
On the axiom of extensionality

May 17, 2010

Introduction

The goal of this note is to extend Gandy’s interpretability result [2] of extensional type theory
in intensional type theory for simple type theory, to a dependent type system with one universe.
For simple type theory, Gandy observed that any definable term is extensional. As formulated
in [2], this reflects the fact that “the mathematician believes that the complex quantities which
he builds up from the primitives by the usual logical operations will also be extensional”. The
goal of this note is to analyse this result in the context of dependent type theory, showing how
to extend type theory with an extensional equality on each type. An important methodological
remark about this approach is the belief that

equality should not be thought of as inductively defined, with reflexivity as the introduction
rule, but should be instead defined by recursion on the type

For dependent types, equality at an universe is defined to be isomorphism. (A crucial point
is to precise what isomorphic means; the equality will be extensional equality.) So, in any
statement replace a type by an isomorphic one. V. Voevodsky [6] emphasizes the difference
between type theory and set theory in this respect. In set theory, we cannot replace a set with
two elements X = {a, b} by another one Y = {0, 1} in an arbitrary statement. For instance,
in the statement a ∈ X, we cannot replace X by Y . However, X and Y are isomorphic. Here
would be a corresponding statement for type theory, with no mention of equality. We consider
a type system with a type of natural numbers N , a type of boolean N2, unit type N1 and sum
type A+B. Then, if we have a definable functional F : U1 → U0 we have F (N1 +N)↔ F N
and F N2 ↔ F (N1 +N1) and F (N +N)↔ F N . Notice that, on the other hand it is possible
to define F such that F (N1) is true and F (N2) false, by taking for instance

F = λX.∀f : X → N2.∀x y : X. f x = f y

The goal of this note is to present a method that should produce a proof of this statement,
and furthermore, an algorithm that will compute from F an isomorphism between F (N1 +N1)
and F Nk. We present it first for simple type lambda calculus. We explain then how this can
be extended to dependent types. Beside giving this algorithm for computing isomorphism, this
method gives a way to interpret extensional equality, subset and quotient of (small) types.

1 Gandy’s extensionality proof

We consider simple type theory with the following types

A ::= o | A→ A

1



We interpret Gandy’s extensional proof as a model construction. Dependent types are used in
a crucial way for building this model. For each simple type A, we define a type [A] and an
equivalence relation eq A on this type [A]. We define [o] to be the type o (thought of as one
universe in some dependent type theory) and eq o to be equivalence. For higher types we take

[A→ B] = (Σf : [A]→ [B]) ∀x1 x2 : [A]. eq A x1 x2 → eq B (f x1) (f x2)

and
eq (A→ B) f g = ∀x : [A]. eq B (f.1 x) (g.1 x)

Notice that the interpretation of function types is non standard: an element f of type [A→ B]
is a pair, the first component f.1 of which is a function of type [A] → [B] and the second
component f.2 is a proof that this function sends equal elements to equal images.

If Γ is a context x1 : A1, . . . , xn : An we define σ : [Γ] to mean that σ is an environment such
that σ(xi) : [Ai] for i = 1, . . . , n. We define

eq (Γ, x : A) (σ1, x = a1) (σ2, x = a2) = eq Γ σ1 σ2 × eq A a1 a2

One can then interpret Gandy’s extensionality proof in the following way. For each term
Γ ` t : A we define tσ of type [A] if σ is of type [Γ] and we define a proof tq : eq A (tσ1) (tσ2)
whenever q : eq Γ σ1 σ2.

For defining these objects, we need first to define p; q : eq A a1 a3 for p : eq A a1 a2 and
q : eq A a2 a3. This corresponds to the proof that eq A is a transitive relation. This is direct by
induction on A, given that the relation eq o, which is logical equivalence, is transitive. We define
also for each element a : [A] an object 1 : eq A a a and for each environment σ : [Γ] an object
1 : eq Γ σ σ. This corresponds to the proof that eq A is a reflexive relation. (Interestingly, the
proof of symmetry is not needed for defining tσ and tq.)

We get then the following computation rules

xσ = σ(x)
(λx.t)σ.1 a = t(σ, x = a)
(λx.t)σ.2 a1 a2 p = t(1, p)
(t u)σ = tσ.1 (uσ)

and, if q is a proof of eq Γ σ1 σ2

xq = q(x)
(λx.t)q a = t(q, 1)
(t u)q = (tσ1.2 (uσ1) (uσ2) (uq)); (tq (uσ2))

There is some choice in the last rule, since we could take instead

(t u)q = (tq (uσ1)); (tσ2.2 (uσ1) (uσ2) (uq))

and this choice is not understood yet: an interpretation should not be ambiguous. In any case,
both choices give an explanation of extensional equality.

2 A symbolic view of this proof

We forget the distinction between A and 〈A〉 (which is a priori dangerous to do, but this works)
and we define

Eqo X Y = (X → Y )× (Y ×X)

2



and
EqA→B f g = ∀a : A. EqB (f a) (g a)

What is now quite weird is that, a priori, this kind of recursion on the types is too simple, but
we can still follow the structure Gandy’s proof, and produce sensible computations. We define
also 〈t〉l of type EqA (tσ1) (tσ2) if l is of type EqΓ σ1 σ2 and c|p of type EqB (c a1) (c a2) if
c : A→ B and p : EqA a1 a2. The computation rules are

xσ = σ(x)
(λx.t)σ a = t(σ, x = a)
(λx.t)σ|p = t(1, p)
(t u)σ = tσ (uσ)

and, if l is a proof of EqΓ σ1 σ2

xl = l(x)
〈t u〉l = (tσ1| 〈u〉l); (〈t〉l (uσ2))
〈λx.t〉l a = 〈t〉(l, 1)

The composition p; q : EqA a1 a3 for p : EqA a1 a2 and q : EqA a2 a3 is defined by induction
on the type A. We have for A = o

p; q = (q.1 ◦ p.1, p.2 ◦ q.2)

and, at higher type
(p; q) a = (p a); (q a)

Similary the reflexivity proof 1 : EqA c c is defined by 1 = (λx.x, λx.x) for A = o and 1 a = 1
at higher type.

We think that this is the kind of calculus D. Turner had in mind in the work [5]. Already
for simple type calculus, it does not seem so easy to design such a calculus without the help of
the model following Gandy’s extensionality proof.

We can use these laws to effectively compute equality proofs. For instance, if N1 is of type
o with inhabitant 0 : N1 we have an element

λX.(λx.λy.x, λf.f 0) : ∀X : o.Eqo X (N1 → X)

and hence
λX.(λx.λy.x, λz.z 0) : Eqo→o f g

where f = λX.X and g = λX.N1 → X. On the other hand, we have Φ = λh.(h N1)→ (h N1)
which is of type (o→ o)→ o. We deduce that we have

Φ()|λX.(λx.λy.x, λz.z 0) : Eqo (Φ f) (Φ g)

This means that we get a proof of this equivalence of Φ f and Φ g. We can in this way transform
any proof of Φ f to a proof of Φ g. For instance if we apply this to λx.x which is a proof of
Φ f = N1 → N1, we get a proof of Φ g = (N1 → N1)→ (N1 → N1) which is λz.λx.z 0.

3



3 Simple type theory

We give the rules of type formation

Γ `
Γ ` N : U

Γ `
Γ ` N2 : U

Γ `
Γ ` o : U

Γ ` X1 : U Γ ` X2 : U
Γ ` X1 → X2 : U

and for forming propositions

Γ ` ϕ1 : o Γ ` ϕ2 : o
Γ ` ϕ1 → ϕ2 : o

Γ ` ϕ1 : o Γ ` ϕ2 : o
Γ ` ϕ1 ∧ ϕ2 : o

Γ, x : X ` ϕ : o
Γ ` ∀x : X.ϕ : o

Γ, x : X ` ϕ : o
Γ ` ∃x : X.ϕ : o

We have special propositions ⊥: o and > : o with 0 : >.
We have the rules of natural deductions:

Γ ` p : ϕ1 → ϕ2 Γ ` q : ϕ1

Γ ` app(p, q) : ϕ2

Γ ` p : ∀x : X.ϕ Γ ` t : X
Γ ` app(p, t) : ϕ(x/t)

Γ, x : X ` p : ϕ
Γ ` λx.p : ∀x : X.ϕ

Γ, x : ϕ1 ` p : ϕ2

Γ ` λx.p : ϕ1 → ϕ2

Γ ` pi : ϕi

Γ ` (p1, p2) : ϕ1 ∧ ϕ2

Γ ` r : ϕ1 ∧ ϕ2

Γ ` p r : ϕ1

Γ ` r : ϕ1 ∧ ϕ2

Γ ` q r : ϕ2

Γ ` t : X Γ ` p : ϕ(x/t)
Γ ` (t, p) : ∃x : X.ϕ

Γ ` r : ∃x : X.ϕ Γ ` p : ∀x : X.ϕ→ ψ

Γ ` Elim(r, p) : ψ
with the computation rule Elim((t, p), q) = app(app(q, t), p).

We add
Γ ` p :⊥ Γ ` X : U

Γ ` Exit p : X
Γ ` p :⊥ Γ ` ϕ : o

Γ ` Exit p : ϕ
We define the extensional equality EqX a1 a2 : o by induction on X. We take Eqo p1 p2 to

be (p1 → p2) ∧ (p2 → p1). The equality on N2 is defined by cases

EqN2
0 0 = EqN2

1 1 = > EqN2
0 1 = EqN2

1 0 =⊥

Finally we define EqX→Y f1 f2 = ∀x : X.EqY app(f1, x) app(f2, x).
It is possible to define by induction on X

Γ ` t : X
Γ ` ref t : EqX t t

Γ ` α : EqX t1 t2
Γ ` α−1 : EqX t2 t1

Γ ` α : EqX t1 t2 Γ ` β : EqX t2 t3
Γ ` α;β : EqX t1 t3

with the computation rules

ref 0 = ref 1 = 0 app(α−1, t) = app(α, t)−1 app(α;β, t) = app(α, t); app(β, t) 0−1 = 0; 0 = 0

4 Addition of subset types

We add the type formation
Γ ` X : U Γ ` ϕ : X → o

Γ ` {X | ϕ} : o
with the rules

Γ ` t : X Γ ` p : app(ϕ, t)
Γ ` (t, p) : {X | ϕ}

Γ ` u :: {X | ϕ}
Γ ` p u : X

Γ ` u :: {X | ϕ}
Γ ` q u : app(ϕ, p u)

4



5 The Axiom of Description

6 Addition of large structures

References

[1] T. Altenkirch. Extensional Equality in Intensional Type Theory. LICS 1999.

[2] R. Gandy. On The Axiom of Extensionality -Part I. The Journal of Symbolic Logic, Vol.
21, 1956.

[3] M. Hofmann. Extensional concepts in intensional type theory. Ph.D. thesis, University of
Edinburgh, 1995.

[4] M. Hofmann and Th. Streicher. The groupoid interpretation of type theory. in 25 years of
Type Theory, 1996.

[5] D. Turner. Extensional Type Theory. Talk, recorder in proceeding of B̊astad, 1989.

[6] V. Voevodsky. Formalization of Mathematics and Homotopy Theory. Lecture at the IAS,
Princeton, 2006.

5


