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Prüfer domain

Valuation domain

A valuation domain is an integral domain R such that for any u, v in R either
v divides u or u divides v

Another formulation is that for any s 6= 0 in the field of fraction of R we have
s in R or 1/s in R

Theorem: A valuation domain is integrally closed

Indeed assume s 6= 0 is integral over R. We have an equation

sn + a1s
n−1 + · · ·+ a0 = 0

Then either s is in R (and we have finished) or 1/s is in R. But we have
s = a1 + a2/s+ · · ·+ a0/s

n−1 and hence s is in R
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Prüfer domain

Prüfer domain

Classicaly a Prüfer domain R is a domain R such that for any prime p of R
the localisation Rp is a valuation domain

This means that for any u, v 6= 0 in R then we have v/u in Rp or u/v in Rp

How to write this in a finite way (without points)?

We remark that if we have v/u in Rp then there exists a in R such that p is
in D(a) and v/u is in R[1/a]
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Prüfer domain

Hence for any u, v and any p there exists a such that p is in D(a) and v/u is
in R[1/a] or u/v is in R[1/a].

By compactness of the Zariski spectrum we have finitely many elements
a1, . . . , an in R such that 1 = D(a1, . . . , an) and for each i, we have u/v is in
R[1/ai] or v/u is in R[1/ai].

This is a finite condition but we can simplify it a little

We can first assume Σai = 1. Then taking b to be the sum of all ai such that
u/v is in R[1/ai] we see that u/v is in R[1/b] and v/u is in R[1/1− b]

We have used the fact that if u1/v1 = u2/v2 then u1/v1 = u2/v2 =
u1 + u2/v1 + v2
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Prüfer domain

Thus we get the point-free condition: for any u, v we can find b such that
u/v is in R[1/b] and v/u is in R[1/1− b]

This means u/v = p/bN and v/u = q/(1− b)N for some N

Since 1 = D(bN , (1 − b)N) we can still simplify this to u/v = d/c and
v/u = e/1− c

This gives the other equivalent condition: for any u, v there exists c, d, e such
that uc = vd and v(1− c) = eu

Notice that this is a simple first-order (and even coherent) condition

A ring satisfying this condition is called arithmetical
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Prüfer domain

Local-global principal

Let R be a Prüfer domain

We know that, locally, R is a valuation domain

We know also that a valuation domain is integrally closed

Hence we deduce from a local-global principle that R is integrally closed

We can follow this reasoning and get a direct proof that R is integrally
closed from the fact that R is arithmetic (this is yet another illustration of the
completeness of coherent logic)
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Dedekind Domain

Classically a Dedekind Domain can be defined to be a Noetherian Prüfer
domain

A Noetherian valuation domain is exactly a discrete valuation domain, which
happens to be of Krull dimension 6 1

Hence (local-global property) a Dedekind domain is of Krull dimension 6 1:
a non zero prime ideal is maximal

But several important properties of Dedekind domain hold already for Prüfer
domain, which is a first-order notion (and which is not necessarily of dimension
6 1)
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Prüfer domain

Principal Localization Matrix

A valuation domain is such that the divibility relation is linear

Hence if we have finitely many element x1, . . . , xn one of them divides all the
other

Over a Prüfer domain R we deduce that we have a1, . . . , an such that
1 = D(a1, . . . , an) and xi divides all xj in R[1/ai]

As before we can simplify this condition by 1 = Σai and there exists bij such
that bijxj = aixi
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Principal Localization Matrix

In this way we get the existence of a matrix aij such that 1 = Σaii and
aijxj = aiixi

Such a matrix is called a principal localization matrix of the sequence
x1, . . . , xn

If all xi are 6= 0 we get ajixj = ajkxi and we have

<a1i, . . . , ani><x1, . . . , xn> = <xi>

In particular we have an inverse of the ideal <x1, . . . , xn> (the product is a
non zero principal ideal)
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Inverse of finitely generated ideal

Dedekind himself thought that the existence of such an inverse was the
fundamental result about the ring of integers of an algebraic field of numbers (see
J. Avigad’s historical paper on Dedekind)

Our argument is constructive, thus can be seen as an algorithm which
computes this inverse over an arbitrary Prüfer domain

All we need is to know constructively

∀x y.∃ u v w. xu = yv ∧ y(1− u) = xw
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Application

If I ⊆ J are 2 f.g. ideals we can compute a f.g. ideal K such that J.K = I

Indeed this is simple if J is principal, and we can find J ′ such that J.J ′ is
principal, and then I.J ′ ⊆ J.J ′

In particular, if I, J are f.g. ideals since we have I.J ⊆ I + J we can find K
f.g. such that I.J = (I + J).K. It follows then that K = I ∩ J

Hence: the intersection of two f.g. ideals is f.g. and we have an algorithm to
find the generators of this intersection
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Application

This can be stated as: any Prüfer Domain is coherent

Classically one works with Dedekind Domain, that are Noetherian, and this
remarkable fact is usually not stressed (Noetherian implies coherent in a trivial
way)
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The center map for a Prüfer Domain

Theorem: If R is a Prüfer Domain then the center map ψ : Zar(R) → Val(R)
is an isomorphism

We show that ψ is surjective

We consider s = x/y with x, y in R

We have u, v, w such that ux = vy and (1− u)y = wx

We can then check that we have VR(x/y) = ψ(D(u,w)) and VR(y/x) =
ψ(D(1− u, v))
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The center map for a Prüfer Domain

It may be that ψ is surjective but R is not a Prüfer Domain

An example is R = Q[x, y] with y2 = x3 which is not integrally closed

Proposition: If R is integrally closed and the center map is surjective then R
is a Prüfer Domain
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Gilmer-Hoffmann’s Theorem

We present now a simple sufficient condition for R to be a Prüfer domain

For any non zero s in the field of fraction of R we have to find u, v, w in R
such that u = vs and (1− u)s = w

Theorem: If s is a zero of a primitive polynomial in R[X] then we can find
u, v, w integral over R such that u = vs and (1− u)s = w

This is a fundamental result for producing integral elements
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Gilmer-Hoffmann’s Theorem

We write ans
n+· · ·+a0 = 0 with an, . . . , a0 in R such that 1 = D(an, . . . , a0)

We define

bn = an, bn−1 = bns+ an−1, . . . , b1 = b2s+ a1

We then check that bn, bns, . . . , b1, b1s are all integral over R

We consider the ring S = R[bn, bns, . . . , b1, b1s]. In this ring we have
1 = D(bn, bns, . . . , b1, b1s) and we have s in S[1/bi] and 1/s in S[1/bis]

Hence we can find u, v, w in S such that u = vs and (1− u)s = w
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Applications

Theorem: If S is the integral closure of a Bezout Domain R in a field
extension of its field of fractions then S is a Prüfer Domain

Indeed if s is in the field of fractions of S then s satisfies a polynomial equation
ans

n + · · · + a0 = 0 with an, . . . , a0 in R such that 1 = D(an, . . . , a0), since R
is a Bezout Domain

Two particular important cases are R = Z (algebraic integers) and R = k[X]
(algebraic curves)
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Applications

Proposition: If R is a Prüfer Domain and s is in the field of fraction of
R then there exists u,w in R such that R[s] = R[1/u] ∩ R[1/w]. In particular
R[s] is integrally closed, and hence, by the Gilmer-Hoffmann’s Theorem, R[s] is
a Prüfer Domain

Indeed the equality R[s] = R[1/u]∩R[1/w] follows from us = v, 1−u = ws
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Algebraic curves

We apply our results to the case of algebraic curves: we consider an algebraic
extension L of a field of rational functions k(x)

If a is an element of L we have an algebraic relation P (a, x) = 0.

If x does not appear in this relation then a is algebraic over k: it is a constant
of L. We let k0 be the field of constants of L.

If x appears, then x is algebraic over k(a) and a is a parameter and then
L is algebraic over k(a). We write E(x1, . . . , xn) the elements integral over
k[x1, . . . , xn]
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Algebraic curves

We consider the formal space X = Val(L, k)

Over X we define a sheaf of rings: if U is a non zero element of Val(L, k) it
is a disjunction of elements of the form V (a1) ∧ · · · ∧ V (an).

We define OX(U) to be the set of elements f in L such that U 6 V (f) in
Val(L, k)
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Algebraic curves

Intuitively any f in L is a meromorphic function on the abstract Riemann
surface X and U 6 V (f) means that f is holomorphic over the open U

In particular we have Γ(X,OX) = k0

This is an algebraic counterpart of the fact that the global holomorphic
functions on a Riemann surface are the constant functions
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Algebraic curves

If p is a parameter and b is in E(p) then we have E(p, 1/b) = E(p)[1/b]

More generally

Γ(V (p) ∧ V (1/b1, . . . , 1/bm)) = E(p)[1/b1] ∧ · · · ∧ E(p)[1/bm]
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Algebraic curves

Since E(p) is the integral closure of the Bezout Domain k[p] we have that
E(p) is a Prüfer Domain

Hence the sublattice ↓ V (p) of Val(L, k) is isomorphic, via the center map,
to Zar(E(p))

The sheaf OX restricted to the basic open V (p) is isomorphic to the affine
scheme Zar(E(p)),O
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Algebraic curves as schemes

The pair X,OX is thus a most natural example of a scheme, which is the
glueing of two affine schemes

For any parameter p the space X is the union of the two basic open U0 = V (p)
and U1 = V (1/p)

U0 is isomorphic to Zar(E(p))

U1 is isomorphic to Zar(E(1/p))

The sheaf OX restricts to the structure sheaf over each open Ui
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The Genus of an Algebraic Curve

Following the usual cohomological argument, one can show

Theorem: The k0-vector space H1(p) = E(p, 1/p)/(E(p) + E(1/p)) is
independent of the parameter p and hence defines an invariant H1(X,OX) of the
extension L/k

In particular for L defined by y2 = 1− x4 we find H1(x) = Q

For L = Q(t) we find H1(t) = 0
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