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Infinite objects in constructive mathematics

Introduction

The general theme will be the connections between

reasoning and computation

in mathematics, mainly here abstract commutative algebra.

I will survey some recent works in constructive mathematics which bring a
new viewpoint on this question
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Infinite objects in constructive mathematics

Some history

The word algebra comes from the title of a book Hibab al-jabr wal-muqubala
(around 825)

The word algorithm comes from the name of the author of this book Al-
Khwarizmi

Until 1800 most works in algebra are mostly computations (like in computer
algebra)

Example: elimination theory (Poisson), Lagrange
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Some history

The situation changes with Gauss, Abel, Galois

concept of irreducible polynomial: Gauss (cyclotomic polynomial),
fundamental notion for Abel and Galois

Construction of the splitting field of a polynomial

Rational functions of given quantities (which will become domain of rationality
for Kronecker, and later our notion of field)
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Some history

All the proofs have still a direct algorithmic interpretation

Galois insists on the ideal character of these computations

“If now, you give me an equation that you have in any way you like and you
want to know whether it is or not solvable by radicals, I have nothing to do but to
indicate to you the way to reply to the question, but whithout to obliging either
myself or anyone else to do so. In other word, the calculations are impracticable.”

Same for Kronecker. The connection with computations is however essential
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Some history

The connection between reasoning and algorithms became then less and less
clear, typically through the different versions that Dedekind will give to his theory
of ideals

Hilbert: all ideals of K[X1, . . . , Xn] are of finite type

Noetherian: all ideals are of finite type

This proposition has no computational content, and it is logically complex
(technically it cannot be expressed in first-order logic)
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Some history

Example: any polynomial P of degree > 1 in K[X] has an irreducible factor,
given a field K

If P is not irreducible, P = QR with 1 6 d(Q) < d(R) and we can find an
irreducible factor of Q by induction. This looks like an algorithm but even if K is
concretely given and computable it can be shown that there is no algorithm for
finding an irreducible factor in general

The property: “to be irreducible” is not decidable in general (in some special
cases it is)

The connection with computation, maybe unfeasible but which was always
possible in theory, even for Dedekind, is lost
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Some history

Abstract commutative algebra has become one of the “less computational”
part of mathematics (if one looks at the proofs). One of the rare part which uses
the general form of the Axiom of Choice

Theorem: (Krull) An element is nilpotent iff it belongs to all prime ideals

Theorem: Any field has an algebraic closure, unique up to isomorphism

If we prove in commutative algebra the existence of an object satisfying a
simple “concrete” property, it is not clear if this proof gives a way to compute
this object
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Example: Kronecker’s theorem

Theorem: An algebraic variety in Cn is the intersection of n+1 hypersurfaces

Given (let say) n = 3 and 5 given polynomials with 3 variables, can one use an
abstract proof of this theorem and compute 4 polynomials that define the same
variety?
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Hilbert’s Program

This was one issue raised during the debate between Hilbert and Brouwer

Hilbert’s program: if we prove using ideal methods a concrete statement,
one can always eliminate the use of these ideal elements and obtain a purely
elementary proof

Ideal methods: use of prime ideals, maximal ideals, valuation rings, local-global
principle, non constructive reasoning, . . .

Hilbert: existence = logical consistency
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Hilbert’s Program

What is constructive mathematics?

Mathematics developped using intuitionistic logic: Richman, Lombardi, . . .

(No need to be explicit about algorithms)

Proof theory: completeness theorem for first-order logic and cut-elimination
results
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Hilbert’s Program

Recent work in constructive mathematics shows that Hilbert’s program works
for a large part of abstract algebra providing a constructive explanation of some
abstract methods used in mathematics

Furthermore this follows Hilbert’s idea of replacing an “infinite ideal object”
by a syntactical theory that describes it
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Zariski spectrum

Fundamental object in abstract algebra, usually defined as a set of prime ideals
of a ring R with the basic open

D(a) = {p | a /∈ p}

This is a spectral space: the compact open form a distributive lattice. They
are exactly the finite union D(a1) ∨ · · · ∨D(an)

However, even if the ring R is given concretely (discrete) it may be difficult
to show effectively the existence of one prime ideal

Often, what matters is not one particular prime ideals, but the collection of
all prime ideals.

12



Infinite objects in constructive mathematics

Zariski spectrum

Zariski spectrum is best seen as a point-free space (cf. Menger, 1940, de
Bruijn 1967)

A. Joyal (1972) definition of the Zariski spectrum

We consider the distributive lattice defined by the generators D(a), a ∈ R
(seen as formal symbols) and the relations

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a + b) 6 D(a) ∨D(b)
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Zariski spectrum

We have D(a2) = D(a) and D(an) = D(a) if n > 1

All elements can be written on the form

D(a1, . . . , an) = D(a1) ∨ · · · ∨D(an)

We have D(a, b) = D(a + b, ab)

If D(ab) = 0 then D(a + b) = D(a, b)

(Intuitively D(f) is the “open set” over which the function f is 6= 0)

D(a) 6 D(b1, . . . , bm) if a is in the radical of the ideal generated by b1, . . . , bm
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Zariski spectrum

Theorem: D(a1) ∧ · · · ∧ D(an) 6 D(b1, . . . , bm) holds iff the product
a1 . . . an is in the radical of the ideal generated by b1, . . . , bm

This is also known as the formal version of the Nullstellensatz. This can be
seen as a cut-elimination result: any proof can be reduced to a direct proof

If R polynomial ring over Q, D(p) can be thought of as the complement of
the set of zeros of p (in some algebraic closure). But following Kronecker we see
D(p) as a pure symbol.
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Zariski spectrum

This definition is purely algebraic: we manipulate only rings and lattices,
R 7−→ Zar(R) is a functorial construction

Even if R is discrete (we have an algorithm to decide the equality in R), the
lattice Zar(R) does not need to be discrete

Counter-example with Kripke model: Z → Z[1/2] is injective but Zar(Z) →
Zar(Z[1/2]) is not
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Krull dimension of a ring

The Krull dimension of a ring is defined to be the maximal length of proper
chain of prime ideals.

In fact, one can give a purely algebraic definition of the Krull dimension of a
ring

Inductive definition of dimension of spectral spaces/distributive lattice:
Kdim X 6 n iff for any compact open U we have Kdim Bd(U) < n (cf.
Menger-Urysohn definition of dimension)

To be zero-dimensional is to be a Boolean lattice
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Krull dimension of a lattice

If L is a lattice, we say that u1, . . . , un and v1, . . . , vn are (n-)complementary
iff

u1 ∨ v1 = 1, u1 ∧ v1 6 u2 ∨ v2, . . . , un−1 ∧ vn−1 6 un ∨ vn, un ∧ vn = 0

For n = 1: we get that u1 and v1 are complementary

Proposition: Kdim L < n iff any n-sequence of elements has a complementary
sequence
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Krull dimension of a ring

Kdim R < n is defined as Kdim (Zar(R)) < n

Proposition: Kdim R < n iff for any sequence a1, . . . , an in R there exists a
sequence b1, . . . , bn in R such that, in Zar(R), we have

D(a1, b1) = 1, D(a1b1) 6 D(a2, b2), . . . , D(an−1bn−1) 6 D(an, bn), D(anbn) = 0

This is a first-order condition in the multi-sorted language of rings and lattices
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Example: Kronecker’s theorem

Kronecker in section 10 of

Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
J. reine angew. Math. 92, 1-123 (1882)

proves a theorem which is now stated in the following way

An algebraic variety in Cn is the intersection of n + 1 hypersurfaces
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Kronecker’s Theorem

Theorem: If Kdim R < n then for any b0, b1, . . . , bn there exist a1, . . . , an

such that D(b0, . . . , bn) = D(a1, . . . , an)

This is a (non Noetherian) generalisation of Kronecker’s Theorem

For each fixed n this is a first-order tautology. So, by the completeness
Theorem for first-order logic, it has a first-order proof
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Kronecker’s Theorem

This concrete proof/algorithm, is extracted from R. Heitmann “Generating
non-Noetherian modules efficiently” Michigan Math. J. 31 (1984), 167-180

Though seeemingly unfeasible (use of prime ideals, topological arguments on
the Zariski spectrum) this paper contains implicitely a clever and simple algorithm
which can be instantiated for polynomial rings
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Forster’s Theorem

We say that a sequence s1, . . . , sl of elements of a commutative ring R is
unimodular iff D(s1, . . . , sl) = 1 iff R = <s1, . . . , sl>

If M is a matrix over R we let ∆n(M) be the ideal generated by all the n×n
minors of M

Theorem: Let M be a matrix over a commutative ring R. If ∆n(M) = 1
and Kdim R < n then there exists an unimodular combination of the column
vectors of M

This is a non Noetherian version of Forster’s 1964 Theorem
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Forster’s Theorem

We get a first-order (constructive) proof.

It can be interpreted as an algorithm which produces the unimodular
combination.

The motivation for this Theorem comes from differential geometry

If we have a vector bundle over a space of dimension d and all the fibers are of
dimension r then we can find d + r generators for the module of global sections
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Forster-Swan’s and Serre Splitting-Off Theorem

The same method applies for Forster-Swan’s and Serre Splitting-Off Theorem
that applies to the maximal spectrum

One can represent similarly the maximal spectrum in a first-order way
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Space of valuation

Let L be a field, and R a subring of L

Another spectral space important in mathematics is the space Val(L,R) of
valuation rings of L containing R

Such a ring is a subring V ⊆ L containing R and such that if s in L and
s 6= 0 then s is in V or 1/s is in V

We have always the solution V = L
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Space of valuation

We define the lattice Val(L,R) as the universal solution of the problem
VR : L → Val(L,R) with the conditions

VR(r) = 1 (r ∈ R)

VR(s1) ∧ VR(s2) 6 VR(s1s2) ∧ VR(s1 + s2)

1 = VR(s) ∨ VR(1/s) (s 6= 0)
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Space of valuation

In general we cannot simplify VR(s1) ∧ · · · ∧ VR(sl)

VR(s) ∧ VR(1/s) = VR(s + s−1)

VR((x + y)−1) 6 VR(1/x) ∨ VR(1/y)

1 = VR(x−1) ∨ VR((1− x)−1)
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Space of valuation

Theorem: VR(t1) ∧ · · · ∧ VR(tn) 6 VR(s1) ∨ · · · ∨ VR(sm) holds iff we have
an equality of the form 1 = Σ1/siPi(tj, 1/si)

This is a cut-elimination Theorem, proved by algebraic elimination

This is proved by algebraic elimination of variables
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Space of valuation

Special case: 1 = VR(s/t1) ∨ · · · ∨ VR(s/tn) iff s is integral over the ideal I
generated by t1, . . . , tn in R[t1, . . . , tn, s]. This means that we have an equality

sl = a1s
l−1 + · · ·+ al

where ak is in Ik

Special case: 1 = VR(s) iff 1/s is invertible in R[1/s] iff s is integral over R

We get a constructive reading of the fact that the intersection of valuation
rings containing R is the integral closure of R
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Application: Dedekind Prague’s Theorem

Theorem: If (ΣaiX
i)(ΣbjX

j) = ΣckX
k then each product aibj is integral

over the coefficients ck

This generalises a famous result of Gauss: if all ai, bj are rationals and all ck

are integers then all products aibj are integers

This “may be considered as one of the most basic result in commutative
algebra of the XIXth century . . . It ended up as one exercise in Bourbaki, but
here it is proved in a non constructive way” (Olaf Neumann)

This appears as an exercise in Algebra, Chapter 7 (Diviseurs)
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Application: Dedekind Prague’s Theorem

We get a proof-theoretic reading of the non constructive argument. We take
L = Q(a0, . . . , an, b0, . . . , bm), R = Q and we prove

1 = V (aibj/c0) ∨ · · · ∨ V (aibj/cm)

This corresponds to the non constructive argument: prove this for an arbitrary
valuation
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Application: Dedekind Prague’s Theorem

For n = m = 2 a proof certificate of 1 = V (a0b1/c0) ∨ · · · ∨ V (a0b1/c4) is

(a0b1)6 = p1(a0b1)5 + p2(a0b1)4 + p3(a0b1)3 + p4(a0b1)2 + p5(a0b1) + p6

where
p1 = 3c1, p2 = −3c2

1 − 2c0c2, p3 = c3
1 + 4c0c1c2

p4 = −c2
0c1c3 − 2c0c

2
1c2 − c2

0c
2
2 + 4c3

0c4

p5 = c2
0c

2
1c3 + c2

0c1c
2
2 − 4c3

0c1c4

p6 = −c3
0c1c2c3 + c4

0c
2
3 + c3

0c
2
1c4
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Application: Dedekind Prague’s Theorem

Constructively L → ValR(L) is seen as a (clever) system of notations which
records polynomial identities

Classically ValR(L) is seen as a set of points
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Zariski spectrum and space of valuations

Given any domain R of field of fractions L we have a lattice map

Zar(R) → Val(L,R), D(a) 7−→ V (1/a) (a 6= 0)

This is the center map. It is always injective.

The (constructive) proof of this fact requires cut-elimination

Intuitively: the function f is 6= 0 iff 1/f is finite
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Prüfer domains

For Dedekind the crucial/fundamental property of Dedekind domains is that
any finitely generated (non zero) ideals is invertible

This fundamental property is hard to recover from the (now) standard
definition of Dedekind rings: integrally closed domain Noetherian and such
that any non zero prime ideals is maximal

There is a first-order notion which captures most of the interesting
computations: Prüfer domains
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Prüfer domains

R Domain: if ab = 0 then a = 0 or b = 0

R Arithmetic: the lattice of ideals is distributive

∃u v w. au = bv ∧ b(1− u) = aw

This is a point-free description of: any localisation at any prime is a valuation
domain
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Prüfer domains

Proposition: If R is a Prüfer domain the center map is a bijection. Conversely,
if the center map is injective and R is integrally closed then R is a Prüfer domain

We use the fact that if au = bv and b(1− u) = aw then we have

V (a/b) = V (1/u) ∨ V (1/w)

The proof of the isomorphism can be done without using cut-elimination
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Prüfer domains

Let R be a domain, L its fraction field

Proposition: R is a Prüfer domain iff R is integrally closed and any s in L is
root of a primitive polynomial

Corollary: If S is a Bezout domain and L is an extension of its field of fraction
then the integral closure of R in L is a Prüfer ring

Bezout domain: any finitely generated ideal is principal

In particular: S = Z (number theory) and S = k[X] (algebraic curves)

These two results have simple constructive proofs (hence simple corresponding
algorithms)
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Prüfer domains

We have constructive proofs of the following results.

Proposition: If R is integrally closed and Kdim R[X] 6 2 then R is a Prüfer
domain

Proposition: If R is integrally closed and Kdim (Val(L,R)) 6 1 then R is a
Prüfer domain
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Structure sheaf

Any element of Zar(R) can be written D(b1, . . . , bm) = D(b1) ∨ · · · ∨D(bm)

To simplify we assume that R is an integral domain

We define the structure sheaf O on Zar(R) by

O(D(b1, . . . , bm)) = R[1/b1] ∩ · · · ∩R[1/bm]

Classically, we have a continuous family of local rings Rp, and any element of
R defines a global section
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Local-global principle

O is a sheaf, called the structure sheaf

If in each Rp the linear system AX = B has a solution then it has a global
solution

Constructively we have a covering 1 = D(s1, . . . , sn)

The sytem AX = B has a solution in the ring R[1/si]

We find Xi, ki such that AXi = ski
i B

We have Σuis
ki
i = 1 and so X = ΣuiXi satisfies AX = B

Exactly like “partition of unity” in analysis
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Towards point-free algebraic topology

Let L be an field algebraic extension of a field of k(X)

We define a sheaf on the (point-free) space X = Val(L, k) by

OX(V (s1) ∧ · · · ∧ V (sn)) = E(s1, . . . , sn) integral closure of k[s1, . . . , sn] in
L

E(s) is a Prüfer domain so V (s) is isomorphic to Zar(E(s)) and this sheaf
reduces to the structure sheaf of V (s)

We get a canonical example of scheme (glueing of two affine schemes)
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Towards point-free algebraic topology

If u in L non zero then V (u) and V (u−1) covers the space X

One can show that E(u, u−1)/E(u + u−1) (which is a k-vector space) is
independent of u non zero element of L (non algebraic over L)

This defines H1(X,OX) as an invariant of the algebraic curve X
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Towards point-free algebraic topology

For L = k(X) one finds H1(X,OX) = 0: any element integral over k[X, X−1]
is a sum of an element integral over k[X] and an element integral over k[X−1]

For L = k(x, y), 1 = x2 + y2 + x2y2 one finds H1(X,OX) = k: the element
u = y(1 + x2)/x is integral over k[x, x−1] but cannot be written as the sum of
an element integral over k[x] and an element integral over k[x−1].
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