Kurs: MAN321/TMV026 Ändliga automater
Plats: M-huset
Tid: 08.30-12.30
Datum: 2007-05-31 No help documents
Telefonvakt: Thierry Coquand, 7721030
The questions can be answered in english or in swedish.
total $30 ; \geq 13: 3, \geq 19: 4, \geq 25: 5$
total $30 ; \geq 13: \mathrm{G}, \geq 21$: VG

1. What is, mathematically, a context-free Language (1p)? Give, with motivation, an example of a language which is context-free, but not regular (1p) and an example of a language which is not context-free (1p)
2. Let $A=\left(Q, \Sigma, \delta, q_{0}, F\right)$ be a DFA. We recall that we define $q . x$ for $x \in \Sigma^{*}$ by recursion

$$
q \cdot \epsilon=q, \quad q \cdot(a x)=(q \cdot a) \cdot x
$$

Explain why we have $q \cdot(x y)=(q \cdot x) \cdot y$ for all $x, y \in \Sigma^{*}(2 \mathrm{p})$
3. Let Σ be $\{0,1\}$. We recall that the regular expressions are on Σ are given by the grammar

$$
E::=0|1| \emptyset|\epsilon| E+E|E E| E^{*}
$$

Give a regular expression E such that

$$
L(E)=\Sigma^{*}-L\left((0+1)^{*} 01\right)
$$

4. Minimize the following automaton (2p)

	a	b
$\rightarrow 1$	2	3
2	5	6
$* 3$	1	4
$* 4$	6	3
5	2	1
6	5	4

5. Build a DFA that recognizes exactly the word in $\{0,1\}^{*}$ ending with the string 1010. (2p)
6. Consider the regular expression $E=a^{*} b^{*}+b^{*} a^{*}$. Build the minimal DFA for E (2p).
7. Is it true that if L is regular then so is $L^{2}-L$? Explain why (2p)
8. Is the following grammar ambiguous? Why (2p)?

$$
S \rightarrow S S|a S b| a b \mid b a
$$

9. Give an example of two languages L_{1}, L_{2} such that
(a) L_{1} is regular, L_{2} is not regular and $L_{1} \cup L_{2}$ is regular (1p)
(b) L_{1} is regular, L_{2} is not regular and $L_{1} \cap L_{2}$ is regular and nonempty (1p)
10. Give a grammar in Chomsky normal form for $\left\{a^{n} b^{2 n} c^{k} \mid k, n>0\right\}$ (1p) and $\left\{a^{n} b^{k} a^{n} \mid k, n>0\right\}(1 \mathrm{p})$.
11. Is the following true of false. Motivate.
(a) Any subset of a regular language is regular (1p)
(b) If L_{n} is a family of regular language then $\cup_{n} L_{n}$ is regular (1p)
12. Explain why $\left\{a^{n} \mid n \geq 0\right\} \cup\left\{b^{n} c^{n} \mid n \geq 0\right\}$ is not regular (2p).
13. We recall that if $L \subseteq \Sigma^{*}$ is a language then and $a \in \Sigma$ then L / a denotes the language $L / a=\left\{u \in \Sigma^{*} \mid a u \in L\right\}$. Explain why if L is regular then so is L / a for any $a \in \Sigma(2 \mathrm{p})$. It follows from this that $(L / a) a=\{u a \mid a u \in L\}$ is also regular. Explain why (1p). If w is the word $a_{1} \ldots a_{n}$ we denote by $\operatorname{shift}(w)$ the word $a_{2} \ldots a_{n} a_{1}$. (If w is the empty word ϵ then $\operatorname{shift}(w)$ is ϵ.) Deduce from the regularity of $(L / a) a$ and $(L / b) b$ that if $L \subseteq\{a, b\}^{*}$ is regular then so is $\{\operatorname{shift}(w) \mid w \in L\}$ (2p).
