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Krull Dimension

Zariski spectrum

Any element of the Zariski lattice is of the form D(a1, . . . , an) = D(a1) ∨
· · · ∨D(an). We have seen that D(a, b) = D(a + b) if D(ab) = 0

In general we cannot write D(a1, . . . , an) as D(a) for one element a

We can ask: what is the least number m such that any element of Zar(R)
can be written on the form D(a1, . . . , am). An answer is given by the following
version of Kronecker’s Theorem: this holds if Kdim R < m
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Krull Dimension

Krull dimension of a ring

The Krull dimension of a ring is defined to be the maximal length of proper
chain of prime ideals.

In fact, one can give a purely algebraic definition of the Krull dimension of a
ring

Inductive definition of dimension of spectral spaces/distributive lattice:
Kdim X 6 n iff for any compact open U we have Kdim Bd(U) < n (cf.
Menger-Urysohn definition of dimension)

To be zero-dimensional is to be a Boolean lattice
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Krull Dimension

Krull dimension of a lattice

If L is a lattice, we say that u1, . . . , un and v1, . . . , vn are (n-)complementary
iff

u1 ∨ v1 = 1, u1 ∧ v1 6 u2 ∨ v2, . . . , un−1 ∧ vn−1 6 un ∨ vn, un ∧ vn = 0

For n = 1: we get that u1 and v1 are complement

Proposition: Kdim L < n iff any n-sequence of elements has a complementary
sequence
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Krull Dimension

Krull dimension of a lattice

What is important here is the logical complexity

Distributive lattice: equational theory

The notion of complementary sequence is a (first-order) coherent notion
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Krull Dimension

Complementary sequence

If a1, a2 and b1, a2 have a complementary sequence then so has a1 ∨ b1, a2

and a1 ∧ b1, a2

If a1, a2 and a1, b2 have a complementary sequence then so has a1, a2 ∨ b2

and a1, a2 ∧ b2

In this way to ensure the existence of complementary sequence it is enough to
look only at elements in a generating subset of the lattice
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Krull Dimension

Krull dimension of a ring

Kdim R < n is defined as Kdim (Zar(R)) < n

Proposition: Kdim R < n iff for any sequence a1, . . . , an in R there exists a
sequence b1, . . . , bn in R such that, in Zar(R), we have

D(a1, b1) = 1, D(a1b1) 6 D(a2, b2), . . . , D(an−1bn−1) 6 D(an, bn), D(anbn) = 0

This is a first-order condition in the multi-sorted language of rings and lattices
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Krull Dimension

Example: Kronecker’s theorem

Kronecker in section 10 of

Grundzüge einer arithmetischen Theorie der algebraischen Grössen.
J. reine angew. Math. 92, 1-123 (1882)

proves a theorem which is now stated in the following way

An algebraic variety in Cn is the intersection of n + 1 hypersurfaces
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Krull Dimension

Kronecker’s Theorem

Theorem: If Kdim R < n then for any b0, b1, . . . , bn there exist a1, . . . , an

such that D(b0, . . . , bn) = D(a1, . . . , an)

This is a (non Noetherian) generalisation of Kronecker’s Theorem

For each fixed n this is a first-order tautology. So, by the completeness
Theorem for first-order logic, it has a first-order proof

It says that if Kdim R < n then we can write any elements of the Zariski
lattice on the form D(a1, . . . , an)

8



Krull Dimension

Kronecker’s Theorem

In particular if R is a polynomial ring k[X1, . . . , Xm] with m < n then this
says that given n + 1 polynomials we can find n polynomials that have the same
set of zeros in an arbitrary algebraic closure of k
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Krull Dimension

Kronecker’s Theorem

This concrete proof/algorithm, is extracted from R. Heitmann “Generating
non-Noetherian modules efficiently” Michigan Math. J. 31 (1984), 167-180

Though seeemingly unfeasible (use of prime ideals, topological arguments on
the Zariski spectrum) this paper contains implicitely a clever and simple algorithm
which can be instantiated for polynomial rings
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Krull Dimension

Kronecker’s Theorem

Kronecker’s Theorem is direct from the existence of complementary sequence

Lemma: If X, Y are complementary sequence then for any element a we have
D(a,X) = D(X − aY )

Since we have D(a,X − aY ) = D(a,X) it is enough to show D(a) 6
D(X − aY )

D(x1 − ay1, x2 − ay2) = D(x1 − ay1, x2, ay2) since D(x2y2) = 0

D(x1 − ay1, x2, y2) = D(x1, ay1, x2, y2) = D(a) since D(x1y1) 6 D(x2, y2)
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Krull Dimension

Forster’s Theorem

We say that a sequence s1, . . . , sl of elements of a commutative ring R is
unimodular iff D(s1, . . . , sl) = 1 iff R = <s1, . . . , sl>

If M is a matrix over R we let ∆n(M) be the ideal generated by all the n×n
minors of M

Theorem: Let M be a matrix over a commutative ring R. If ∆n(M) = 1
and Kdim R < n then there exists an unimodular combination of the column
vectors of M

This is a non Noetherian version of Forster’s 1964 Theorem
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Krull Dimension

Forster’s Theorem

We get a first-order (constructive) proof.

It can be interpreted as an algorithm which produces the unimodular
combination.

The motivation for this Theorem comes from differential geometry

If we have a vector bundle over a space of dimension d and all the fibers are of
dimension r then we can find d + r generators for the module of global sections
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Krull Dimension

Forster’s Theorem

The proof relies on the following consequence of Cramer formulae

Proposition: If P is a n × n matrix of determinant δ and of adjoint matrix
P̃ then we have D(δX − P̃ Y ) 6 D(PX − Y ) for arbitrary column vectors X, Y
in Rn×1

Corollary: If P P is a n × n matrix of determinant δ and X, P̃Y are
complementary then D(δ) 6 D(P (δX)− Y )
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Krull Dimension

Serre’s Spliting-Off Theorem

This is the special case where the matrix is idempotent

The existence of a unimodular combination of the column in this case has the
following geometrical intuition.

We have countinuous family of vector spaces over a base space. If the
dimension of each fibers of a fibre bundle is > the dimension of the base space,
one can find a non vanishing section

This is not the case in general: Moebius strip, tangent bundle of S2

Vector bundles are represented as finitely generated projective modules
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Krull Dimension

Elimination of noetherian hypotheses

Kronecker’s Theorem, Forster’s Theorem were first proved with the hypothesis
that the ring R is noetherian

The fact that we can eliminate this hypothesis is remarkable

An example of a first-order statement for which we cannot eliminate this
hypothesis is the Regular Element Theorem which says that if I = <a1, . . . , an>
is regular (that is uI = 0 implies u = 0) then we can find a regular element in I.
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