Prüfer domain

Thierry Coquand
August 2008

Valuation domain

A valuation domain is an integral domain R such that for any u, v in R either v divides u or u divides v

Another formulation is that for any $s \neq 0$ in the field of fraction of R we have s in R or $1 / s$ in R

Theorem: A valuation domain is integrally closed
Indeed assume $s \neq 0$ is integral over R. We have an equation

$$
s^{n}+a_{1} s^{n-1}+\cdots+a_{0}=0
$$

Then either s is in R (and we have finished) or $1 / s$ is in R. But we have $s=a_{1}+a_{2} / s+\cdots+a_{0} / s^{n-1}$ and hence s is in R

Prüfer domain

Classicaly a Prüfer domain R is a domain R such that for any prime \mathfrak{p} of R the localisation R_{p} is a valuation domain

This means that for any $u, v \neq 0$ in R then we have v / u in $R_{\mathfrak{p}}$ or u / v in $R_{\mathfrak{p}}$
How to write this in a finite way (without points)?
We remark that if we have v / u in $R_{\mathfrak{p}}$ then there exists a in R such that \mathfrak{p} is in $D(a)$ and v / u is in $R[1 / a]$

Prüfer domain

Hence for any u, v and any \mathfrak{p} there exists a such that \mathfrak{p} is in $D(a)$ and v / u is in $R[1 / a]$ or u / v is in $R[1 / a]$.

By compactness of the Zariski spectrum we have finitely many elements a_{1}, \ldots, a_{n} in R such that $1=D\left(a_{1}, \ldots, a_{n}\right)$ and for each i, we have u / v is in $R\left[1 / a_{i}\right]$ or v / u is in $R\left[1 / a_{i}\right]$.

This is a finite condition but we can simplify it a little
We can first assume $\Sigma a_{i}=1$. Then taking b to be the sum of all a_{i} such that u / v is in $R\left[1 / a_{i}\right]$ we see that u / v is in $R[1 / b]$ and v / u is in $R[1 / 1-b]$

We have used the fact that if $u_{1} / v_{1}=u_{2} / v_{2}$ then $u_{1} / v_{1}=u_{2} / v_{2}=$ $u_{1}+u_{2} / v_{1}+v_{2}$

Prüfer domain

Thus we get the point-free condition: for any u, v we can find b such that u / v is in $R[1 / b]$ and v / u is in $R[1 / 1-b]$

This means $u / v=p / b^{N}$ and $v / u=q /(1-b)^{N}$ for some N
Since $1=D\left(b^{N},(1-b)^{N}\right)$ we can still simplify this to $u / v=d / c$ and $v / u=e / 1-c$

This gives the other equivalent condition: for any u, v there exists c, d, e such that $u c=v d$ and $v(1-c)=e u$

Notice that this is a simple first-order (and even coherent) condition
A ring satisfying this condition is called arithmetical

Local-global principal

Let R be a Prüfer domain
We know that, locally, R is a valuation domain
We know also that a valuation domain is integrally closed
Hence we deduce from a local-global principle that R is integrally closed
We can follow this reasoning and get a direct proof that R is integrally closed from the fact that R is arithmetic (this is yet another illustration of the completeness of coherent logic)

Dedekind Domain

Classically a Dedekind Domain can be defined to be a Noetherian Prüfer domain

A Noetherian valuation domain is exactly a discrete valuation domain, which happens to be of Krull dimension $\leqslant 1$

Hence (local-global property) a Dedekind domain is of Krull dimension $\leqslant 1$: a non zero prime ideal is maximal

But several important properties of Dedekind domain hold already for Prüfer domain, which is a first-order notion (and which is not necessarily of dimension $\leqslant 1$)

Principal Localization Matrix

A valuation domain is such that the divibility relation is linear
Hence if we have finitely many element x_{1}, \ldots, x_{n} one of them divides all the other

Over a Prüfer domain R we deduce that we have a_{1}, \ldots, a_{n} such that $1=D\left(a_{1}, \ldots, a_{n}\right)$ and x_{i} divides all x_{j} in $R\left[1 / a_{i}\right]$

As before we can simplify this condition by $1=\Sigma a_{i}$ and there exists $b_{i j}$ such that $b_{i j} x_{j}=a_{i} x_{i}$

Principal Localization Matrix

In this way we get the existence of a matrix $a_{i j}$ such that $1=\Sigma a_{i i}$ and $a_{i j} x_{j}=a_{i i} x_{i}$

Such a matrix is called a principal localization matrix of the sequence x_{1}, \ldots, x_{n}

If all x_{i} are $\neq 0$ we get $a_{j i} x_{j}=a_{j k} x_{i}$ and we have

$$
<a_{1 i}, \ldots, a_{n i}><x_{1}, \ldots, x_{n}>=<x_{i}>
$$

In particular we have an inverse of the ideal $\left\langle x_{1}, \ldots, x_{n}\right\rangle$ (the product is a non zero principal ideal)

Inverse of finitely generated ideal

Dedekind himself thought that the existence of such an inverse was the fundamental result about the ring of integers of an algebraic field of numbers (see J. Avigad's historical paper on Dedekind)

Our argument is constructive, thus can be seen as an algorithm which computes this inverse over an arbitrary Prüfer domain

All we need is to know constructively

$$
\forall x y . \exists u v w . \quad x u=y v \wedge y(1-u)=x w
$$

Application

If $I \subseteq J$ are 2 f.g. ideals we can compute a f.g. ideal K such that $J . K=I$
Indeed this is simple if J is principal, and we can find J^{\prime} such that $J . J^{\prime}$ is principal, and then $I . J^{\prime} \subseteq J . J^{\prime}$

In particular, if I, J are f.g. ideals since we have $I . J \subseteq I+J$ we can find K f.g. such that $I . J=(I+J) . K$. It follows then that $K=I \cap J$

Hence: the intersection of two f.g. ideals is f.g. and we have an algorithm to find the generators of this intersection

Application

This can be stated as: any Prüfer Domain is coherent
Classically one works with Dedekind Domain, that are Noetherian, and this remarkable fact is usually not stressed (Noetherian implies coherent in a trivial way)

The center map for a Prüfer Domain

Theorem: If R is a Prüfer Domain then the center map $\psi: \operatorname{Zar}(R) \rightarrow \operatorname{Val}(R)$ is an isomorphism

We show that ψ is surjective
We consider $s=x / y$ with x, y in R
We have u, v, w such that $u x=v y$ and $(1-u) y=w x$
We can then check that we have $V_{R}(x / y)=\psi(D(u, w))$ and $V_{R}(y / x)=$ $\psi(D(1-u, v))$

The center map for a Prüfer Domain

It may be that ψ is surjective but R is not a Prüfer Domain
An example is $R=\mathbb{Q}[x, y]$ with $y^{2}=x^{3}$ which is not integrally closed
Proposition: If R is integrally closed and the center map is surjective then R is a Prüfer Domain

Gilmer-Hoffmann's Theorem

We present now a simple sufficient condition for R to be a Prüfer domain
For any non zero s in the field of fraction of R we have to find u, v, w in R such that $u=v s$ and $(1-u) s=w$

Theorem: If s is a zero of a primitive polynomial in $R[X]$ then we can find u, v, w integral over R such that $u=v s$ and $(1-u) s=w$

This is a fundamental result for producing integral elements

Gilmer-Hoffmann's Theorem

We write $a_{n} s^{n}+\cdots+a_{0}=0$ with a_{n}, \ldots, a_{0} in R such that $1=D\left(a_{n}, \ldots, a_{0}\right)$
We define

$$
b_{n}=a_{n}, b_{n-1}=b_{n} s+a_{n-1}, \ldots, b_{1}=b_{2} s+a_{1}
$$

We then check that $b_{n}, b_{n} s, \ldots, b_{1}, b_{1} s$ are all integral over R
We consider the ring $S=R\left[b_{n}, b_{n} s, \ldots, b_{1}, b_{1} s\right]$. In this ring we have $1=D\left(b_{n}, b_{n} s, \ldots, b_{1}, b_{1} s\right)$ and we have s in $S\left[1 / b_{i}\right]$ and $1 / s$ in $S\left[1 / b_{i} s\right]$

Hence we can find u, v, w in S such that $u=v s$ and $(1-u) s=w$

Applications

Theorem: If S is the integral closure of a Bezout Domain R in a field extension of its field of fractions then S is a Prüfer Domain

Indeed if s is in the field of fractions of S then s satisfies a polynomial equation $a_{n} s^{n}+\cdots+a_{0}=0$ with a_{n}, \ldots, a_{0} in R such that $1=D\left(a_{n}, \ldots, a_{0}\right)$, since R is a Bezout Domain

Two particular important cases are $R=\mathbb{Z}$ (algebraic integers) and $R=k[X]$ (algebraic curves)

Applications

Proposition: If R is a Prüfer Domain and s is in the field of fraction of R then there exists u, w in R such that $R[s]=R[1 / u] \cap R[1 / w]$. In particular $R[s]$ is integrally closed, and hence, by the Gilmer-Hoffmann's Theorem, $R[s]$ is a Prüfer Domain

Indeed the equality $R[s]=R[1 / u] \cap R[1 / w]$ follows from $u s=v, 1-u=w s$

Algebraic curves

We apply our results to the case of algebraic curves: we consider an algebraic extension L of a field of rational functions $k(x)$

If a is an element of L we have an algebraic relation $P(a, x)=0$.
If x does not appear in this relation then a is algebraic over k : it is a constant of L. We let k_{0} be the field of constants of L.

If x appears, then x is algebraic over $k(a)$ and a is a parameter and then L is algebraic over $k(a)$. We write $E\left(x_{1}, \ldots, x_{n}\right)$ the elements integral over $k\left[x_{1}, \ldots, x_{n}\right]$

Algebraic curves

We consider the formal space $X=\operatorname{Val}(L, k)$
Over X we define a sheaf of rings: if U is a non zero element of $\operatorname{Val}(L, k)$ it is a disjunction of elements of the form $V\left(a_{1}\right) \wedge \cdots \wedge V\left(a_{n}\right)$.

We define $\mathcal{O}_{X}(U)$ to be the set of elements f in L such that $U \leqslant V(f)$ in $\operatorname{Val}(L, k)$

Algebraic curves

Intuitively any f in L is a meromorphic function on the abstract Riemann surface X and $U \leqslant V(f)$ means that f is holomorphic over the open U

In particular we have $\Gamma\left(X, \mathcal{O}_{X}\right)=k_{0}$
This is an algebraic counterpart of the fact that the global holomorphic functions on a Riemann surface are the constant functions

Algebraic curves

If p is a parameter and b is in $E(p)$ then we have $E(p, 1 / b)=E(p)[1 / b]$
More generally

$$
\Gamma\left(V(p) \wedge V\left(1 / b_{1}, \ldots, 1 / b_{m}\right)\right)=E(p)\left[1 / b_{1}\right] \wedge \cdots \wedge E(p)\left[1 / b_{m}\right]
$$

Algebraic curves

Since $E(p)$ is the integral closure of the Bezout Domain $k[p]$ we have that $E(p)$ is a Prüfer Domain

Hence the sublattice $\downarrow V(p)$ of $\operatorname{Val}(L, k)$ is isomorphic, via the center map, to $\operatorname{Zar}(E(p))$

The sheaf \mathcal{O}_{X} restricted to the basic open $V(p)$ is isomorphic to the affine scheme $\operatorname{Zar}(E(p)), \mathcal{O}$

Algebraic curves as schemes

The pair X, \mathcal{O}_{X} is thus a most natural example of a scheme, which is the glueing of two affine schemes

For any parameter p the space X is the union of the two basic open $U_{0}=V(p)$ and $U_{1}=V(1 / p)$
U_{0} is isomorphic to $\operatorname{Zar}(E(p))$
U_{1} is isomorphic to $\operatorname{Zar}(E(1 / p))$
The sheaf \mathcal{O}_{X} restricts to the structure sheaf over each open U_{i}

The Genus of an Algebraic Curve

Following the usual cohomological argument, one can show
Theorem: The k_{0}-vector space $H^{1}(p)=E(p, 1 / p) /(E(p)+E(1 / p))$ is independent of the parameter p and hence defines an invariant $H^{1}\left(X, \mathcal{O}_{X}\right)$ of the extension L / k

In particular for L defined by $y^{2}=1-x^{4}$ we find $H^{1}(x)=\mathbb{Q}$
For $L=\mathbb{Q}(t)$ we find $H^{1}(t)=0$

