined by

A.0 = {A,B}, A.1 = B, B.0 = B.1 = C, C.0 = C.1 = D

We get the system

EA = (0 + 1)EA + 1EB EB = (0 + 1)EC EC = ε + (0 + 1)ED ED = ε

where ES = {w ∈ Σ∗ | S.w ∩ F 6= ∅}

12

Regular Expressions [13]

Arden’s Lemma

Arden’s Lemma: A solution of x = Rx + S is x = R∗S. Furthermore, if
ε /∈ L(R) then this is the only solution of the equation x = Rx + S.

We have R∗ = RR∗ + ε and so R∗S = RR∗S + S

So x = R∗S is a solution of x = Rx + S

13

Regular Expressions [14]

Arden’s Lemma

For the system

E1 = bE2 E2 = aE1 + bE3 E3 = ε + bE1

we get E1 = bE2, E3 = ε + bbE2 and then

E2 = (ab + bbb)E2 + b

and hence E2 = (ab + bbb)∗b and E1 = b(ab + bbb)∗b

This is the same as the method described in 3.2.2 but it is expressed in the
language of equations and eliminating variables

14

Regular Expressions [15]

Regular Languages and Regular Expressions

We can find a solution of the original system by eliminating states

EA = (0 + 1)EA + 1EB EB = (0 + 1)EC EC = ε + (0 + 1)ED ED = ε

in the following way

ED = ε, EC = ε + 0 + 1, EB = 0 + 1 + (0 + 1)2 and

EA = (0 + 1)∗(10 + 11 + 1(0 + 1)2)

15

Regular Expressions [16]

Regular Languages and Regular Expressions

How to remember the solution of x = Rx + S?

Notice that we have, if x = Rx + S?

x = Rx + S = R(Rx + S) + S = R2x + RS + S

and so

x = R(R2x + RS + S) + S = R3x + R2S + RS + S

and in general

x = Rn+1x + (Rn + · · ·+ R + ε)S

16

Regular Expressions [17]

Regular Languages and Regular Expressions

The result depends on the way we solve the system

For X = aX + bY, Y = ε + cY + dX

If we eliminate X first we get X = a∗b(c + da∗b)∗

If we eliminate Y first we get X = (a + bc∗d)∗bc∗

Hence a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗!

17

Regular Expressions [18]

Elimination of states

The books present two other methods.

The first method is similar to Warshall’s algorithm (see wikipedia)

The second method is by elimination of states, and is in fact the same as the
method of equations that I have presented (even if it does not look so similar at
first)

18

Regular Expressions [19]

Elimination of states

There is only one formula needed

E′
ij = Eij + Eik(Ekk)∗Ekj

when we eliminate the state k

A nice trick (which is not in the book) is to add one extra initial state and
one extra final state

19

Regular Expressions [20]

Algorithm on regular expressions

Test if a regular expression denotes the empty language

data Reg a =
Empty | Epsilon | Atom a | Plus (Reg a) (Reg a) |
Concat (Reg a) (Reg a) | Star (Reg a)

isEmpty Empty = True
isEmpty (Plus e1 e2) = isEmpty e1 && isEmpty e2
isEmpty (Concat e1 e2) = isEmpty e1 || isEmpty e2
isEmpty _ = False

20

Regular Expressions [21]

Algorithm on regular expressions

Test if a regular expression contains ε

hasEpsilon :: Reg a -> Bool

hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon _ = False

21

Regular Expressions [22]

Algorithm on regular expressions

Test if L(e) ⊆ {ε}

atMostEps :: Reg a -> Bool

atMostEps Empty = True
atMostEps Epsilon = True
atMostEps (Star e) = atMostEps e
atMostEps (Plus e1 e2) = atMostEps e1 && atMostEps e2
atMostEps (Concat e1 e2) =
Empty e1 || Empty e2 || (atMostEps e1 && atMostEps e2)
atMostEps _ = False

22

Regular Expressions [23]

Algorithm on regular expressions

Test if a regular expression denotes an infinite language

infinite :: Reg a -> Bool

infinite (Star e) = not (atMostExp e)
infinite (Plus e1 e2) = infinite e1 || infinite e2
infinite (Concat e1 e2) =
(infinite e1 && notEmpty e2) || (notEmpty e1 && infinite e2)
infinite _ = False

notEmpty e = not (isEmpty e)

23

Regular Expressions [24]

Derivative of a regular expression

If L is a language L ⊆ Σ∗ and a ∈ Σ we define the language L/a (derivative
of L by a) by

L/a = {x ∈ Σ∗ | ax ∈ L}

We give an algorithm computing E/a such that L(E/a) = L(E)/a using the
equivalence

ax ∈ L iff x ∈ L/a

24

Regular Expressions [25]

Derivative of a regular expression

Examples

(abab + abba)/a = bab + bba

(abab + abba)/b = ∅

(a∗b)/a = (aa∗b + b)/a = a∗b

((ab)∗a)/a = (ab(ab)∗a + a)/a = b(ab)∗a + ε

25

Regular Expressions [26]

Derivative of a regular expression

der :: Eq a => a -> Reg a -> Reg a

der b (Atom b1) = if b == b1 then Epsilon else Empty
der b (Plus e1 e2) = Plus (der b e1) (der b e2)
der b (Concat e1 e2) | hasEpsilon e1 =
Plus (Concat (der b e1) e2) (der b e2)
der b (Concat e1 e2) = Concat (der b e1) e2
der b (Star e) = Concat (der b e) (Star e)
der b _ = Empty

26

Regular Expressions [27]

Application

Is a given word in the language defined by a regular expression E?

isIn :: Eq a => [a] -> Reg a -> Bool

isIn [] e = hasEpsilon e
isIn (a:as) e = isIn as (der a e)

This is essentially Ken Thompson’s algorithm

This works if we add intersection and complement

27

Regular Expressions [28]

Application: extended regular expressions

data Reg a =
Empty | Epsilon | Atom a | Plus (Reg a) (Reg a) |
Concat (Reg a) (Reg a) | Star (Reg a) |
Inter (Reg a) (Reg a) | Compl (Reg a)

hasEpsilon Epsilon = True
hasEpsilon (Star _) = True
hasEpsilon (Inter e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon (Compl e) = not (hasEpsilon e)
hasEpsilon (Plus e1 e2) = hasEpsilon e1 || hasEpsilon e2
hasEpsilon (Concat e1 e2) = hasEpsilon e1 && hasEpsilon e2
hasEpsilon _ = False

28

Regular Expressions [29]

Application: extended regular expressions

der :: Eq a => a -> Reg a -> Reg a

der b (Atom b1) = if b == b1 then Epsilon else Empty
der b (Plus e1 e2) = Plus (der b e1) (der b e2)
der b (Inter e1 e2) = Inter (der b e1) (der b e2)
der b (Compl e) = Compl (der b e)
der b (Concat e1 e2) | hasEpsilon e1 =
Plus (Concat (der b e1) e2) (der b e2)
der b (Concat e1 e2) = Concat (der b e1) e2
der b (Star e) = Concat (der b e) (Star e)
der b _ = Empty

29

Regular Expressions [30]

Application

Is a given word in the language defined by a regular expression E? The
algorithm is the same

isIn :: Eq a => [a] -> Reg -> Bool

isIn [] e = hasEpsilon e
isIn (a:as) e = isIn as (der a e)

30

Regular Expressions [31]

Derivatives

Example: x = abba and E = abba + abab

The algorithm works with generalised regular expressions

x = 1010 and E = (01 + 10)∗ ∩ (101)∗

31

Regular Expressions [32]

Regular Languages and Regular Expressions

Theorem: If E is a regular expression then L(E) is a regular language

We prove this by induction on E. The main steps are to prove that

if L1, L2 are regular then so is L1 ∪ L2 and L1L2

if L is regular then so is L∗

32

Regular Expressions [33]

Regular Languages and Regular Expressions

At the end we shall get an ε-NFA that we know how to transform into a DFA
by the subset construction

There is a beautiful algorithm that builds directly a DFA from a regular
expression, due to Brzozozski, and we present also this algorithm

33

Regular Expressions [34]

Regular Languages and Regular Expressions

Lemma: If L1, L2 are regular then so is L1 ∪ L2

We have seen a proof of this with the product construction. This is easy also
if L1 = L(A1), L2 = L(A2) and A1, A2 are ε-NFAs

Lemma: If L1, L2 are regular then so is L1L2

Lemma: If L is regular then so is L∗

34

Regular Expressions [35]

Regular Languages and Regular Expressions

This can be seen as an algorithm transforming a regular expression E to an
ε-NFA

Example: we transform a∗ + ab to an ε-NFA

As you can see on this example the automaton we obtain is quite complex

A priori even more complex if we want a DFA

See also Figure 3.18

35

Regular Expressions [36]

Brzozozski’s algorithm

The idea is to use derivatives as states

For instance if E = a∗ + ab we have

E/a = a∗ + b, E/b = ∅

E/aa = a∗, E/ab = ε, E/ba = E/bb = E/b

E/aaa = E/aa, E/aab = E/aba = E/abb = E/b

We get a DFA with 5 states. The accepting states are the ones that contain ε

36

Regular Expressions [37]

Brzozozski’s algorithm

Other examples

E = (a + ε)∗

E = F10F where F = (0 + 1)∗

E = F1(0 + 1)

37

Regular Expressions [38]

Brzozozski’s algorithm

Furthermore this algorithm works even with extended regular expressions that
admit intersections and complements

For instance E = a(ba)∗ − (ab)∗a

E/a = (ba)∗ − (b(ab)∗a + ε), E/b = ∅

E/aa = ∅, E/ab = a(ab)∗ − (ab)∗a = E

and none of these expressions contains ε, so E = ∅!

38

Regular Expressions [39]

Brzozozski’s algorithm

Example: We can prove in this way

(01 + 10)∗ ∩ (101)∗ = ε

More generally we get an algorithm for testing E = F : we build a tree with
nodes E/x, F/x for finite x

Examples: E = (01 + 10)∗, F = (101)∗

E = (10)∗1, F = 1(01)∗

39

Regular Expressions [40]

Algebraic Laws for Languages

L1 ∪ L2 = L2 ∪ L1 Union is commutative

Note: Concatenation is not commutative we can find L1, L2 such that
L1L2 6= L2L1

L{ε} = {ε}L = L

L∅ = ∅L = ∅

L(M ∪N) = LM ∪ LN

(M ∪N)L = ML ∪NL

40

Regular Expressions [41]

Algebraic Laws for Languages

∅∗ = {ε}∗ = {ε}

L+ = LL∗ = L∗L

L? = L ∪ {ε}

(L∗)∗ = L∗

41

Regular Expressions [42]

Algebraic Laws for Regular Expressions

We write E = F for L(E) = L(F)

For instance
(E1 + E2)E = E1E + E2E

follows from
(L1 ∪ L2)L = L1L ∪ L2L

by taking Li = L(Ei), L = L(E)

Similarly (E∗)∗ = E∗

42

Regular Expressions [43]

Algebraic Laws for Regular Expressions

E + (F + G) = (E + F) + G, E + F = F + E, E + E = E, E + 0 = E

E(FG) = (EF)G, E0 = 0E = 0, Eε = εE = E

E(F + G) = EF + EG, (F + G)E = FE + GE

ε + EE∗ = E∗ = ε + E∗E

43

Regular Expressions [44]

Algebraic Laws for Regular Expressions

We have also

E∗ = E∗E∗ = (E∗)∗

E∗ = (EE)∗ + E(EE)∗

44

Regular Expressions [45]

Algebraic Laws for Regular Expressions

How can one prove equalities between regular expressions?

In usual algebra, we can “simplify” an algebraic expression by rewriting

(x + y)(x + z) → xx + yx + xz + yz

For regular expressions, there is no such way to prove equalities. There is not
even a complete finite set of equations.

45

Regular Expressions [46]

Algebraic Laws for Regular Expressions

Example: L∗ ⊆ L∗L∗ since ε ∈ L∗

Conversely if x ∈ L∗L∗ then x = x1x2 with x1 ∈ L∗ and x2 ∈ L∗

x ∈ L∗ is clear if x1 = ε or x2 = ε. Otherwise

So x1 = u1 . . . un with ui ∈ L

and x2 = v1 . . . vm with vj ∈ L

Then x = x1x2 = u1 . . . unv1 . . . vm is in L∗

46

Regular Expressions [47]

Algebraic Laws for Regular Expressions

Two laws that are useful to simplify regular expressions

Shifting rule

E(FE)∗ = (EF)∗E

Denesting rule

(E∗F)∗E∗ = (E + F)∗

47

Regular Expressions [48]

Variation of the denesting rule

One has also

(E∗F)∗ = ε + (E + F)∗F

and this represents the words empty or finishing with F

48

Regular Expressions [49]

Algebraic Laws for Regular Expressions

Example:

a∗b(c + da∗b)∗ = a∗b(c∗da∗b)∗c∗

by denesting

a∗b(c∗da∗b)∗c∗ = (a∗bc∗d)∗a∗bc∗

by shifting

(a∗bc∗d)∗a∗bc∗ = (a + bc∗d)∗bc∗

by denesting. Hence

a∗b(c + da∗b)∗ = (a + bc∗d)∗bc∗

49

Regular Expressions [50]

Algebraic Laws for Regular Expressions

Examples: 10?0? = 1 + 10 + 100

(1 + 01 + 001)∗(ε + 0 + 00) = ((ε + 0)(ε + 0)1)∗(ε + 0)(ε + 0)

is the same as

(ε + 0)(ε + 0)(1(ε + 0)(ε + 0))∗ = (ε + 0 + 00)(1 + 10 + 100)∗

Set of all words with no substring of more than two adjacent 0’s

50

Regular Expressions [51]

Proving by induction

Let Σ be {a, b}

Lemma: For all n we have a(ba)n = (ab)na

Proof: by induction on n

Theorem: a(ba)∗ = (ab)∗a

Similarly we can prove (a + b)∗ = (a∗b)∗a∗

51

Regular Expressions [52]

Complement of a(n ordinary) regular expression

For building the “complement” of a regular expression, or the “intersection”
of two regular expressions, we can use NFA/DFA

For instance to build E such that L(E) = {0, 1}∗ − {0} we first build a DFA
for the expression 0, then the complement DFA. We can compute E from this
complement DFA. We get for instance

ε + 1(0 + 1)∗ + 0(0 + 1)+

52

