Thierry Coquand

August 2008

Valuation domain

A valuation domain is an integral domain R such that for any u,v in R either v divides u or u divides v

Another formulation is that for any $s \neq 0$ in the field of fraction of R we have s in R or 1/s in R

Theorem: A valuation domain is integrally closed

Indeed assume $s \neq 0$ is integral over R. We have an equation

$$s^n + a_1 s^{n-1} + \dots + a_0 = 0$$

Then either s is in R (and we have finished) or 1/s is in R. But we have $s = a_1 + a_2/s + \cdots + a_0/s^{n-1}$ and hence s is in R

Classicaly a Prüfer domain R is a domain R such that for any prime \mathfrak{p} of R the localisation $R_{\mathfrak{p}}$ is a valuation domain

This means that for any $u, v \neq 0$ in R then we have v/u in $R_{\mathfrak{p}}$ or u/v in $R_{\mathfrak{p}}$

How to write this in a finite way (without points)?

We remark that if we have v/u in R_p then there exists a in R such that p is in D(a) and v/u is in R[1/a]

Hence for any u, v and any \mathfrak{p} there exists a such that \mathfrak{p} is in D(a) and v/u is in R[1/a] or u/v is in R[1/a].

By compactness of the Zariski spectrum we have finitely many elements a_1, \ldots, a_n in R such that $1 = D(a_1, \ldots, a_n)$ and for each i, we have u/v is in $R[1/a_i]$ or v/u is in $R[1/a_i]$.

This is a finite condition but we can simplify it a little

We can first assume $\sum a_i = 1$. Then taking b to be the sum of all a_i such that u/v is in $R[1/a_i]$ we see that u/v is in R[1/b] and v/u is in R[1/1-b]

We have used the fact that if $u_1/v_1 = u_2/v_2$ then $u_1/v_1 = u_2/v_2 = u_1 + u_2/v_1 + v_2$

Thus we get the point-free condition: for any u, v we can find b such that u/v is in R[1/b] and v/u is in R[1/1-b]

This means $u/v = p/b^N$ and $v/u = q/(1-b)^N$ for some N

Since $1=D(b^N,(1-b)^N)$ we can still simplify this to u/v=d/c and v/u=e/1-c

This gives the other equivalent condition: for any u,v there exists c,d,e such that uc=vd and v(1-c)=eu

Notice that this is a simple first-order (and even coherent) condition

A ring satisfying this condition is called *arithmetical*

Local-global principal

Let R be a Prüfer domain

We know that, locally, R is a valuation domain

We know also that a valuation domain is integrally closed

Hence we deduce from a local-global principle that R is integrally closed

We can follow this reasoning and get a direct proof that R is integrally closed from the fact that R is arithmetic (this is yet another illustration of the completeness of coherent logic)

Dedekind Domain

Classically a Dedekind Domain can be defined to be a *Noetherian* Prüfer domain

A Noetherian valuation domain is exactly a *discrete* valuation domain, which happens to be of Krull dimension $\leqslant 1$

Hence (local-global property) a Dedekind domain is of Krull dimension \leqslant 1: a non zero prime ideal is maximal

But several important properties of Dedekind domain hold already for Prüfer domain, which is a *first-order notion* (and which is not necessarily of dimension ≤ 1)

Principal Localization Matrix

A valuation domain is such that the divibility relation is linear

Hence if we have finitely many element x_1, \ldots, x_n one of them divides all the other

Over a Prüfer domain R we deduce that we have a_1, \ldots, a_n such that $1 = D(a_1, \ldots, a_n)$ and x_i divides all x_j in $R[1/a_i]$

As before we can simplify this condition by $1=\Sigma a_i$ and there exists b_{ij} such that $b_{ij}x_j=a_ix_i$

Principal Localization Matrix

In this way we get the existence of a matrix a_{ij} such that $1 = \Sigma a_{ii}$ and $a_{ij}x_j = a_{ii}x_i$

Such a matrix is called a *principal localization matrix* of the sequence x_1, \ldots, x_n

If all x_i are $\neq 0$ we get $a_{ji}x_j = a_{jk}x_i$ and we have

$$\langle a_{1i}, \ldots, a_{ni} \rangle \langle x_1, \ldots, x_n \rangle = \langle x_i \rangle$$

In particular we have an *inverse* of the ideal $\langle x_1, \ldots, x_n \rangle$ (the product is a non zero principal ideal)

Inverse of finitely generated ideal

Dedekind himself thought that the existence of such an inverse was *the* fundamental result about the ring of integers of an algebraic field of numbers (see J. Avigad's historical paper on Dedekind)

Our argument is constructive, thus can be seen as an *algorithm* which computes this inverse over an arbitrary Prüfer domain

All we need is to know constructively

$$\forall x \ y. \exists \ u \ v \ w. \quad xu = yv \land y(1-u) = xw$$

Application

If $I \subseteq J$ are 2 f.g. ideals we can compute a f.g. ideal K such that J.K = I

Indeed this is simple if J is principal, and we can find J' such that J.J' is principal, and then $I.J' \subseteq J.J'$

In particular, if I, J are f.g. ideals since we have $I.J \subseteq I + J$ we can find K f.g. such that I.J = (I + J).K. It follows then that $K = I \cap J$

Hence: the intersection of two f.g. ideals is f.g. and we have an algorithm to find the generators of this intersection

Application

This can be stated as: any Prüfer Domain is coherent

Classically one works with Dedekind Domain, that are Noetherian, and this remarkable fact is usually not stressed (Noetherian implies coherent in a trivial way)

The center map for a Prüfer Domain

Theorem: If R is a Prüfer Domain then the center map ψ : $Zar(R) \rightarrow Val(R)$ is an isomorphism

We show that ψ is surjective

We consider s = x/y with x, y in R

We have u, v, w such that ux = vy and (1 - u)y = wx

We can then check that we have $V_R(x/y)=\psi(D(u,w))$ and $V_R(y/x)=\psi(D(1-u,v))$

The center map for a Prüfer Domain

It may be that ψ is surjective but R is not a Prüfer Domain

An example is $R = \mathbb{Q}[x, y]$ with $y^2 = x^3$ which is not integrally closed

Proposition: If R is integrally closed and the center map is surjective then R is a Prüfer Domain

Gilmer-Hoffmann's Theorem

We present now a simple sufficient condition for R to be a Prüfer domain

For any non zero s in the field of fraction of R we have to find u, v, w in R such that u = vs and (1 - u)s = w

Theorem: If s is a zero of a primitive polynomial in R[X] then we can find u, v, w integral over R such that u = vs and (1 - u)s = w

This is a fundamental result for producing integral elements

Gilmer-Hoffmann's Theorem

We write $a_n s^n + \cdots + a_0 = 0$ with a_n, \ldots, a_0 in R such that $1 = D(a_n, \ldots, a_0)$ We define

$$b_n = a_n, \ b_{n-1} = b_n s + a_{n-1}, \ \dots, \ b_1 = b_2 s + a_1$$

We then check that $b_n, b_n s, \ldots, b_1, b_1 s$ are all integral over R

We consider the ring $S = R[b_n, b_n s, \dots, b_1, b_1 s]$. In this ring we have $1 = D(b_n, b_n s, \dots, b_1, b_1 s)$ and we have s in $S[1/b_i]$ and 1/s in $S[1/b_i s]$

Hence we can find u, v, w in S such that u = vs and (1 - u)s = w

Applications

Theorem: If S is the integral closure of a Bezout Domain R in a field extension of its field of fractions then S is a Prüfer Domain

Indeed if s is in the field of fractions of S then s satisfies a polynomial equation $a_n s^n + \cdots + a_0 = 0$ with a_n, \ldots, a_0 in R such that $1 = D(a_n, \ldots, a_0)$, since R is a Bezout Domain

Two particular important cases are $R = \mathbb{Z}$ (algebraic integers) and R = k[X] (algebraic curves)

Applications

Proposition: If R is a Prüfer Domain and s is in the field of fraction of R then there exists u, w in R such that $R[s] = R[1/u] \cap R[1/w]$. In particular R[s] is integrally closed, and hence, by the Gilmer-Hoffmann's Theorem, R[s] is a Prüfer Domain

Indeed the equality $R[s] = R[1/u] \cap R[1/w]$ follows from $us = v, \ 1-u = ws$

We apply our results to the case of *algebraic curves*: we consider an algebraic extension L of a field of rational functions k(x)

If a is an element of L we have an algebraic relation P(a, x) = 0.

If x does not appear in this relation then a is algebraic over k: it is a *constant* of L. We let k_0 be the field of constants of L.

If x appears, then x is algebraic over k(a) and a is a *parameter* and then L is algebraic over k(a). We write $E(x_1, \ldots, x_n)$ the elements integral over $k[x_1, \ldots, x_n]$

We consider the formal space X = Val(L, k)

Over X we define a sheaf of rings: if U is a non zero element of Val(L, k) it is a disjunction of elements of the form $V(a_1) \wedge \cdots \wedge V(a_n)$.

We define $\mathcal{O}_X(U)$ to be the set of elements f in L such that $U\leqslant V(f)$ in ${\rm Val}(L,k)$

Intuitively any f in L is a meromorphic function on the abstract Riemann surface X and $U \leq V(f)$ means that f is holomorphic over the open U

In particular we have $\Gamma(X, \mathcal{O}_X) = k_0$

This is an algebraic counterpart of the fact that the global holomorphic functions on a Riemann surface are the constant functions

If p is a parameter and b is in E(p) then we have $E(p,1/b)=E(p)[1/b]\label{eq:eq:energy}$ More generally

$\Gamma(V(p) \wedge V(1/b_1, \dots, 1/b_m)) = E(p)[1/b_1] \wedge \dots \wedge E(p)[1/b_m]$

Since E(p) is the integral closure of the Bezout Domain k[p] we have that E(p) is a Prüfer Domain

Hence the sublattice $\downarrow V(p)$ of ${\rm Val}(L,k)$ is isomorphic, via the center map, to ${\rm Zar}(E(p))$

The sheaf \mathcal{O}_X restricted to the basic open V(p) is isomorphic to the affine scheme ${\rm Zar}(E(p)), \mathcal{O}$

Algebraic curves as schemes

The pair X, \mathcal{O}_X is thus a most natural example of a *scheme*, which is the glueing of two affine schemes

For any parameter p the space X is the union of the two basic open $U_0=V(p)$ and $U_1=V(1/p)$

 U_0 is isomorphic to Zar(E(p))

 U_1 is isomorphic to $\operatorname{Zar}(E(1/p))$

The sheaf \mathcal{O}_X restricts to the structure sheaf over each open U_i

The Genus of an Algebraic Curve

Following the usual cohomological argument, one can show

Theorem: The k_0 -vector space $H^1(p) = E(p, 1/p)/(E(p) + E(1/p))$ is independent of the parameter p and hence defines an invariant $H^1(X, \mathcal{O}_X)$ of the extension L/k

In particular for L defined by $y^2 = 1 - x^4$ we find $H^1(x) = \mathbb{Q}$

For $L = \mathbb{Q}(t)$ we find $H^1(t) = 0$