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Spaces as Distributive Lattices

Axiom of Choice

{0, 1}N → [0, 1]

(bn) 7−→ Σbn/2n

This is a surjective map, but it has no continuous section

Unfortunately, the fact that it is surjective is not constructively valid
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Spaces as Distributive Lattices

Axiom of Choice

{−1, 0, 1}N → [−1, 1]

(bn) 7−→ Σbn/2n

This is a surjective map, but it has no continuous section

This time, the fact that it is onto is constructively valid
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Spaces as Distributive Lattices

Completeness Theorem

“If something can be stated simply, it has a simple proof”

∀z.inv(1− uz) ∧ ∀z.inv(1− vz) → ∀z.inv(1− (u+ v)z)
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Spaces as Distributive Lattices

Topology in algebra

There are a lot of examples of use of topology in algebra

Zariski spectrum of a ring, the space of valuations, the notion of scheme, . . .

Problem: the existence of the elements of these spaces is usually proved using
Zorn’s Lemma. How can we represent them computationally?
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Spaces as Distributive Lattices

Topology in algebra

In constructive mathematics, it is possible to keep these rich topological
intuitions by defining a (formal) space to be a distributive lattice

The elements of this lattice have to be thought of as basic open of the space.
We are going to present two examples: the Zariski spectrum of a ring and the
space of valuations of a field.
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Spaces as Distributive Lattices

Distributive lattice

A distributive lattice can be thought of as a logical approximation of rings:
we replace + by ∨ and × by ∧

We have a duality between ∨ and ∧ which is invisible in the theory of rings

We think of the elements U of the lattice as basic open of a topological space
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Spaces as Distributive Lattices

Points

What should be a point? We represent it as a predicate α(U) meaning that
the point is in U . We should have

α(1), ¬α(0)

α(U1 ∨ U2) → α(U1) ∨ α(U2)

α(U1 ∧ U2) ↔ α(U1) ∨ α(U2)

Classically we can think of α as a lattice map L → 2 where 2 is the two
element lattice

A point is similar to the complement of a prime ideal

We write Sp(L) the space of points of L
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Spaces as Distributive Lattices

Points

The topology is in general non separated and we have an order on points

α1 6 α2 iff α1(U) 6 α2(U) for all U

The Krull dimension n of a lattice is the length of maximal proper chain
α0 < · · · < αn
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Spaces as Distributive Lattices

Morphisms

Any lattice map ψ : L1 → L2 defines (by composition) a continuous map
ψ∗ : Sp(L2) → Sp(L1)

Proposition: The map ψ∗ is surjective iff the map ψ is injective

This can easily proved using Zorn’s Lemma. We understand this result as the
fact that we can express the surjectivity of a map in an algebraic way

An example of this situation will be provided by the center map in algebraic
geometry
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Spaces as Distributive Lattices

Zariski spectrum

Fundamental object in abstract algebra, usually defined as a set of prime ideals
of a ring R with the basic open

D(a) = {p | a /∈ p}

This is a spectral space

The compact open form a distributive lattice. They are exactly the finite
union D(a1) ∨ · · · ∨D(an)
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Spaces as Distributive Lattices

Zariski spectrum

However, even if the ring R is given concretely (discrete) it may be difficult
to show effectively the existence of one prime ideal

For instance if N is a very large integer, to give a prime ideal of Z/NZ is to
give a prime factor of N

Often, what matters is not one particular prime ideals, but the collection of
all prime ideals.

11



Spaces as Distributive Lattices

Zariski spectrum

Zariski spectrum is best seen as a point-free space (cf. Menger, 1940, de
Bruijn 1967)

A. Joyal (1972) definition of the Zariski spectrum

We consider the distributive lattice defined by the generators D(a), a ∈ R
(seen as formal symbols) and the relations

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a+ b) 6 D(a) ∨D(b)
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Spaces as Distributive Lattices

Zariski spectrum

In general we define a support of R to be a distributive lattice L with a map
D : R→ L satisfying the relations

D(0) = 0 D(1) = 1 D(ab) = D(a) ∧D(b) D(a+ b) 6 D(a) ∨D(b)

Intuitively D(f) is the “open set” over which the function f is 6= 0

We can distinguish between the properties of an arbitrary support and the
properties of the universal support, the Zariski lattice Zar(R)
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Spaces as Distributive Lattices

Zariski spectrum

For an arbitrary support we have D(a2) = D(a) and D(an) = D(a) if n > 1

We have D(a, b) = D(a+ b, ab)

If D(ab) = 0 then D(a+ b) = D(a, b)

For the Zariski lattice, all elements can be written on the form

D(a1, . . . , an) = D(a1) ∨ · · · ∨D(an)

D(a) 6 D(b1, . . . , bm) if a is in the radical of the ideal generated by b1, . . . , bm
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Spaces as Distributive Lattices

Nullstellensatz

Theorem: D(a1) ∧ · · · ∧ D(an) 6 D(b1, . . . , bm) holds iff the product
a1 . . . an is in the radical of the ideal generated by b1, . . . , bm

This is also known as the formal version of the Nullstellensatz. This can be
seen as a cut-elimination result: any proof can be reduced to a direct proof

If R polynomial ring over Q, D(p) can be thought of as the complement of
the set of zeros of p (in some algebraic closure).

15



Spaces as Distributive Lattices

Nullstellensatz

The proof of the Nullstellensatz is an explicit construction of the Zariski
spectrum (by opposition to a purely abstract universal characterisation)

We consider the (distributive) lattice of radicals of finitely generated ideal and
we define D(a) to be

√
< a >

Notice that in the general the lattice of ideals of a ring is not distributive
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Spaces as Distributive Lattices

Zariski spectrum

This definition is purely algebraic: we manipulate only rings and lattices,
R 7−→ Zar(R) is a functorial construction

Even if R is discrete (we have an algorithm to decide the equality in R), the
lattice Zar(R) does not need to be discrete

Counter-example with Kripke model: Z → Z[1/2] is injective but Zar(Z) →
Zar(Z[1/2]) is not

17



Spaces as Distributive Lattices

Zariski spectrum

Any element of the Zariski lattice is of the form D(a1, . . . , an). We have seen
that D(a, b) = D(a+ b) if D(ab) = 0

In general we cannot write D(a1, . . . , an) as D(a) for one element a

We can ask: what is the least number m such that any element of Zar(R)
can be written on the form D(a1, . . . , am). An answer is given by the following
version of Kronecker’s Theorem: this holds if Kdim R < m
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Spaces as Distributive Lattices

Sheaf over lattices

If L is a distributive lattice, a presheaf of rings over L is a family F(U) of
rings for each element U of L with a map F(U) → F(V ), x 7−→ x|V whenever
V 6 U

We require furthermore x|U = x for x ∈ F(U) and (x|V )|W = x|W whenever
W 6 V 6 U
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Spaces as Distributive Lattices

Sheaf over lattices

We say that F is a sheaf iff

(1) whenever U = U1∨U2 and xi ∈ F(Ui) and x1|U1∧U2 = x2|U1∧U2 then
there exists one and only one x in F(U) such that x|Ui = xi

(2) F(0) is the trivial ring 0

If F is a sheaf over a lattice L and U is an element of L then F defines a
sheaf by restriction on the lattice ↓ U
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Spaces as Distributive Lattices

Structure sheaf

To simplify we assume that R is an integral domain

Lemma: If D(b) 6 D(a1, . . . , an) in Zar(R) then we have

R[1/a1] ∩ · · · ∩R[1/an] ⊆ R[1/b]
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Spaces as Distributive Lattices

Structure sheaf

Any element of Zar(R) can be written D(b1, . . . , bm) = D(b1) ∨ · · · ∨D(bm)

We define the structure sheaf O on Zar(R) by

O(D(b1, . . . , bm)) = R[1/b1] ∩ · · · ∩R[1/bm]

This is well-defined by the previous Lemma
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Spaces as Distributive Lattices

An example of a local-global principle

Classically the point of the space Zar(R) are the prime ideals of R and the
fiber of the sheaf O at a point p is the localisation Rp

One intuition is that we have a continuous family of local rings Rp, and any
element of R defines a global section of this family

We can see R[1/a] for p in D(a) as an “approximation” of Rp and indeed Rp

can be defined as the inductive limit of all R[1/a] for p in D(a)

We have Γ(D(a),O) = R[1/a]
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Spaces as Distributive Lattices

Local-global principle

Let us consider a linear system MX = A with M in Rn×m and X in Rm×1

and A in Rn×1

A local-global principle is that if in each Rp the linear system MX = A has a
solution then it has a global solution

If MX = A has a solution in Rp then we find a such that p in D(a) and
MX = A has a solution in R[1/a]

By compactness we find a finite sequence a1, . . . , an such that 1 =
D(a1, . . . , an) and MX = A has a solution in each R[1/ai]
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Spaces as Distributive Lattices

Local-global principle

The constructive expression of this local-global principle is thus

Proposition: If we have a1, . . . , an such that 1 = D(a1, . . . , an) and MX =
A has a solution in each R[1/ai] then the system MX = A has a global solution
in R

The proof is simple: we have Xi, ki such that MXi = aki
i A

We have Σuis
ki
i = 1 and so X = ΣuiXi satisfies MX = A

Exactly like “partition of unity” in analysis
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Spaces as Distributive Lattices

Local-global principle

Example: if M is in Rk×l matrix and 1 = ∆k(M) then MX = A

Indeed for each k×k minor δ of M , we have a solution of MX = A in R[1/δ]
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Spaces as Distributive Lattices

Another local-global principal

If M is an idempotent matrix over a local ring we know that M is similar to
a canonical projection matrix

Hence if M is an idempotent matrix over any ring R the matrix M is locally
over any prime p of R similar to a canonical projection matrix

Hence by compactness we should be able to find a1, . . . , an such that 1 =
D(a1, . . . , an) and M is similar to a canonical projection matrix over each R[1/ai]

By completeness we expect to be able to find such a sequence a1, . . . , an from
M
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Spaces as Distributive Lattices

Another local-global principle

Let M be in Rl×l and C1, . . . , Cl be the vector column of M

Write E1, . . . , El is the canonical basis of Rl×1

Define C0
i = Ci and C1

i = Ei − Ci

The following argument gives a sequence: write 1 = det Il = det(M+Il−M)
as a sum of 2l elements that are the determinants dσ of the matrix Cb1

1 , . . . , C
bl
l

where σ = b1, . . . , bl is a sequence of 0, 1

Clearly over R[1/dσ] we have a basis of Im M formed by the elements Ci for
i such that bi = 0 and a basis of Im (Il −M) formed by the elements Ei − Ci

for i such that bi = 1
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Spaces as Distributive Lattices

Finite local-global principle

A finitely presented module is given by a matrix M over a ring R

The n-Fitting ideal In is the ideal generated by the n× n minor of M

It can be shown that the module defined by M is projective iff I2
n = In iff In

is generated by an idempotent

Proposition: If we have a1, . . . , am such that 1 = D(a1, . . . , am) and M
defines a projective module over R[1/ai] for all i then M defines a projective
module over R
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Spaces as Distributive Lattices

Summary

We can describe topological space used in commutative algebra as distributive
lattices

Distributive lattices can be described equationally

We can also define the notion of sheaf over a distributive lattice and express
local-global principles
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Spaces as Distributive Lattices

Space of valuation

Let L be a field, and R a subring of L

Another spectral space important in commutative algebra is the space
Val(L,R) of valuation rings of L containing R

Such a ring is a subring V ⊆ L containing R and such that if s in L and
s 6= 0 then s is in V or 1/s is in V

We have always the solution V = L
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Spaces as Distributive Lattices

Space of valuation

We define the lattice Val(L,R) as the universal solution of the problem
VR : L→ Val(L,R) with the conditions

VR(r) = 1 (r ∈ R)

VR(s1) ∧ VR(s2) 6 VR(s1s2) ∧ VR(s1 + s2)

1 = VR(s) ∨ VR(1/s) (s 6= 0)
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Spaces as Distributive Lattices

Space of valuation

In general we cannot simplify VR(s1) ∧ · · · ∧ VR(sl), but we have

VR(s) ∧ VR(1/s) = VR(s+ s−1)

VR((x+ y)−1) 6 VR(1/x) ∨ VR(1/y)

1 = VR(x−1) ∨ VR((1− x)−1)
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Spaces as Distributive Lattices

Space of valuation

Theorem: VR(t1) ∧ · · · ∧ VR(tn) 6 VR(s1) ∨ · · · ∨ VR(sm) holds iff we have
an equality of the form 1 = Σ1/siPi(tj, 1/si)

This is a cut-elimination Theorem, proved by algebraic elimination of variables
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Spaces as Distributive Lattices

Space of valuation

The main Lemma for this result is extracted from the classical proof of
existence of valuation rings

Main Lemma: If I is an ideal and we have two relations

xk = b1x
k−1 + · · ·+ b0, 1 = alx

l + · · ·+ a0

with a0, . . . , al in I then 1 is in I

This proved by induction on k + l

We can then apply this to the ideal <1/s1, . . . , 1/sk> of R[1/s1, . . . , 1/sk]
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Spaces as Distributive Lattices

Space of valuation

Special case: 1 = VR(s/t1) ∨ · · · ∨ VR(s/tn) iff s is integral over the ideal I
generated by t1, . . . , tn in R[t1, . . . , tn, s]. This means that we have an equality

sl = a1s
l−1 + · · ·+ al

where ak is in Ik

Special case: 1 = VR(s) iff 1/s is invertible in R[1/s] iff s is integral over R

We get a constructive reading of the fact that the intersection of valuation
rings containing R is the integral closure of R
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Spaces as Distributive Lattices

Application: Dedekind Prague’s Theorem

Theorem: If (ΣaiX
i)(ΣbjXj) = ΣckXk then each product aibj is integral

over the coefficients ck

This generalises a famous result of Gauss: if all ai, bj are rationals and all ck
are integers then all products aibj are integers

This “may be considered as one of the most basic result in commutative
algebra of the XIXth century . . . It ended up as one exercise in Bourbaki, but
here it is proved in a non constructive way” (Olaf Neumann)

This appears as an exercise in Bourbaki, Algebra, Chapter 7 (Diviseurs)
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Spaces as Distributive Lattices

Application: Dedekind Prague’s Theorem

We get a proof-theoretic reading of the non constructive argument. We take
L = Q(a0, . . . , an, b0, . . . , bm), R = Q and we prove

1 = V (aibj/c0) ∨ · · · ∨ V (aibj/cm)

This corresponds to the non constructive argument: prove this for an arbitrary
valuation
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Spaces as Distributive Lattices

Application: Dedekind Prague’s Theorem

For n = m = 2 a proof certificate of 1 = V (a0b1/c0) ∨ · · · ∨ V (a0b1/c4) is

(a0b1)6 = p1(a0b1)5 + p2(a0b1)4 + p3(a0b1)3 + p4(a0b1)2 + p5(a0b1) + p6

where
p1 = 3c1, p2 = −3c21 − 2c0c2, p3 = c31 + 4c0c1c2

p4 = −c20c1c3 − 2c0c21c2 − c20c
2
2 + 4c30c4

p5 = c20c
2
1c3 + c20c1c

2
2 − 4c30c1c4

p6 = −c30c1c2c3 + c40c
2
3 + c30c

2
1c4
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Spaces as Distributive Lattices

Application: Dedekind Prague’s Theorem

Constructively L → ValR(L) is seen as a (clever) system of notations which
records polynomial identities

Classically ValR(L) is seen as a set of points
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Spaces as Distributive Lattices

Zariski spectrum and space of valuations

Given any domain R of field of fractions L we have a lattice map

ψ : Zar(R) → Val(L,R), D(a) 7−→ V (1/a) (a 6= 0)

This is the center map. It is always injective.

The (constructive) proof of this fact requires cut-elimination

Intuitively: the function f is 6= 0 iff 1/f is finite
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Spaces as Distributive Lattices

Center map

The terminology comes from the study of points for algebraic curves

We look at the local ring at a point of the curve

If the point is not singular its local ring is a discrete valuation ring

If the point is singular there is a finite number of discrete valuation rings of
center the maximal ideal defined by this point. In this case, it is possible to show
directly the existence of these valuations.
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