
Regular Expressions [1]

Equivalence relation and partitions

An equivalence relation on a set X is a relation which is reflexive, symmetric
and transitive

A partition of a set X is a set P of cells or blocks that are subsets of X such
that

1. If C ∈ P then C 6= ∅

2. If C1, C2 ∈ P and C1 6= C2 then C1 ∩ C2 = ∅

3. If a ∈ X there exists C ∈ P such that a ∈ C

1

Regular Expressions [2]

Equivalence relation and partitions

If R is an equivalence relation on X, we define the equivalence class of a ∈ X
to be the set [a] = {b ∈ X | R(a, b)}

Lemma: [a] = [b] iff R(a, b)

Theorem: The set of all equivalence classes form a partition of X

We write X/R this set of equivalence classes

Example: X is the set of all integers, and R(x, y) is the relation “3 divides
x− y”. Then X/R has 3 elements

2

Regular Expressions [3]

Equivalence Relations

Example: on X = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10} the relation x ≡ y defined by

3 divides x− y

is an equivalence relation

We can now form X/≡ which is the set of all equivalence classes

[1] = [4] = {1, 4, 7, 10} [2] = [8] = {2, 5, 8} [3] = {3, 6, 9}

This set is the quotient of X by the relation ≡

3

Regular Expressions [4]

Equivalence relations on states

A = (Q,Σ, δ, q0, F) is a DFA

If R is an equivalence relation on Q, we say that R is compatible with A iff

(1) R(q1, q2) implies R(δ(q1, a), δ(q2, a)) for all a ∈ Σ

(2) R(q1, q2) and q1 ∈ F implies q2 ∈ F

4

Regular Expressions [5]

Equivalence relations on states

(1) means that if q1, q2 are in the same block then so are q1.a and q2.a and
this for all a in Σ

(2) says that F can be written as an union of some blocks

We can then define δ/R([q], a) = [q.a] and [q] ∈ F/R iff q ∈ F

5

Regular Expressions [6]

Equivalence relations on states

Theorem: If R is a compatible equivalence relation on A then we can consider
the DFA A/R = (Q/R,Σ, δ/R.[q0], F/R) and we have L(A/R) = L(A)

Proof: By induction on x we have

δ̂([q], x) = [δ̂(q, x)]

and then [q0].x ∈ F/R iff q0.x ∈ F

Notice that A/R has fewer states than A

6

Regular Expressions [7]

Equivalence of States

Theorem: Let A = (Q,Σ, δ, q0, F) be a DFA. The relation R(q1, q2) defined
by for all w ∈ Σ∗ we have q1.w ∈ F iff q2.w ∈ F is a compatible equivalence
relation

It is essential for this Theorem that A is a DFA

We say simply that q1 and q2 are equivalent if we have R(q1, q2)

Corollary: We have L(A) = L(A/R)

We shall prove that, provided all the states of A are accessible, the DFA A/R
depends only of L(A) and not of A

7

Regular Expressions [8]

Algorithm for Computing R

Let us compute R for

a b
→0 1 2
∗1 3 4
∗2 4 3
3 5 5
4 5 5
∗5 5 5

We know {0, 1}, {0, 2}, {0, 5}, {1, 3}, {2, 3}, {3, 5}, {4, 1}, {4, 2}, {4, 5} are
non equivalent pairs

8

Regular Expressions [9]

Algorithm for Computing R

a b
{0, 3} {1, 5} {2, 5}
{1, 5} {3, 5} {4, 5}
{2, 5} {4, 5} {3, 5}

Thus, {0, 3}, {1, 5}, {2, 5} are non equivalent

It is convenient to build at the same time a triangular table of pair of states,
as indicated in the text book

9

Regular Expressions [10]

Algorithm for Computing R

Let us compute R for

a
→0 1
∗1 2
2 3
3 4
∗4 5
5 0

We have {0, 3} → {1, 4} → {2, 5} → {0, 3} and {0, 2} → {1, 3}

We get {{0, 3}, {1, 4}, {2, 5}}

10

Regular Expressions [11]

Functional program for R

equal (e1,f1) (e2,f2) =
(e1 == e2 && f1 == f2) || (e1 == f2 && f1 == e2)

data Answer = Equiv | L String | R String
deriving (Eq,Show)

11

Regular Expressions [12]

Functional program for R

equiv (cs,delta,final) e1 e2 = eq e1 e2 ([],"")
where
eq q1 q2 (l,s) = if q1 == q2 then Equal else
case (final q1,final q2) of
(True,False) -> L (reverse s)
(False,True) -> R (reverse s)
_ -> if or (map (equal (q1,q2)) l) then Equal

else combine
(map (\ c ->

eq (delta q1 c) (delta q2 c)
((q1,q2):l,c:s)) cs)

12

Regular Expressions [13]

Functional program for R

combine (Equal:bs) = combine bs
combine (a:_) = a
combine [] = Equal

13

Regular Expressions [14]

Functional program for R

data Q = A | B | C | D deriving (Eq,Show)

delta A ’0’ = B delta A ’1’ = A
delta B ’0’ = B delta B ’1’ = C
delta C ’0’ = C delta C ’1’ = D
delta D _ = D

final C = True final D = True
final _ = False

test1 = equiv ("01",delta,final) C D

14

Regular Expressions [15]

The Quotient Construction

We are now going to show that A/R does not depend on A, but only on
L = L(A), provided all states in A are accessible

This will show that the minimal DFA for a regular language is unique (up to
renaming of the states)

15

Regular Expressions [16]

The Quotient Construction

Give L we define u ≡L v iff u \ L = v \ L

Another formulation of the Myhill-Nerode theorem is

Theorem: A language L ⊆ Σ∗ is regular iff ≡L has only a finite number of
equivalence classes

Notice that u ≡L v iff for all w we have uw ∈ L iff vw ∈ L

16

Regular Expressions [17]

Myhill-Nerode Theorem

If L is a regular language and L = L(A) where A = (Q,Σ, δ, q0, F) and all
states in Q are accessible and S is the set of abstract states of L we know that
the map

f : Q→ S

q0.u 7−→ u \ L

is well-defined and surjective

In particular |Q| > |S|

17

Regular Expressions [18]

Myhill-Nerode Theorem

Assume q1 = q0.u1, q2 = q0.u2

We have f(q1) = f(q2) iff u1 \ L = u2 \ L iff for all w ∈ Σ∗

q1.w ∈ F ↔ q2.w ∈ F

which is precisely the equivalence for building the minimal automaton

Thus |Q/ ≡ | = |S|

18

Regular Expressions [19]

The Subset Construction

Theorem: A DFA that recognizes L = L((0 + 1)∗01(0 + 1)∗) has at least 3
states.

We build a minimal DFA for this languages. It has 3 states. Hence all DFA
that recognizes the same language has at least 3 states!

We can also show that ≡L has at least 3 equivalence classes

The algorithm for the quotient construction we have shown is O(n2) where
n number of states. Hopcroft has given a O(n log n) algorithm for this (using
partition instead of equivalence relation)

19

Regular Expressions [20]

Accessible states

A = (Q,Σ, δ, q0, F) is a DFA

A state q ∈ Q is accessible iff there exists x ∈ Σ∗ such that q = q0.x

Let Q0 be the set of accessible states, Q0 = {q0.x | x ∈ Σ∗}

Theorem: We have q.a ∈ Q0 if q ∈ Q0 and q0 ∈ Q0. Hence we can consider
the automaton A0 = (Q0,Σ, δ, q0, F ∩Q0). We have L(A) = L(A0)

In particular L(A) = ∅ if F ∩Q0 = ∅.

20

Regular Expressions [21]

Accessible states

Actually we have L(A) = ∅ iff F ∩Q0 = ∅ since if q.x ∈ F then q.x ∈ F ∩Q0

Implementation in a functional language: we consider automata on a finite
collection of characters given by a list cs

An automaton is given by a parameter type a with a transition function and
an initial state

21

Regular Expressions [22]

Accessible states

import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]

closure cs delta qs =
let qs’ = qs >>= (\ q -> map (delta q) cs)
in if isSup qs qs’ then qs

else closure cs delta (union qs qs’)

22

Regular Expressions [23]

Accessible states

accessible :: Eq a => [Char] -> (a -> Char -> a) -> a -> [a]

accessible cs delta q = closure cs delta [q]

-- test emptyness on an automaton

notEmpty :: Eq a => ([Char],a-> Char -> a,a,a->Bool) -> Bool

notEmpty (cs,delta,q0,final) = or (map final (accessible cs delta q0))

23

Regular Expressions [24]

Accessible states

data Q = A | B | C | D | E
deriving (Eq,Show)

delta A ’0’ = A delta A ’1’ = B
delta B ’0’ = A delta B ’1’ = B
delta C _ = D
delta D ’0’ = E delta D ’1’ = C
delta E ’0’ = D delta E ’1’ = C

as = accessible "01" delta A

test = notEmpty ("01",delta,A,(==) C)

24

Regular Expressions [25]

Accessible states

Optimisation

import List(union)

isIn as a = or (map ((==) a) as)
isSup as bs = and (map (isIn as) bs)

Closure :: Eq a => [Char] -> (a -> Char -> a) -> [a] -> [a]

25

Regular Expressions [26]

Accessible states

closure cs delta qs = clos ([],qs)
where
clos (qs1,qs2) =
if qs2 == [] then qs1
else let qs = union qs1 qs2

qs’ = qs2 >>= (\ q -> map (delta q) cs)
qs’’ = filter (\ q -> not (isIn qs q)) qs’

in clos (qs,qs’’)

26

Regular Expressions [27]

Automatic Theorem Proving

If Σ = {a, b} we have

E = ψ(E) + a(a \ E) + b(b \ E)

and hence E = F iff

ψ(E) = ψ(F)

a \ E = a \ F

b \ E = b \ F

27

Regular Expressions [28]

Automatic Theorem Proving

Given E = (a2 + a3)∗ what is the automaton of abstract states of E?

This gives an automatic way to prove that any number > 2 is a sum of 2s
and 3s

One can prove automatically a(ba)∗ = (ab)∗a or a∗(b+ ab∗) 6= b+ aa∗b∗

One finds a counterexample to (a+ b)∗ = a∗ + b∗

28

Regular Expressions [29]

The Pigeonhole Principle

An important reasoning technique (see Wikipedia)

“If you have more pigeon than pigeonholes then there is at least one pigeonhole
with two pigeons”

If f : X → Y and |X| > |Y | then f is not injective and there exist two
distinct elements with the same image

29

Regular Expressions [30]

The Pigeonhole Principle

Often used to show the existence of an object without building this object
explicitely

Example: in a room with at least 13 people, at least two of them are born
the same month (maybe of different years). We know the existence of these two
people, maybe without being able to know exactly who they are.

30

Regular Expressions [31]

The Pigeonhole Principle

Example: In London, there are at least two people with the same number of
hairs on their heads (assuming no one has more than 1000000 hairs on his head)

For a nice discussion, see

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD09xx/EWD980.html

Other formulation: if we have a bag of numbers, the maximum value is greater
than the average value

31

Regular Expressions [32]

How to prove that a language is not regular?

In a NFA with N states, any path

q0
a1→ q1

a2→ q2 → . . . qn−1
an→ qn

contains a loop as soon as n > N

Indeed, we should have i < j with qi = qj. We apply the Pigeonhole Principle.

This works for NFA as well as for DFA

32

Regular Expressions [33]

How to prove that a language is not regular?

Let Σ be {a, b}

Let L be the language {anbn | n > 0}

We show that L is not regular

We assume that L = L(A) for a NFA A and we derive a contradiction

33

Regular Expressions [34]

How to prove that a language is not regular?

Let N be the number of states of A

Let k > N and w = akbk ∈ L

So there is an accepting path q0
w→ q ∈ F and since we have only N states

we know that there is a loop “at the beginning”: we can write w = xyz with
|xy| 6 N and

q0
x→ s

y→ s
z→ q ∈ F

34

Regular Expressions [35]

How to prove that a language is not regular?

z is of the form ak−mbk with m = |xy|

We have then an accepting path for xz

q0
x→ s

z→ q ∈ F

and since y has to be of the form al, l > 0 then xz is of the form ak−lbk

Since ak−lbk /∈ L we have a contradiction: xz cannot have an accepting path.

35

Regular Expressions [36]

The Pumping Lemma

Theorem: If L is a regular language, there exists n such that if w ∈ L and
n 6 |w| then we can write w = xyz with y 6= ε and |xy| 6 n and for all k > 0
we have xykz ∈ L.

36

Regular Expressions [37]

The Pumping Lemma

Proof: We have a NFA A such that L = L(A). Let n be the number of
states of A. Any path in A of length > n has a loop. We can consider that
w = a1 . . . al defines a path with a loop

q0
x→ q

y→ q
z→ ql

with ql in F and y 6= ε and |xy| 6 n such that w = xyz ∈ L(A) Then we have

q0
x→ q

yk

→ q
z→ ql

for each k and hence xykz in L

37

Regular Expressions [38]

The pumping lemma

For instance Leq ⊆ {0, 1}∗ set of words with an equal number of 0 and 1 is
not regular.

Otherwise, we have n as given by the pumping lemma.

We have 0n1n ∈ Leq and hence

0n1n = xyz

with |xy| 6 n, y 6= ε and xykz ∈ Leq for all k.

But then we have y = 0q for some q > 0 and we have a contradiction for
k 6= 1

38

Regular Expressions [39]

The pumping lemma

Let L be the language of palindromes words x such that x = xR then L is
not regular

Otherwise, we have n as given by the pumping lemma.

We have 0n10n ∈ L and hence

0n10n = xyz

with |xy| 6 n, y 6= ε and xykz ∈ L for all k.

But then we have y = 0q for some q > 0 and we have a contradiction for
k 6= 1

39

Regular Expressions [40]

The pumping lemma

Another proof that Leq ⊆ {0, 1}∗ is not regular is the following.

Assume Leq to be regular then Leq ∩ L(0∗1∗) would be regular, but this is

{0n1n | n > 0}

which we have seen is not regular.

Hence Leq is not regular.

40

Regular Expressions [41]

How to prove that a language is not regular?

Let L be the language {anbn | n > 0}

Theorem: L is not regular

However there is a simple machine with infinitely many states that recognizes
L

The Pumping Lemma is connected to the “finite memory” of FA

41

Regular Expressions [42]

How to prove that a language is not regular?

For the examples

L = {0n1m | n > m}

L′ = {0n1m | n 6= m}

the Pumping Lemma does not seem to work

We can use the closure properties of regular languages

42

Regular Expressions [43]

The Pumping Lemma is not a Necessary Condition

If L = {bkck | k > 0} then L is not regular

If we consider L1 = a+L ∪ (b + c)∗ then L1 is not regular: if L1 is regular
then so is a+L (by intersection with the complement of (b+ c)∗) and then so is
L (by image under the morphism f(a) = ε, f(b) = b, f(c) = c)

However the Pumping Lemma applies to L1 with n = 1

This shows that, contrary to Myhill-Nerode’s Theorem, the Pumping Lemma
is not a necessary condition for a language to be regular

43

Regular Expressions [44]

Applying the Pumping Lemma

L = {0n12n | n > 0} is not regular

Proof: Assume that L is regular. By the Pumping Lemma there exists N
such that if w ∈ L and N 6 |w| then we can write w = xyz with |xy| 6 N and
y 6= ε and xykz ∈ L for all k.

Take w = 0N12N . We have N 6 |w| and w ∈ L. So we can write w = xyz
with |xy| 6 N and y 6= ε and xykz ∈ L for all k. Since w = 0N12N and y 6= ε
we have y = 0p for some p > 0. But then xy /∈ L, contradiction. So L is not
regular. Q.E.D.

Other proof with Myhill-Nerode: 0k1 \ L = {12k−1}, infinitely many abstract
states.

44

