Krull Dimension

Thierry Coquand

Trieste, August 2008

Zariski spectrum

Any element of the Zariski lattice is of the form $D\left(a_{1}, \ldots, a_{n}\right)=D\left(a_{1}\right) \vee$ $\cdots \vee D\left(a_{n}\right)$. We have seen that $D(a, b)=D(a+b)$ if $D(a b)=0$

In general we cannot write $D\left(a_{1}, \ldots, a_{n}\right)$ as $D(a)$ for one element a
We can ask: what is the least number m such that any element of $\operatorname{Zar}(R)$ can be written on the form $D\left(a_{1}, \ldots, a_{m}\right)$. An answer is given by the following version of Kronecker's Theorem: this holds if $\mathrm{Kdim} R<m$

Krull dimension of a ring

The Krull dimension of a ring is defined to be the maximal length of proper chain of prime ideals.

In fact, one can give a purely algebraic definition of the Krull dimension of a ring

Inductive definition of dimension of spectral spaces/distributive lattice: Kdim $X \leqslant n$ iff for any compact open U we have $\operatorname{Kdim} B d(U)<n$ (cf. Menger-Urysohn definition of dimension)

To be zero-dimensional is to be a Boolean lattice

Krull dimension of a lattice

If L is a lattice, we say that u_{1}, \ldots, u_{n} and v_{1}, \ldots, v_{n} are (n-)complementary iff

$$
u_{1} \vee v_{1}=1, u_{1} \wedge v_{1} \leqslant u_{2} \vee v_{2}, \ldots, u_{n-1} \wedge v_{n-1} \leqslant u_{n} \vee v_{n}, u_{n} \wedge v_{n}=0
$$

For $n=1$: we get that u_{1} and v_{1} are complement
Proposition: Kdim $L<n$ iff any n-sequence of elements has a complementary sequence

Krull dimension of a lattice

What is important here is the logical complexity
Distributive lattice: equational theory
The notion of complementary sequence is a (first-order) coherent notion

Complementary sequence

If a_{1}, a_{2} and b_{1}, a_{2} have a complementary sequence then so has $a_{1} \vee b_{1}, a_{2}$ and $a_{1} \wedge b_{1}, a_{2}$

If a_{1}, a_{2} and a_{1}, b_{2} have a complementary sequence then so has $a_{1}, a_{2} \vee b_{2}$ and $a_{1}, a_{2} \wedge b_{2}$

In this way to ensure the existence of complementary sequence it is enough to look only at elements in a generating subset of the lattice

Krull dimension of a ring

$\mathrm{K} \operatorname{dim} R<n$ is defined as $\operatorname{Kdim}(\operatorname{Zar}(R))<n$
Proposition: Kdim $R<n$ iff for any sequence a_{1}, \ldots, a_{n} in R there exists a sequence b_{1}, \ldots, b_{n} in R such that, in $\operatorname{Zar}(R)$, we have

$$
D\left(a_{1}, b_{1}\right)=1, D\left(a_{1} b_{1}\right) \leqslant D\left(a_{2}, b_{2}\right), \ldots, D\left(a_{n-1} b_{n-1}\right) \leqslant D\left(a_{n}, b_{n}\right), D\left(a_{n} b_{n}\right)=0
$$

This is a first-order condition in the multi-sorted language of rings and lattices

Example: Kronecker's theorem

Kronecker in section 10 of
Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
J J reine angew. Math. 92, 1-123 (1882)
proves a theorem which is now stated in the following way
An algebraic variety in \mathbb{C}^{n} is the intersection of $n+1$ hypersurfaces

Kronecker's Theorem

Theorem: If $\mathrm{Kdim} R<n$ then for any $b_{0}, b_{1}, \ldots, b_{n}$ there exist a_{1}, \ldots, a_{n} such that $D\left(b_{0}, \ldots, b_{n}\right)=D\left(a_{1}, \ldots, a_{n}\right)$

This is a (non Noetherian) generalisation of Kronecker's Theorem
For each fixed n this is a first-order tautology. So, by the completeness Theorem for first-order logic, it has a first-order proof

It says that if $\operatorname{Kdim} R<n$ then we can write any elements of the Zariski lattice on the form $D\left(a_{1}, \ldots, a_{n}\right)$

Kronecker's Theorem

In particular if R is a polynomial ring $k\left[X_{1}, \ldots, X_{m}\right]$ with $m<n$ then this says that given $n+1$ polynomials we can find n polynomials that have the same set of zeros in an arbitrary algebraic closure of k

Kronecker's Theorem

This concrete proof/algorithm, is extracted from R. Heitmann "Generating non-Noetherian modules efficiently" Michigan Math. J. 31 (1984), 167-180

Though seeemingly unfeasible (use of prime ideals, topological arguments on the Zariski spectrum) this paper contains implicitely a clever and simple algorithm which can be instantiated for polynomial rings

Kronecker's Theorem

Kronecker's Theorem is direct from the existence of complementary sequence
Lemma: If X, Y are complementary sequence then for any element a we have $D(a, X)=D(X-a Y)$

Since we have $D(a, X-a Y)=D(a, X)$ it is enough to show $D(a) \leqslant$ $D(X-a Y)$

$$
\begin{aligned}
& D\left(x_{1}-a y_{1}, x_{2}-a y_{2}\right)=D\left(x_{1}-a y_{1}, x_{2}, a y_{2}\right) \text { since } D\left(x_{2} y_{2}\right)=0 \\
& D\left(x_{1}-a y_{1}, x_{2}, y_{2}\right)=D\left(x_{1}, a y_{1}, x_{2}, y_{2}\right)=D(a) \text { since } D\left(x_{1} y_{1}\right) \leqslant D\left(x_{2}, y_{2}\right)
\end{aligned}
$$

Forster's Theorem

We say that a sequence s_{1}, \ldots, s_{l} of elements of a commutative ring R is unimodular iff $D\left(s_{1}, \ldots, s_{l}\right)=1$ iff $R=<s_{1}, \ldots, s_{l}>$

If M is a matrix over R we let $\Delta_{n}(M)$ be the ideal generated by all the $n \times n$ minors of M

Theorem: Let M be a matrix over a commutative ring R. If $\Delta_{n}(M)=1$ and $\operatorname{Kdim} R<n$ then there exists an unimodular combination of the column vectors of M

This is a non Noetherian version of Forster's 1964 Theorem

Forster's Theorem

We get a first-order (constructive) proof.
It can be interpreted as an algorithm which produces the unimodular combination.

The motivation for this Theorem comes from differential geometry
If we have a vector bundle over a space of dimension d and all the fibers are of dimension r then we can find $d+r$ generators for the module of global sections

Forster's Theorem

The proof relies on the following consequence of Cramer formulae
Proposition: If P is a $n \times n$ matrix of determinant δ and of adjoint matrix \tilde{P} then we have $D(\delta X-\tilde{P} Y) \leqslant D(P X-Y)$ for arbitrary column vectors X, Y in $R^{n \times 1}$

Corollary: If $P P$ is a $n \times n$ matrix of determinant δ and $X, \tilde{P} Y$ are complementary then $D(\delta) \leqslant D(P(\delta X)-Y)$

Serre's Spliting-Off Theorem

This is the special case where the matrix is idempotent
The existence of a unimodular combination of the column in this case has the following geometrical intuition.

We have countinuous family of vector spaces over a base space. If the dimension of each fibers of a fibre bundle is $>$ the dimension of the base space, one can find a non vanishing section

This is not the case in general: Moebius strip, tangent bundle of S^{2}
Vector bundles are represented as finitely generated projective modules

Elimination of noetherian hypotheses

Kronecker's Theorem, Forster's Theorem were first proved with the hypothesis that the ring R is noetherian

The fact that we can eliminate this hypothesis is remarkable
An example of a first-order statement for which we cannot eliminate this hypothesis is the Regular Element Theorem which says that if $\left.I=<a_{1}, \ldots, a_{n}\right\rangle$ is regular (that is $u I=0$ implies $u=0$) then we can find a regular element in I.

