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Infinite objects in constructive mathematics (2) [1]

Krull dimension

Let L be a distributive lattice. The theory of prime filters of L is the theory
T (X)

X(a ∨ b) → [X(a) ∨X(b)]

X(a ∧ b) ↔ [X(a) ∧X(b)]

X(1) ¬X(0)

One can show: X(a1) ∨ · · · ∨X(ak) is provable iff a1 ∨ · · · ∨ ak = 1

Quite simple Nullstellensatz
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Infinite objects in constructive mathematics (2) [2]

Krull dimension

It is convenient to have the topological intuition from Stone duality: the
models form a space Spec(L) where the basic open are precisely the elements of
a of L

X ∈ D(a) ↔ X(a)

In this case, the basic open D(a) are precisely the compact open subsets of
this space Spec(L)

2



Infinite objects in constructive mathematics (2) [3]

Krull dimension

One considers now the theory TC of chain of prime filters T (X0, . . . , Xn)
saying that each Xi is a prime filter and that we have Xi+1 ⊆ Xi

Xi+1(a) → Xi(a)

To say that L is of Krull dimension < n is to say that we cannot have a proper
chain; this means that for any a1, . . . , an we have

TC ` X0(a1) ∧ · · · ∧Xn−1(an) → X1(a1) ∨ · · · ∨Xn(an)

Some results on constructive theory of Krull dimension for rings and lattices
were obtained by Joyal and Espanol (1981)

3



Infinite objects in constructive mathematics (2) [4]

Krull dimension

By looking systematically for a notion of Nullstellensatz identities for the
theory TC one obtains the following new characterisation

Theorem L is of Krull dimension < n iff for any a1, . . . , an there exists
x1, . . . , xn such that

a1 ∧ x1 = 0, a2 ∧ x2 ≤ a1 ∨ x1, . . . , an ∧ xn ≤ an−1 ∨ xn−1, 1 = an ∨ xn

For instance L is of Krull dimension 0 iff any element has a complement iff L
is a Boolean algebra
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Infinite objects in constructive mathematics (2) [5]

Krull dimension

One gets a nicer characterisation by working in the cHa of ideals

Dimension 0: a ∨ ¬a = 1 (classical logic)

Dimension 1: a ∨ (a → (b ∨ ¬b)) = 1

Dimension 2: a ∨ (a → (b ∨ (b → (c ∨ ¬c)))) = 1

Intermediate logic?? Are finitely generated algebras finite?
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Infinite objects in constructive mathematics (2) [6]

Krull dimension

A finite distributive lattice L is the lattice of downward closed set of a finite
poset, which can be identified with Spec(L)

The Krull dimension is exactly the height of the Hasse diagram associated to
the poset Spec(L)

For Kripke model, we have a way to express as formulae the height of the
associated poset
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Infinite objects in constructive mathematics (2) [7]

Boundary

Analysing this definition suggests to introduce the following notion: if a ∈ L
let the boundary of a be the ideal Ba = a ∨ ¬a = {x ∨ y | x ≤ a, y ∧ a = 0}

“Geometrically” this definition corresponds to the topological boundary of
D(a)

We get then the following inductive definition:

Definition: Kdim(L) < 0 iff 1 =L 0 and Kdim(L) < n + 1 iff for any a ∈ L
we have Kdim(L/Ba) < n
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Infinite objects in constructive mathematics (2) [8]

Boundary

We can transpose this definition to rings: if a ∈ R let the boundary of a be
the ideal Ba generated by a and all elements x such that ax is nilpotent

Definition: Kdim(R) < 0 iff 1 =L 0 and Kdim(R) < n + 1 iff for any a ∈ R
we have Kdim(R/Ba) < n
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Infinite objects in constructive mathematics (2) [9]

Boundary

Unfolding this definition, we get the following Nullstellensatz

Theorem: Kdim(R) < n iff for any a1, . . . , an there exists k1, . . . , kn and
u1, . . . , un such that

ak1
1 (ak2

2 (. . . akn
n (1− anun) · · · − a2u2)− a1u1) = 0

We have yet another example of a reduction of a Π1
1 statement to a Σ0

1

statement

Using this characterisation, one can give a simple constructive proof of
Kdim(Q[X1, . . . , Xn]) = n
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Infinite objects in constructive mathematics (2) [10]

A simple example

A basic result in algebra is the following.

Theorem: A finitely generated projective module over a local ring R is free

Projective module: a direct factor of a free module

Local ring: has only one maximal ideal

These conditions can be expressed more concretely to get something first-order
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Infinite objects in constructive mathematics (2) [11]

A simple example

Only one maximal ideal: this should be the set of elements that are not
invertible

We replace this by the following simpler (logically) definition:

R is local iff

Inv(x + y) → [Inv(x) ∨ Inv(y)] for all x, y iff

Inv(x) ∨ Inv(1− x) for all x

where Inv(x) means that x is invertible
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Infinite objects in constructive mathematics (2) [12]

A simple example

A finitely generated projective module can be represented by an idempotent
matrix

It is represented by an idempotent matrix F , since M is a direct factor of
some Rn

The elements of M are the vector FX for X ∈ Rn
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Infinite objects in constructive mathematics (2) [13]

A simple example

In this way we can simplify the abstract statement to a statement about
idempotent matrix F over a local ring.

The statement of this theorem, for a fixed size of F is first-order and geometric.

The statement in this new form suggest the algorithm form of the proof: given
F of size n we should construct X1, . . . , Xk with k ≤ n such that FX1, . . . , FXk

is a basis of the image of F

The only “subprogram” we can use is given by

∀x.Inv(x) ∨ Inv(1− x)
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Infinite objects in constructive mathematics (2) [14]

A simple example

The concrete version is:

Theorem: If F is an idempotent square matrix over a local ring R then F is
similar to a matrix of the form (

I 0
0 0

)

We can effectively build an invertible P such that PFP−1 is of this form

14



Infinite objects in constructive mathematics (2) [15]

A simple example

We have a first-order classical derivation, that we can transform by proof-
theoretic methods (Friedman’s translation) to a constructive first-order derivation

We know a priori that the proof should have a simple form and can only use
the disjunction Inv(x) ∨ Inv(1− x)

It may be that the proof, as a first-order proof function of the size of the
matrix, is not uniform in the size (but this is not likely)
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Infinite objects in constructive mathematics (2) [16]

Serre’s splitting-off theorem

1958 (J.P. Serre) theorem of existence of free summands in projective modules
(which represents fiber bundles over the maximal spectrum of a ring)

1964 (O. Forster) bounds on the number of generators of a module, in term
of the prime spectrum of a ring

1967 R. Swan refines Forster’s result for maximal spectrum

All these results were about Noetherian rings

What about nonNoetherian rings??
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Infinite objects in constructive mathematics (2) [17]

Serre’s splitting-off theorem

Breakthrough in 1984

Heitmann obtained a nonNoetherian version of Forster’s theorem, and some
nonNoetherian version of Serre’s and Swan’s theorem (which does not generalise
these theorems however)

In 2004: simple constructive proofs of these results (that can be thought of
as algorithms)

As a side product, we got an improvement of Heitman’s results, and a
nonNoetherian generalisation of Serre and Swan’s theorems
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Infinite objects in constructive mathematics (2) [18]

Serre’s splitting-off theorem

Serre (1958) represents algebraically the notion of a vector bundle

Example: tangent bundle of a manifold, on S1 and S2

When is a vector bundle trivial?? A necessary condition is that it admits a
non vanishing section

Example: tangent bundle over S2 is not trivial
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Infinite objects in constructive mathematics (2) [19]

Serre’s splitting-off theorem

Heuristically, if the dimension of each fibers is big w.r.t. the dimension of the
base space, one can find a non vanishing section

Serre obtained a purely algebraic version of this result

If X is a simplical complex, and we have a fiber bundle E(x), x ∈ X, we find
a nowhere vanishing continuous section s(x) ∈ E(x) by defining it stepwise on
simplices of higher and higher dimension

The key fact is that if we have a continuous function on the boundary of
[0, 1]n to Sn we can extend it to [0, 1]n (i.e. πk(Sn) = 0 if k < n)
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Infinite objects in constructive mathematics (2) [20]

Algebraic formulation

The base space is represented by the maximal spectrum Max(R) of a
(commutative) ring R, with the Zariski topology

The vector bundle is represented by a module M over R
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Infinite objects in constructive mathematics (2) [21]

Serre’s splitting-off theorem

Intuitively: R ring of functions over Max(R) and M represents the module of
sections of the fiber bundle

We consider only finitely generated modules over R

Serre shows that the vector bundles correspond exactly to the projective
modules over M

The points x of Max(R) are maximal ideals, and the vector space fiber at x
is the module M/xM over the field R/x. Its dimension is written rx(M)

If s ∈ M we can write s(x) the equivalence class of s in M/xM and M(x)
for M/xM
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Infinite objects in constructive mathematics (2) [22]

Serre’s splitting-off theorem

Serre considers the dimension jdim(R) which is the Krull dimension of Max(R)
(as a subspace of Spec(R))

Assume that R is Noetherian and jdim(R) < k

Theorem: (Serre, 1958) If k ≤ rx(M) for all x ∈ Max(R) then there exists
a non vanishing section s ∈ M , i.e. an element s ∈ M such that s(x) 6= 0 for all
x ∈ Max(R)

We give a first-order formulation of a non Noetherian version of this statement,
which becomes a schema of theorems in the first-order theory of commutative
rings
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Infinite objects in constructive mathematics (2) [23]

Swan’s theorem

Assume that R is Noetherian and jdim(R) = d

Theorem: (Swan, 1967) Assume that rx(M) = r for all x ∈ Max(R) then
M can be generated by r + d elements

(Interestingly the concrete version of the this and Serre’s theorem are almost
the same)

Can this be generalised to the nonNoetherian cases?

For instance Vascancelos and Wiegand, 1978, obtained the bound r(d + 1)
for the number of generators in the nonNoetherian cases
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Infinite objects in constructive mathematics (2) [24]

Concrete version

How to represent concretely a finitely generated projective module M?

It is represented by an idempotent matrix F , since M is a direct factor of
some Rn

The elements of M are the vector FX for X ∈ Rn
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Infinite objects in constructive mathematics (2) [25]

Concrete version

How to represent k ≤ rx(M) for all x ∈ Max(R)?

1 = ∆k(F ) where ∆k(F ) is the ideal generated by all the minors of F of
order k

Indeed for each x ∈ Max(R) the matrix F should be of rank ≥ k over the
field R/xR

Thus the ideal generated by ∆k(F ) is not included in x

This means 1 = ∆k(F )
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Infinite objects in constructive mathematics (2) [26]

Concrete version

Serre’s theorem becomes for a Noetherian ring R such that jdim(R) < k

Theorem: If F is an idempotent matrix and 1 = ∆k(F ) then there exists
X ∈ Rn such that FX is unimodular

A vector (ai) ∈ Rn is unimodular iff there exists ui ∈ R such that Σuiai = 1

Unimodular vector: for each x ∈ Max(R) at least one component does not
belong to x (the ideal generated by the ai is contained in no ideal maximal)
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Infinite objects in constructive mathematics (2) [27]

Concrete version

Indeed we want s ∈ M such that s(x) 6= 0 for all x ∈ Max(R)

This means: we want X ∈ Rn such that FX = (ai) is not 0 modulo x, for
any x ∈ Max(R)

This means that the ideal generated by (ai) is not included in x for any
x ∈ Max(R)

This is equivalent to: 1 belongs to the ideal generated by (ai)
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Infinite objects in constructive mathematics (2) [28]

Heitmann dimension

For the hypotheses Noetherian Heitmann discovered in 1984 that it is probably
not necessary

Interestingly the heart of the matter for eliminating the Noetherian hypotheses
is directly connected to our inductive definition of dimension

This is presented by Heitmann as a trivial, but crucial, remark similar to the
fact that to quotient a ring by a boundary ideal reduces the dimension
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Infinite objects in constructive mathematics (2) [29]

Heitmann dimension

Heitmann in his argument uses a refinement of Krull dimension (to talk about
maximal spectrum) which can be formulated in a first-order way

The intersection of all maximal ideals (Jacobson radical) is the set J(R) of
elements a ∈ R such that 1− ax invertible for all x

We redefine the boundary Ha of a as the ideal generated by a and the set of
elements x such that ax ∈ J(R)

Definition: Hdim(L) < 0 iff 1 =L 0 and Hdim(L) < n + 1 iff for any a ∈ L
we have Hdim(L/Ha) < n
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Infinite objects in constructive mathematics (2) [30]

Heitmann dimension

The statement Hdim(R) < n is expressed by a first-order formula which is
prenex

Its logical complexity increases with n

Hdim(R) < 1 means that for any a there exists x such that a(1−ax) ∈ J(R)

Hdim(R) < 2 means that for any a we have Hdim(R/Ha) < 1 which means
that for any b there exists y such that b(1 − by) ∈ J(R/Ha), which means that
for any z there exists t, u we have a(t(1− zb(1− by))− ua) ∈ J(R)

∀a, b.∃y.∀z.∃t, u∀v∃w. . . .
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Infinite objects in constructive mathematics (2) [31]

Heitmann dimension

The schema of first-order theorems we prove is

Theorem: If Hdim(R) < k then given a m × n rectangular matrix F such
that ∆k(F ) = 1 there exists X ∈ Rn such that FX is unimodular

The proof was obtained by looking at the case of a 3× 2 matrix with k = 2,
which is formulated by a purely first-order statement

The proof in this special case generalises directly
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Infinite objects in constructive mathematics (2) [32]

Heitmann dimension

The statement has the form

A → (t = 0 → ∃x.u = 0)

where A is prenex

We know a priori that if it is provable, it is provable intuitionistically
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Infinite objects in constructive mathematics (2) [33]

Heitmann dimension

This theorem generalises also Swan’s theorem: we get as a corollary that if
a f.g. module M is locally generated by r elements over a ring R such that
Hdim(R) = d then R is generated by d + r elements, as in Swan’s theorem
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Infinite objects in constructive mathematics (2) [34]

Heitmann dimension

Using this, L. Ducos could obtain a nonNoetherian version of Bass cancellation
theorem

Theorem: If Hdim(R) < n and P,Q,N are finitely generated projective
modules such that P is of rank ≥ n and P ⊕N ' Q⊕N then P ' Q
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Infinite objects in constructive mathematics (2) [35]

Where the method may not work

Statement in algebra of the form R Noetherian ` . . .

Regular Element Theorem: if R Noetherian and if

a1x = · · · = anx = 0 → x = 0

then there exists u ∈ <a1, . . . , an> such that ux = 0 → x = 0
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Infinite objects in constructive mathematics (2) [36]

Conclusion

One can make sense in constructive mathematics of relatively recent results
of commutative algebra

The statements and proofs get simpler for this example
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Infinite objects in constructive mathematics (2) [37]

Conclusion

Quite simple considerations on the logical complexity of the statements in
algebra seem already to be useful; for instance, the fact that the elements of a
ring are “simpler” than the prime ideals

Using relatively simple Nullstellensatz theorems one can reduce the logical
complexity of statements and guess a priori an expected complexity for the proof

Can one apply proof theoretic techniques for proofs that use a Noetherian
hypotheses?

Is there a general metatheorem allowing to guess when a Noetherian
assumption can be eliminated?
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Infinite objects in constructive mathematics (2) [38]

Example: Kronecker’s theorem

Kronecker in section 10 of

Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
J. reine angew. Math. 92, 1-123 (1882)

proves a theorem which is now stated in the following way

An algebraic variety in Cn is the intersection of n + 1 hypersurfaces

If we look at the own statement of (direct followers of) Kronecker we find
something close to the formal statement that for any g1, . . . , gn+2 ∈ Q[x1, . . . , xn]
there exists f1, . . . , fn+1 such that

[X(g1) ∧ · · · ∧X(gn+2)] ↔ [X(f1) ∧ · · · ∧X(fn+1)]
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Infinite objects in constructive mathematics (2) [39]

Example: Kronecker’s theorem

Thus the formal approach should be closer here to the original statement of
Kronecker

One works with the system of equations and provability rather than with the
solutions in Cn
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Infinite objects in constructive mathematics (2) [40]

The meaning of Kronecker’s theorem

For Kronecker, the solutions were purely formal, like in the present explanation
of infinite objects as theories

When is f = 0 a consequence of g0 = · · · = gm = 0?

How to deduce consequences? We have two principles

If we have A = 0, B = 0 we have also rA + sB = 0

If we have A2 = 0 we have A = 0

This is exactly to say that f belongs to the radical of the ideal generated by
g0, . . . , gm
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Infinite objects in constructive mathematics (2) [41]

Boundary

The argument of Kronecker, which uses elimination theory, was simplified (?)
later by van der Waerden

Theorem: If a ring R is Noetherian and such that Kdim(R) ≤ n then any
f.g. ideal is radically generated by at most n + 1 elements

General abstract argument, but uses Noetherianity
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Infinite objects in constructive mathematics (2) [42]

Boundary

It turns out that one can prove directly by using the inductive definition of
Krull dimension

Theorem: If Kdim(R) ≤ n then any f.g. ideal is radically generated by at
most n + 1 elements

This result is due to Heitmann (1984)

Using our definitions, we get a direct elementary proof

This can be expected a priori by completeness (and cannot be guessed if one
uses a formulation with prime ideals)
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Infinite objects in constructive mathematics (2) [43]

Boundary

This argument can be instantiated in the case of R = Q[x1, . . . , xn] gives an
algorithm for the following problem:

Given n + 2 polynomials g1, g2, . . . , gn+2 in n indeterminates with
rational coefficients, construct n + 1 polynomials f1, f2, . . . , fn+1 in the
same indeterminates with rational coefficients that are zero mod g1, g2, . . . ,
gn+2 and have the property that, for each i, some power of gi is zero mod f1, f2,
. . . , fn+1

Furthermore the solution, though inspired by “ideal” methods, uses only
methods that Kronecker would have accepted
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Sur un théorème de Kronecker concernant les variétés algébriques
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