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A letter from Abel to Crelle

Both Abel and Galois based their theory of algebraic functions to the study of sums Σϕ(xi)
where the summation is extended to the common zeros of the given algebraic curves f(x, y) = 0
with another curve θ(x, y) = 0 with indeterminate coefficients. It is really surprising that
this approach, which seemed fundamental, is not followed anymore in the theory of algebraic
functions. In this note, I try to explain a special case that Abel [1] described as being one “of
the most remarkable case”.

We take P (x) a unitary polynomial of degree 6 and we consider the curve

f(x, y) = y2 − P (x) = 0

We consider the other “varying” curve θ(x, y) = y − c− c1x− c2x2 − x3 = 0, where c, c1, c2 are
indeterminates, and the system

f(x, y) = θ(x, y) = 0

It is direct to eliminate y in this system, getting the equation

Q(x) = (c+ c1x+ c2x
2 + x3)2 − P (x) = 0

Since P is unitary, we get a polynomial Q of degree 5. We then consider the decomposition
algebra of Q and Abel writes x1, x2, x3, z1, z2 the root of the polynomial Q. We write

y1 = ψ(x1), y2 = ψ(x2), y3 = ψ(x3), y4 = ψ(z1), y5 = ψ(z2)

where ψ(x) is the polynomial c+ c1x+ c2x
2 + x3. The claim is then that

(∗) (α+ βx1)

y1
dx1 +

(α+ βx2)

y2
dx2 +

(α+ βx3)

y3
dx3 +

(α+ βz1)

y4
dz1 +

(α+ βz2)

y5
dz2 = 0

With the notation of Abel, if ϕ(x) denotes the function∫
(α+ βx).dx√

P (x)

we have

(1) ϕ(x1) + ϕ(x2) + ϕ(x3) = C − (ϕ(z1) + ϕ(z2))

Notice that since we have

Q(x) = (c+ c1x+ c2x
2 + x3)2 − P (x)

= (2c2 − a5)x5 + (c22 + 2c1 − a4)x4 + (2c+ 2c1c2 − a3)x3
+(c21 + 2cc2 − a2)x2 + (2cc1 − a1)x+ c2 − a
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we know that z1, z2 are roots of the following polynomial (there seems to be a sign mistake in
Abel’s letter)

y2 − (
c22 + 2c1 − a4
a5 − 2c2

− x1 − x2 − x3)y +
c2 − a

x1x2x3(a5 − 2c2)
= 0

Intuitively, if we fix x1, x2, x3 we can find z1, z2 such that the equation (1) holds. Abel says
then that “toute la theéorie de la fonction ϕ est comprise dans la l’équation (1), car la pro-
priété exprimée par cette équation détermine, comme on peut le démontrer, cette fonction
complètement.”

What is left to show is the equality (∗). This equality can be written

Σ
(α+ βx)

ψ(x)
dx = 0

where x ranges over the roots of the poylynomial Q. We have

dx =
∂x

∂c
dc+

∂x

∂c1
dc1 +

∂x

∂c2
dc2

and from Q(x) = 0 we derive

Q′(x)
∂x

∂c
+
∂Q(x)

∂c
= 0

and hence

Q′(x)
∂x

∂c
+ 2(x3 + c2x

2 + c1x+ c) = 0

that is

Q′(x)
∂x

∂c
+ 2ψ(x) = 0

It follows that

Σ
(α+ βx)

ψ(x)

∂x

∂c
= −2Σ

(α+ βx)

Q′(x)

and this is 0 (see the next sextion).
Similarly

Q′(x)
∂x

∂c1
+ 2xψ(x) = 0

and hence

Σ
(α+ βx)

ψ(x)

∂x

∂c1
= −2xΣ

(α+ βx)

Q′(x)
= 0

and finally

Q′(x)
∂x

∂c2
+ 2x2ψ(x) = 0

and

Σ
(α+ βx)

ψ(x)

∂x

∂c2
= −2x2Σ

(α+ βx)

Q′(x)
= 0
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A usefull Lemma

What we have used is the following Lemma, proved also by Abel. Assume that we have Q(x) =
(x− x1) . . . (x− xn) and Q′(xi) 6= 0. Let xF (x) = QR+ S with d(S) < n. We then have

Σ
F (xi)

Q′(xi)
= R(0)

We prove it for indeterminate x1, . . . , xn using

xF (x)

Q(x)
= R(x) + Σ

xiF (xi)

(x− xi)Q′(xi)

This follows from the interpolation formula, for d(S) < n

S = Σ
S(xi)Q(x)

(x− xi)Q′(xi)

The simpler case of an elliptic curve

We consider the curve
f(x, y) = y2 − x+ x3 = 0

We consider the other “varying” curve θ(x, y) = y− c− c1x = 0, where c, c1 are indeterminates,
and the system

f(x, y) = θ(x, y) = 0

It is direct to eliminate y in this system, getting the equation

Q(x) = (c+ c1x)2 − x+ x3 = 0

We then consider the decomposition algebra of Q and write x1, x2, z the root of the polynomial
Q. We write

y1 = ψ(x1), y2 = ψ(x2), y3 = ψ(z)

where ψ(x) is the polynomial c+ c1x. The claim is then that

(∗) dx1
y1

+
dx2
y2

+
dz

y3
= 0

If ϕ(x) denotes the function ∫
dx√
x− x3

we have

(1) ϕ(x1) + ϕ(x2) + ϕ(z) = C

Since we have
Q(x) = (c+ c1x)2 − x+ x3

= x3 + c21x
2 + (2cc1 − 1)x+ c2

we know that

z = − c2

x1x2
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Intuitively, if we fix x1, x2 we can find z such that the equation (1) holds. Also, c and c1 are
determined by the equations

y1 = c+ c1x1 y2 = c+ c1x2

so that

c1 =
y1 − y2
x1 − x2

c =
x2y1 − x1y2
x2 − x1

We can rewrite

c =
x2y1 − x1y2
x2 − x1

=
x1x2(1 + x1x2)

x1y2 + x2y1

so that

z = − c2

x1x2
=
x1x2(1 + x1x2)

2

(x1y2 + x2y1)2

What is left to show is the equality (∗). This equality can be written

Σ
dx

ψ(x)
= 0

where x ranges over the roots of the poylynomial Q. We have

dx =
∂x

∂c
dc+

∂x

∂c1
dc1

and from Q(x) = 0 we derive

Q′(x)
∂x

∂c
+
∂Q(x)

∂c
= 0

and hence

Q′(x)
∂x

∂c
+ 2(c1x+ c) = 0

that is

Q′(x)
∂x

∂c
+ 2ψ(x) = 0

It follows that

Σ
1

ψ(x)

∂x

∂c
= −2Σ

1

Q′(x)

and this is 0.
Similarly

Q′(x)
∂x

∂c1
+ 2xψ(x) = 0

and hence

Σ
1

ψ(x)

∂x

∂c1
= −2xΣ

1

Q′(x)
= 0

Questions

It should be possible to make purely algebraic sense of the previous sections. The main problem
is: how to be sure that the polynomial Q(x) is separable? Intuitively, it should be, since
it depends on indeterminate coefficients, but this should be seen a priori, without having to
do the computation of some discriminant. Also, Abel says that once the addition formula is
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established, “it is clear” that it holds also in the case where some of the x1, x2, x3 are equal. Is
that so clear?

In the case y2 = x−x3 this claims the following result, that in the extension k(x1, y1, x2, y2)
if we define

z = − c2

x1x2
=
x1x2(1 + x1x2)

2

(x1y2 + x2y1)2

and

c1 =
y1 − y2
x1 − x2

c =
x2y1 − x1y2
x2 − x1

then we shall have
dx1
y1

+
dx2
y2

+
dz

c+ c1z
= 0

and also
(c+ c1z)

2 = z − z3

These are non trivial purely computational properties.
There should be a similar interpretation in the hyperelleptic case considering the extension

k(x1, y1, x2, y2, x3, y3).
In the case y2 = x − x3 the differential form dx

y is holomorphic. Indeed the places where
y = 0 are

1. (0, 0) with parameter y and x(1− x2) = y2 so that (1− 3x2)dx = 2ydy and dx
y = 2dy

1−3x2

2. (1, 0) with parameter y and dx
y = 2dy

1−3x2

3. (−1, 0) with parameter y and dx
y = 2dy

1−3x2

How can we connect this fact with the fact that we find 0 when we do the sum of this differential
form over the points of intersection of the curve with another one?
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