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Abstract. Recent work in constructive mathematics show that Hilbert’s program works
for a large part of abstract algebra. Using in an essential way the ideas contained in the
classical arguments, we can transform a large number of abstract non effective proofs of
“concrete” statements into elementary proofs. Surprisingly the arguments we get are not
only elementary but also mathematically clearer and not necessarily longer. We present
an example where the simplification was significant enough to suggest an improved version
of a classical theorem.

Introduction

The purpose of this paper is to survey some of our recent works in constructive algebra
[5, 6, 7, 8, 9, 11] from the point of view of mathematical logic. We illustrate the relevance
of simple logical considerations in the development of constructive algebra.

We analyse the logical complexity of statements and proofs in abstract algebra. Two
notions of formulae, being geometric and being first-order, will play an important role. The
two notions are in general incomparable. Both notions have a fundamental “analytical”
property: if a statement is formulated in first-order logic and has a proof, then we know
that it can be proved in a first-order way. Similarly, if a geometric statement holds, it has
a constructive proof which has a particularly simple tree form [2, 8, 11].

We present first some basic examples in algebra which are directly formulated with the
required logical complexity: the first one is an implication between equational statements,
and the second one is coherent, that is geometric and first-order. We present then a more
elaborate example, that was a mathematical conjecture and where a first-order formulation
is not obvious. We can transform further it to a coherent formulation. Knowing a priori
that we had to look for an “analytical” proof involving only simple algebraic manipulations
helps then in finding a proof. We show then on one concrete example, due to Kronecker,
that in this way we can get non trivial algorithms on polynomials. One main theme,
which is also present in the work [12] is the elimination of Noetherian hypotheses to get
a proof of simple first-order statements. In some complex examples, one needs a concrete
interpretation of the notion of minimal prime ideals and we present such an interpretation.

1. Logical complexity

The theory of commutative rings is a first-order theory, and actually even equational.
We need 3 symbols of functions +,×,−, we often write ab for a× b, two constants 0, 1 and
the axioms are

x + (−x) = 0, x + (y + z) = (x + y) + z, x + y = y + x, x + 0 = x
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x1 = x, xy = yx, x(yz) = (xy)z, x(y + z) = xy + xz

Some elementary concepts and theorems of commutative abstract algebra can be formu-
lated in this language. For instance the notion of integral ring is not equational but can
be represented by the universally quantified first-order formula

xy = 0 → (x = 0 ∨ y = 0)

By the completness theorem of first-order logic, we know that if a theorem can be formu-
lated in a first-order way, it has a proof in first-order logic. If it is furthermore formulated
equationally, we even know, by Birkhoff’s completness theorem, that there is a purely
equational proof. As we shall explain below, this can be seen as a partial realisation of
Hilbert’s program.

If we take however a basic book in abstract algebra such as Atiyah-Macdonald or Mat-
sumura [1, 23] we discover that even basic theorems are not formulated in a first-order way
because of the introduction of abstract notions. Such abstract notions are

(1) arbitrary ideals of the rings, that are defined as subsets, and thus not expressed in
a first-order way,

(2) prime or maximal ideals, whose existence relies usually on Zorn’s lemma,
(3) Noetherian hypotheses.

These notions have different levels of non effectivity. To be Noetherian can be captured
by a generalised inductive definition [19], but then we leave first-order logic. The notion
of prime ideals seems even more ineffective, the existence of prime ideals being usually
justified by the use of Zorn’s lemma.

Furthermore a notion such as “being nilpotent” cannot be expressed in a first-order way
since it involves an infinite countable disjunction.

G. Wraith [35] points out the relevance of the notion of geometric formula for constructive
algebra. One defines first the notion of positive formulae: a positive formula is one formula
of the language of rings built using positive atomic formula (equality between two terms)
and the connectives ∨,∧. Special cases are the empty disjunction which is the false formula
⊥, and the empty conjunction which is the true formula >. We allow also existential
quantification and infinite disjunction indexed over natural numbers1. A geometric formula
is an implication between two positive formulae. A coherent formula is a formula which
is both geometric and first-order. Notice that, as special cases, any positive formula is
geometric, and the negation of a positive formula is geometric. As a special case of coherent
formula, we have the notion of Horn formula, which is an implication C → A where C is
a conjunction of atomic formulae, and A an atomic formula. Horn theories correspond to
the notion of atomic systems in [26]. For instance, equational theories are Horn theories.

A coherent way to express that a ring is a field is

∀x. x = 0 ∨ ∃y.xy = 1

1Usually, the notion of “arbitrary” infinite disjunction is allowed, but we shall only need this generality
here in the last section.
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On the other hand, the following formula, classically equivalent, is not geometric

∀x. (¬x = 0) → ∃y.xy = 1

The notion for a ∈ R to be nilpotent is not first-order but it can be expressed as a
positive formula: a is nilpotent if and only if an = 0 for some n ∈ N. On the other hand,
“to be reduced”, that is to have only 0 as a nilpotent element, can be expressed by the
following Horn formula

∀x. x2 = 0 → x = 0

Another typical example [35] of notion expressed geometrically is the notion of flat module
M over a ring R. It says that if we have a relation PX = 0 where P is a row vector with
coefficient in R and X a column vector with elements in M then we can find a rectangular
matrix Q and a vector Y such that QY = X and PQ = 0. Since we don’t say anything
about the size of Q this statement involves implicitely an infinite disjunction over natural
numbers. Thus the notion of flat module is not first-order but geometric.

As stressed by G. Wraith the importance of geometric formula comes from Barr’s theo-
rem.

Theorem 1.1. If a geometric sentence is deducible from a geometric theory in classical
logic, with the axiom of choice, then it is also deducible from it intuitionistically.

Furthermore in this case there is always a proof with a simple branching tree form, of
a dynamical proof [8, 2, 11]. In general, this tree may be infinitely branching, but, if the
theory is coherent, that is geometric and first-order, then the proof is a finitely branching
tree [8, 2, 11].

In order to describe these proofs, it is convenient first to notice that any coherent formula
is equivalent to a conjunction of formulae of the form C → D where C and D are given by
the following grammar

C ::= > | C ∧ A D ::= ⊥ | D ∨ E E ::= (∃−→v )C

We may write D for > → D, A for >∧A and so on, economizing on empty conjunctions,
disjunctions, existential quantifications and brackets as much as possible. Let us call a
closed atomic formula to be a fact. In most algebraic theories, the only facts are equalities.
We can thus consider that a coherent theory is a collection of formulae of the form C → D.
We look at the formulae of the theory T as a collection of rules. The purpose of a dynamical
proof is to establish the correctness of a fact with reference to some given set of facts X
and the dynamical rules belonging to T starting from a given set of facts. A dynamical
proof shows when a given fact F is a consequence of the given set of facts X. Formally,
a dynamical proof is a rooted tree. At the root of the tree is the set of facts X we start
with. Each node consists of a set of facts, representing a state of information. The sets
increase monotonically along the way from the root to the leaves. The successors of a
node are determined by the dynamical rules that add new information to the set of already
available atomic formulas. The different immediate successors of a node correspond to case
distinctions. Every leaf of a dynamical proof contains either a contradiction or the fact
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under investigation F . If all leaves contain a contradiction then the given set of atomic
formulas is contradictory.

In the special case where all formulae are of the form C → A, the tree has no branching.
We get something equivalent to the notion of atomic systems introduced by Prawitz [26].
In particular, equational theories are of this form. The crucial point is that this notion
of dynamical proof is complete for deducibility in a coherent theory [8, 2, 11], and that
a dynamical proof uses only intuitionistically valid inference steps. Barr’s theorem that
we have cited above is a simple consequence: if a coherent sentence is deducible from
a coherent theory in classical logic, even with the axiom of choice, it is a semantical
consequence of the theory, and so, by completness, it can be derived by a dynamic proof,
which is intuitionistically valid.

In the more general case of a geometric theory, where we allow also countable disjunctions
in positive formulae, we have to generalize the notion of dynamical proof with countable
branching, but it can be proved that completeness still holds.

We can now explain in what sense these completeness theorems are related to Hilbert’s
program. We consider the facts, or atomic sentences, as concrete statements. A dynamic
proof can be seen as a “logic-free” and elementary way to derive new concrete statements
from given a given collection of concrete statements. By completeness, we know that if we
can derive a concrete statement from this theory with the use of ideal methods (typically
using Zorn’s lemma), there is also an elementary derivation. Prawitz [26] has a similar
analysis in the case of Horn theories.

It is suggestive to interpret the construction of such a dynamical proof in computational
terms: each geometric axiom can be interpreted as the specification of a subprogram. The
actual computation of a witness from these subprograms can then be seen as a branch in
the dynamical proof. For instance the coherent axiom for fields

x = 0 ∨ ∃y.1 = xy

can be seen as the specification of a program which, given an element a, tests if a = 0 or
not, and in the later case, gives an element b such that ab = 1.

Both the completeness theorem and Barr’s theorem are purely heuristic results from a
constructive point of view however. Indeed, they are both proved using non constructive
means, and do not give algorithms to transform a non effective proof to an effective one. In
practice however, in all examples analysed so far, it has been possible to extract effective
arguments from the ideas present in the non effective proofs. We think that our work,
complementary to the work done in constructive mathematics [28, 14] or in Computable
Algebra [31], provides a partial realisation of Hilbert’s program in abstract commutative
algebra.

2. Some basic examples

In this section, we provide two elementary examples where Barr’s theorem can be in-
voked. They are directly expressed with the appropriate logical complexity. In the next
section, we present more elaborate examples where some work has to be done in order to
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get the right logical complexity. For the first example of this section, Birkhoff’s complet-
ness theorem for equational logic is enough. Both examples appear at the beginning of
[23].

2.1. Dimension over rings. The following result is usually proved using maximal ideals
[23].

Theorem 2.1. If n < m and f : Rn → Rm is surjective linear map then R is a trivial
ring, that is 1 = 0 in R.

What is the logical complexity of this statement? If we fix n and m, let say n = 2 and
m = 3 the statement becomes an implication from a conjunction of equalities to 1 = 0.
More precisely, the hypothesis is that we have a 2× 3 matrix P and a 3× 2 matrix Q such
that PQ = I. That is we have 9 equations of the form

pi1q1j + pi2q2j = δij

with i, j = 1, 2, 3.
A typical classical proof uses existence of maximal ideals: if R is not trivial it has a

maximal ideal m. If k = R/m we have a surjective map from kn to km and this is a
contradiction.

It is possible to transform this argument into equational reasoning. Here we simply
remark that the concrete statement means that 1 belongs to the ideal generated by pi1q1j +
pi2q2j−δij, seeing pik, qkj as indeterminates, and this can be certified with a simple algebraic
identity.

2.2. Projective modules over local rings. We shall analyse a standard theorem on
local rings. Classically a local ring is defined to be a ring with only one maximal ideal.
Constructively, that R is local is expressed by the positive formula

Inv(x) ∨ Inv(1− x)

where Inv(a) means ∃y.ay = 1. It is direct to see that this condition is equivalent to the
implication

Inv(x + y) → (Inv(x) ∨ Inv(y))

Since Inv(xy) ↔ (Inv(x) ∧ Inv(y)), we have, for all x

∀y.Inv(x) ∨ Inv(1− xy)

Classically it is possible to derive from this

Inv(x) ∨ ∀y.Inv(1− xy)

but constructively, this inference is not justified. The last statement says that any element
x is invertible or belongs to the Jacobson radical of R. Classically the Jacobson radical
can be also defined as the intersection of all maximal ideals of R and it is easy to see that
this is the same as the set of elements x such that all 1 − xy are invertible, and this is a
first-order characterisation of the Jacobson radical. Thus, classically we have shown that
in a local ring, an element is invertible or in the Jacobson radical.

We analyse the following theorem.
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Theorem 2.2. If M is a finitely generated projective module over a local ring R then M
is free.

The concrete formulation of this theorem [22] is the following.

Theorem 2.3. If F is an idempotent square matrix over a local ring R then F is similar
to a matrix of the form (

Ir 0
0 0

)
The statement of this theorem, for a fixed size of F is expressed in coherent logic.
We have a first-order classical derivation, that we can transform by proof-theoretic meth-

ods to a constructive first-order derivation.

Proof. (Classical) Let f1, . . . , fn be the column vectors of the matrix F , and let e1, . . . , en

be the column vectors of the identity matrix In, i.e. the canonical basis of Rn, so that
e1 − f1, . . . , en − fn are the column vectors of the matrix In − F . We have that f1, . . . , fn

generate Im(F ) and e1−f1, . . . , en−fn generate Im(In−F ). Also Rn = Im(F )⊕Im(In−
F ). Let J be the Jacobson radical of R, so that R/J = k is a field, classically. We can
extract from f1, . . . , fn and e1 − f1, . . . , en − fn a basis g1, . . . , gn of kn so that, for each i
we have Fgi = gi or 0, i.e. each gi is either in Im(F ) or in Im(In − F ). We can assume
that we group first the vectors in Im(F ). The determinant of the matrix P = g1, . . . , gn

is not 0 modulo J , hence it is invertible in R and g1, . . . , gn is a basis of Rn. The matrix
PFP−1 has then the desired form. �

It is interesting that the next constructive argument we give, and which is extracted
from this proof, is both simpler and more precise than the classical argument.

Proof. (Constructive) We build by induction a sequence of column vectors f ′1, . . . , f
′
n so

that f ′i = fi or ei− fi and that for each m the top m×m minor of the matrix f ′1, . . . , f
′
m is

invertible. This is possible since the sum of the minor for f ′1, . . . , f
′
m−1, fm and the minor

for f ′1, . . . , f
′
m−1, em − fm is the minor for f ′1, . . . , f

′
m−1, em which is invertible by induction.

In this way, we build an invertible matrix f ′1, . . . , f
′
n. We also have Ff ′i = f ′i or 0 for

each i. For a suitable permutation g1, . . . , gn of these vectors, we get a matrix P such that
PFP−1 has the required form. �

Notice that this last proof can be read as an algorithm: given the matrix F and the
“subprogram” which for each x decides whether x or 1 − x is invertible, it computes an
invertible matrix P such that PFP−1 has the required form.

Theorem 2.3 has an interesting history in intuitionistic algebra. It was noticed in [24]
that an intuitionistic proof of this result could be used to give an alternative proof of Swan’s
theorem relating fibre bundles on a compact Hausdorff space M with finitely generated
projective modules over the ring C(M) [34]. The result in [24] is formulated in higher-order
intuitionistic logic. In [27] it is noticed that one can formulate the theorem in first-order
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logic. The formulation there, attributed to A. Kock, is a priori weaker than the formulation
of Theorem 2.32.

Theorem 2.4. If F is a n × n projection matrix over a local ring R then we can find a
n× r matrix X and a r × n matrix Y such that XY = F and Y X = Ir.

This is essentially what is proved in [24]. Notice however that the proof there uses,
a priori, that an element is invertible or not, and is not, as it stands, intuitionistically
valid. We present here an intuitionistic version of this argument, which is very close to the
classical argument.

Proof. Suppose that we have m column vectors that form a n×m matrix X = U1, . . . , Um

that generate Im(F ) (we start with m = n and X = F .) We can then find a m×n matrix
Y such that XY = F (at the beginning, we can take X = F and Y = In or Y = F .) Then
Y X = G is a m × m projection matrix since G2 = Y XY X = Y X = G. We also have
XG = XY X = FX = X. If we write G = (cij), we have thus Uj = ΣcijUi for each j.
Since R is local, cjj invertible or 1− cjj invertible.

If 1 − cjj is invertible for some j we can express Uj in term of Ui, i 6= j and reduce m
by one.

Otherwise cjj is invertible for all j. The determinant of G is of the form r + Πcjj with
r in the ideal generated by cij, i 6= j. Since R is local, and Πcjj is invertible, either this
determinant is invertible or there exists i 6= j such that cij is invertible. In the later case,
since Uj = ΣcijUi we can express Ui in term of Ul, l 6= i and reduce m by one. In the
former case, we have that G is invertible. Since G(Im − G) = 0 this implies G = Im and
we have finished. �

3. Serre’s splitting-off theorem

3.1. Classical formulation. The example we are going to present has its origin in a
paper of Serre [30] from 1958. It is a purely algebraic theorem, but it has a geometrical
intuition. The geometrical statement is roughly that if we have a vector fibre bundle over
a space of finite dimension, and each fiber has a large enough dimension, then we can find
a non vanishing section. We give first the classical formulation, where both hypotheses
and conclusions have a non elementary form, and then a version where the conclusion is
first-order.

We assume R to be a Noetherian ring, and we let Max(R) to be the space of maximal
ideals with the topology induced from the Zariski topology. We assume that the dimension
of Max(R) is finite and < n (that is there is no proper chains of irreducible closed sets of
length n). For instance, if R is a local ring, then Max(R) is a singleton and we can take
n = 1.

If M is a finitely generated module over R and x a maximal ideal of R, then M/xM is
a finite dimensional vector space over R/x and we let rx(M) be its dimension. Intuitively,

2In our formulation, we express that both the image and the kernel of F are free. In the formulation
of [27], we express only that the image of F is free. However since the kernel of F is the image of In − F ,
and the theorem holds for all projection matrix, the two formulations turn out to be equivalent.
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M represents the module of global section of a vector bundle over the space Max(R) and
rx(M) is the dimension of the fiber at the point x. If s ∈ M it is suggestive to write s(x)
the equivalence class of s in M(x) = M/xM . Intuitively s(x) is a continuous family of
sections.

Theorem 3.1. (Serre, 1958) If M is a finitely generated projective module over R such
that n ≤ rx for all maximal ideals x of R then there exists s ∈ M such that s(x) 6= 0 for
all x ∈ Max(R).

The first step is to give a more concrete formulation of this result. We give only the end
result [9, 22]. If F is a matrix over R we let ∆k(F ) be the ideal generated by all minors of
F of order k. We say that a vector of elements of R is unimodular if and only if 1 belongs
to the ideal generated by these elements. With the same hypothesis as before, that the
dimension of Max(R) is < n, we can state the following result.

Theorem 3.2. (Serre, 1958, concrete version) If F is an idempotent matrix over R and
∆n(F ) = 1 then there exists a linear combination of the columns of F which is unimodular.

Interestingly, in this form, the theorem can then be seen as a special case of Swan’s
theorem [32], a theorem conjectured by Serre. We give first the abstract form of the
theorem.

Theorem 3.3. (Swan 1967) If M is a finitely generated module over R such that for each
x ∈ Max(R) the fiber M(x) can be generated by p elements then M can be generated by
p + n− 1 elements.

Theorem 3.4. (Swan, 1967, concrete version) If F is a rectangular matrix over R and
∆n(F ) = 1 then there exists a linear combination of the columns of F which is unimodular.

Only the concrete formulation of these two results reveals their similarities. The gener-
alisation of these theorems to the non Noetherian case has been first established in [9], by
analysing the paper [17] using the techniques that are presented in this note.

Notice that the conclusion of this theorem is expressed in first-order logic, and even
in a positive way. The hypothesis however is non elementary: we suppose both that R is
Noetherian and we have an hypothesis on the dimension of Max(R). It was conjectured that
the theorem holds without the hypothesis that R is Noetherian, and this is the statement
that we want to analyse. It is left to express the hypothesis of the theorem dim (Max(R)) <
n in a first-order way.

3.2. Geometric formulation of Krull dimension. The first step is to give an elemen-
tary formulation of the notion of Krull dimension. It is not so easy a priori since the usual
definition is in term of chain of prime ideals: a ring R is of Krull dimension < n if and
only if there is no proper chain of prime ideals of length n. An elementary definition is
presented in [6]. We introduce first the notion of boundary of an element of a ring: the
boundary Na of a is the ideal generated by a and the elements x such that ax is nilpotent.
We define then inductively Kdim R < n: for n = 0 it means that 1 = 0 ∈ R and for n > 0
it means that we have Kdim (R/Na) < n− 1 for all a ∈ R.
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For each n, we get a formulation of Kdim R < n which is positive, but not first-order.
For instance Kdim R < 1 is expressed by the formula

∀x.∃a.
∨
k∈N

xk(1− ax) = 0

while Kdim R < 2 is expressed by

∀x, y.∃a, b.
∨

k,l∈N

yk(xl(1− ax)− by)) = 0

We can now express the concrete form of the non Noetherian version of Forster’s theorem
(that motivated Swan’s theorem in the Noetherian case).

Theorem 3.5. (Heitmann, 1984, concrete version) If Kdim R < n and if F is a rectangular
matrix over R such that ∆n(F ) = 1 then there exists a linear combination of the columns
of F which is unimodular.

The formulation is now geometric (but not first-order). The hypothesis is a positive
statement (of the form ∀∃ but the existential quantification is over natural numbers) and
the conclusion is purely existential. We expect it to have a constructive proof, of a very
simple nature furthermore. In this case, it is enough to extract this direct proof from the
argument in [17]. This is carried out in [9].

3.3. A new notion of dimension. We present now a notion of dimension, introduced
in [9] and which appears implicitly in [17]. This notion is finer than the notion of Krull
dimension: we always have Hdim R ≤ Kdim R. Interestingly Hdim R ≤ n can be expressed
by a first-order formula, but the logical complexity of this formula increases with n, contrary
to Kdim R ≤ n which stays a positive formula for all n.

We get this definition by changing the nilradical in the definition of Krull dimension by
the Jacobson radical J which is classically the intersection of all maximal ideals, but, as
we have seen, can be defined in a first-order way as the set of elements a such that 1− ax
is invertible for all x ∈ R. We introduce then a new notion of boundary of an element of a
ring: the boundary Ja of a is the ideal generated by a and the elements x such that ax is
in the Jacobson radical of R. We define then inductively Hdim R < n: for n = 0 it means
that 1 = 0 ∈ R and for n > 0 it means that we have Hdim (R/Na) < n− 1 for all a ∈ R.

What is the logical complexity of Hdim R < n? For n = 1 we get that Hdim R < n
means

∀x.∃a.∀y.∃b.1 = b(1− yx(1− ax))

which is a prenex formula with two alternations of quantifiers. For n = 2 we get an even
more complex formula, and the logical complexity increases with n.

In this way we get a way to state a plausible non Noetherian version of Swan’s theorem
in a purely first-order way, as an implication

Hdim R < n → ∆n(F ) = 1 → ∃X, Y.1 = XFY

where X is a raw vector and Y a column vector. For a given n and a given size of F this
is a first-order statement.

9



The form of the statement for Hdim R < n is particular since it is a purely prenex
formula. It is then possible to conclude, by using general proof-theoretic arguments that,
if we have a first-order classical proof, then we also have an intuitionistic proof. From proof
theory, one can use Gentzen sharpened Hauptsatz [16], or a negative translation.

Yet another logical analysis can be obtained using the notion of Skolem functions, and
we think that we provide an example which illustrates well the strength of this notion. We
illustrate the idea only for n = 1. We have seen that Hdim R < 1 is equivalent to

∀x.∃a.∀y.∃b.1 = b(1− yx(1− ax))

If we add two Skolem functions f(x) and g(x, y) to the language of rings, we can reformulate
this as

1 = g(x, y)(1− yx(1− xf(x)))

The non Noetherian version of Swan’s theorem has then a particular simple form, as the
fact that in this equational theory, extended with the equation ∆1(F ) = 1 we can build a
raw vector X and a column vector Y such that 1 = XFY .

It can be checked that if R is Noetherian then Hdim R < n if and only if dim (Max(R)) <
n. A possible generalisation of Serre’s theorem can thus be formulated as follows.

Theorem 3.6. ([9], 2004) If Hdim R < n and if F is a rectangular matrix over R such that
∆n(F ) = 1 then there exists a linear combination of the columns of F which is unimodular.

The formulation of this theorem is now purely coherent, in a coherent theory which has
a specially simple form (no branching). If it holds, it has a purely elementary proof, and
knowing this helps in finding a proof [9]. We can furthermore read the proof presented in
[9] as an algorithm which produces an unimodular column.

4. Kronecker’s theorem

In this section, we show that, though these results may seem quite abstract, being
expressed in first-order logic and a priori far from actual computations, they can be used
to get concrete computations on polynomials. The previous example of Serre’s theorem
may involve too complicated computations, and we shall analyse a simpler statement, the
abstract version of a theorem of Kronecker [17, 7]. In this case, it is possible to get from
an abstract proof a concrete algorithm that could have been formulated by Kronecker [14].
We first give the abstract version, which is proved in [7].

Theorem 4.1. If Kdim R ≤ n and we have n+2 elements g0, g1, . . . , gn+1 then it is possible
to find n + 1 elements f0, f1, . . . , fn so that g0, g1, . . . , gn+1 and f0, f1, . . . , fn generate the
same radical ideal.

This means that some power of fj is zero mod g1, g2, . . . , gn+2 and some power of gi is
zero mod f1, f2, . . . , fn+1. This theorem is expressed in geometric logic, and has a simple
inductive proof [7]. To simplify the discussion, let us take n = 2. As we have explained

10



the meaning of Kdim R ≤ 2 is that for all x1, x2, x3 ∈ R there exists p1, p2, p3 ∈ R and
k1, k2, k3 ∈ N such that

pk3
3 (pk2

2 (pk1
1 (1− p1x1)− p2x2)− p3x3) = 0

Theorem 4.1 can thus be interpreted as follows: given such an algorithm which produces
such an algebraic identity taking as input x1, x2, x3 ∈ R we can give another algorithm,
which produces f0, . . . , f2 as a function of g0, . . . , g3.

This algorithm is furthermore simple and explicit, corresponding to the simplicity of the
the proof in [7], given the algorithm corresponding to Kdim R ≤ 2. Given g1, g2, g3 we find
p1, p2, p3 and k1, k2, k3 such that

pk3
3 (pk2

2 (pk1
1 (1− p1g1)− p2g2)− p3g3) = 0

and we can then take

f1 = g1 + g0h1, f2 = g2 + g0h2, f3 = g3 + g0h3

where

h1 = 1− p1g1, h2 = pk1
1 (1− p1g1)− p2g2, h3 = pk2

2 (pk1
1 (1− p1g1)− p2g2)− p3g3

The correction of the algorithm follows from the fact that we have

1 ∈ <g1, h1>, g1h1 ∈
√

<g2, h2>, g2h2 ∈
√

<g3, h3>, g3h3 ∈
√

0

In [6], we present a direct proof that Kdim Q[X1, . . . , Xn] ≤ n. For n = 2 this reduces
to the remark that if we take 3 elements g1, g2, g3 in Q[X1, X2] then they are algebraically
dependent (See [28, 14].) Such an algebraic dependence relation can always be written

pk3
3 (pk2

2 (pk1
1 (1− p1g1)− p2g2)− p3g3) = 0

for some p1, p2, p3 ∈ Q[X1, X2]. Thus we have Kdim Q[X1, X2] ≤ 2. Since this algorithm
corresponds to find an algebraic dependence relation, complex computations are involved
in general.

We can then combine the two algorithms and we get in this way a non trivial algorithm
on polynomials, which given g0, g1, g2, g3 produces f0, f1, f2 so that g0, g1, g2, g3 and f0, f1, f2

generate the same radical ideal. In general we get a constructive proof for the following
result, which is a formulation of Kronecker’s theorem.

Theorem 4.2. Let polynomials g1, g2, . . . , gm in n indeterminates with rational coeffi-
cients be given, and let m be greater than n + 1. Construct n + 1 polynomials f1, f2, . . . ,
fn+1 in the same indeterminates that are zero mod g1, g2, . . . , gm and have the property
that, for each i = 1, 2, . . . , m, some power of gi is zero mod f1, f2, . . . , fn+1.

The geometrical interpretation of this statement is that any algebraic variety in Cn is
the intersection of at n + 1 hypersurfaces.
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5. Elimination of Noetherian hypotheses

It is remarkable that the Noetherian hypothesis could be avoided in the case of Serre’s
theorem or of the generalisation of Kronecker’s Theorem 4.1. The elimination of Noetherian
hypotheses is also a theme in algebraic geometry [13]. However the method which is usually
used there is to reduce the statement to the Noetherian case. This misses the fact that,
given the logical simplicity of the statement without the Noetherian hypotheses, one can
expect a direct simple proof.

We give two examples of this fact. The first one is elementary and appears in [13].

Theorem 5.1. If M is a finitely generated module over a commutative ring R and u :
M → M a surjective linear map then u is bijective.

The proof given in [13] consists in proving first the statement in the case where the ring
is Noetherian, and then reducing the general case to this case. Essentially the argument
for this reduction is as follows: if M is generated by m1, . . . ,mk the fact that u is surjective
says that we can find rij in R such that mi = Σriju(mj). We have also sij in R such that
u(mi) = Σsijmj. If we let R′ be the subring of R generated by the elements rij and sij then
R′ is Noetherian. If the proposition is proved in the Noetherian case, we get an inverse for
sij with coefficients in R′ ⊆ R. Hence u is bijective.

This argument is not satisfactory from a logical point of view since it proves a first-order
statement using a logically complex notion, the notion of being Noetherian. One would
expect a more direct argument. In this case, one can give indeed one elementary argument
that gives a way also to compute the inverse of u as a polynomial in u. Let A be the
subring of endomorphisms of M generated by u, that is the ring of endomorphisms that
are polynomials in u. Then M has a structure of A-module. Also, if I is the ideal of A
generated by u we have IM = M and so there exists v ∈ 1 + I such that vM = 0 (this
is Corollary 2.5 of [1] which has an elementary proof). But vM = 0 means v = 0 and so
1 ∈ I, which implies that u is invertible.

The second example is more complex, and comes from the work [33]. We say that R
is seminormal iff if b2 = c3 then there exists a ∈ R such that b = a3 and c = a2. This
is a remarkably simple, and first-order, condition. The work of [33] shows that this is
a necessary and sufficient condition for the canonical map Pic R → Pic R[X] to be an
isomorphism. The proof in [33] consists in reducing the problem to the case where R is
Noetherian.

In this case also, the theorem can be formulated in a geometric way. We give here only
the concrete formulation.

Theorem 5.2. If R is seminormal, and M is an idempotent matrix of rank 1 over R[X]
such that there is a unimodular combination of the columns of M(0) over R, then there is
a unimodular combination of the columns of M over R[X].

The hypotheses are coherent without branching for a fixed size of the matrix. One
expects then a priori a direct elementary proof. This is indeed the case, and this has been
carried out in [10].

12



There are examples in algebra, like Krull’s Principal Ideal theorem, or the Regular
Element Property, which states that a regular ideal contains a regular element (see [18]),
where the Noetherian hypothesis is necessary.

6. Interpretation of minimal prime ideals

Besides Noetherian hypotheses, proofs in algebra use abstract objects such as prime
ideals, and even minimal prime ideals, i.e. prime ideals that are minimal for inclusion.
This is used for instance in the classical proof of Theorem 5.2, and in Peskine’s proof of
the Main Theorem of Zariski [25]. Classically the existence of such prime ideals rely on
Zorn’s lemma. Contrary to the use of Noetherian hypotheses, it can be shown generally
that the use of minimal prime can always be eliminated. To simplify we consider only the
case where the commutative ring R is reduced, that is we assume

x2 = 0 → x = 0

and we show in this case how to interpret the existence of a minimal prime ideal of R.
We recall first the elementary description of the Zariski spectrum of R, following Joyal

[5, 20]. We consider the following coherent proposition theory, with axioms

¬D(0) = 0, D(1), D(fg) ↔ D(f) ∧D(g), D(f + g) → D(f) ∨D(g)

It can be shown directly that

D(g1) ∧ · · · ∧D(gn) → D(f1) ∨ · · · ∨D(fm)

holds if, and only if, the monoid generated by g1, . . . , gn meets the ideal generated by
f1, . . . , fm [5]. Since R is reduced ¬D(f) is derivable in this theory if and only if f = 0 in
R. This is a constructive interpretation of the fact that the intersection of all prime ideals
of R is {0}.

A “model” of the propositional theory D(f) corresponds classically to a complement of
a prime ideal. In order to get a complement of a minimal prime ideal, it is enough to add
the axiom

D(f) ∨
∨

gf=0

D(g) (∗)

Indeed the axiom expresses that {f ∈ R | D(f)} is a maximal filter, and so that its
complement is a minimal prime ideal. The axiom (∗) is a geometric infinitary axiom.
Together with the previous coherent axioms, this defines a geometric theory M , whose
models are classically the complement of minimal prime ideals. We are going to show the
formal consistency of this theory M by building constructively a topological model. For
this we introduce the orthogality relation: f ⊥ g if and only if fg = 0. If X ⊆ R we define
the orthogonal of X to be

X⊥ = {y ∈ R | ∀x ∈ X.y ⊥ x}

It is standard [3, 29] that the lattice of sets equal to their biorthogonal is a complete lattice
L. In L we have ∨Xi = (∪Xi)

⊥⊥ and ∧Xi = ∩Xi.
13



Theorem 6.1. The lattice L is a complete Heyting algebra. Furthermore if we take D(f) =
f⊥⊥ ∈ L we get a model of the theory M of complement of minimal prime ideals.

Proof. Notice first that if X ∈ L and a ∈ X then au ∈ X for all u ∈ R. Indeed if b ∈ X⊥

then ab = 0 and so aub = 0. This implies au ∈ X⊥⊥ = X. From this fact, it follows by
elementary reasoning that we have X ∧ (∨Yi) = ∨(X ∧ Yi) in L, that is L is a complete
Heyting algebra. The axiom (∗) is satisfied since if a ∈ f⊥ and a ∈ g⊥ for all g ⊥ f then
we have a ⊥ f and so a ⊥ a. This implies a2 = 0 and so a = 0 since R is reduced. �

Corollary 6.2. D(f) = 0 is derivable in the theory M iff f = 0. More generally, we can
derive D(f1)∧ · · · ∧D(fn) → D(g1)∨ · · · ∨D(gm) in the theory M iff hg1 = · · · = hgm = 0
implies hf1 . . . fn = 0.

Proof. If D(f1) ∧ · · · ∧ D(fn) → D(g1) ∨ · · · ∨ D(gm) is derivable then we have by the
previous Theorem

f⊥⊥1 ∩ · · · ∩ f⊥⊥m ⊆ (g⊥1 ∩ · · · ∩ g⊥m)⊥

which is equivalent to g⊥1 ∩ · · · ∩ g⊥m ⊆ (f1 . . . fn)⊥. Conversely if hg1 = · · · = hgm =
0 implies hf1 . . . fn = 0 and D(f1 . . . fn) holds, then it follows from (∗) that we have
D(g1) ∨ · · · ∨D(gm).

In particular D(f) = 0 is derivable then we get f⊥ = R and so f = 0. �

One interpretation of this corollary is that the intersection of all minimal prime ideals
of R is {0}. This gives an effective interpretation of the existence of minimal prime ideals.

Notice that a consequence of the theory M is

D(f) ∨ ¬D(f) (∗∗)
and this gives a direct explanation of why the Krull dimension decreases at least by one
when we quotient R by the boundary ideal Nf of f : the prime ideals of R/Nf corresponds
exactly the prime ideals containing Nf and (∗∗) implies that no minimal prime ideals of R
contains Nf .
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