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Introdu
tion

This note presents some remarks 
onne
ted to Gentzen's �rst proof of 
onsisten
y of arithmeti
,

that was a
tually never published by Gentzen himself, but instead appeared �rst in a paper of

Bernays [1℄ (but see also [3℄). As emphasized by Bernays, this argument is easier to follow than

the �rst published proof. It 
an be read dire
tly as a game-theoreti
 analysis of the notion of


lassi
al truth: a formula is 
lassi
ally true i� there is a winning strategy for a game de�ned by

this formula. This provides a semanti
s of eviden
e for 
lassi
al �rst-order arithmeti
 (the term

\semanti
s of eviden
e" seems due to B. Constable, see [2℄). Furthermore, Gentzen's proof leads

dire
tly to the result that an existential statement provable in 
lassi
al arithmeti
 is provable

intuitionisti
ally.

More importantly, when expressed game-theoreti
ally, the dynami
 aspe
t of 
ut-elimination

be
omes 
learer. We believe indeed that the main obje
t of study here is the analysis of the

possible sequen
e of moves in the strategies 
orresponding to 
lassi
al proofs.

Su
h an analysis suggests strongly that it should be possible to �nd a 
ut-elimination proof

of a di�erent nature than Gentzen's whi
h re
e
ts and is inspired by this dynami
 aspe
t. We

try to motivate this point by presenting su
h a proof for 
uts of a low level of logi
al 
omplexity,

and by a 
onje
ture expressing the termination of an internal 
ommuni
ation, result that would

re�ne Gentzen's 
ut-elimination.

We dis
uss next a 
on
rete example, due to Gabriel Stolzenberg, whi
h suggests that it


an be 
omputationally ineÆ
ient to break a multiple 
ut in its 
omponent. In the simplest

possible 
ase that departs from usual 
ut-elimination, we sket
h a way to do this \multiple


ut-elimination." Here also, it is dire
tly 
he
ked that this \proto
ol for multiple 
uts" works

for 
uts of low logi
al 
omplexity.

At the end of the paper we present an indu
tive formulation of !-logi
, very 
lose to Tait's

formulation [9℄, whi
h is readily seen to provide a 
omputational 
ontent of 
lassi
al arithmeti
al

truth.

The 
ontributions of this (preliminary) paper are:

� an \histori
al" 
ontribution: we think it will be fair to attribute the result that an exis-

tential statement proved in Peano arithmeti
 has an intuitionsiti
 proof at least partially

to Gentzen, sin
e this is a dire
t 
orollary of his �rst proof of normalisation

1

,
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we 
onje
ture that it is be
ause Gentzen's interpretation of a proof was in general a non deterministi


algorithm that his �rst proof was for a while forgotten
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� a formulation of a 
onje
ture that re�nes Gentzen's 
ut-elimination, with a proof in a

restri
ted 
ase (that hopefully will be 
ompleted for the less preliminary version of this

paper),

� the analysis of a 
on
rete example where it is 
lear that the \mutiple-
on
lusion" logi
 we

manipulate 
annot be simulated in a fun
tional way, and so, the dis
overy of features of

multiple-
on
lusion logi
 that are typi
al of parallel algorithms. We sket
h then how to

extend this to a truly parallel 
ut-elimination for 
lassi
al arithmeti
.

I would like to thank Gabriel Stolzenberg, Lars Halln�as, Jan Smith, Peter Dybjer, Hugo

Herbelin and Chet Murthy for enjoyable dis
ussions on this topi
. Karlis Cerans provided


ru
ial 
riti
s.

1 A semanti
s of eviden
e

We start with a �xed language for arithmeti
 that 
ontains (
omputable) fun
tions like addition,

multipli
ation and (de
idable) basi
 relations, like equality, �; . . .We suppose that whenever an

atomi
 relation R is in this language we have another one R

�

whi
h represents its 
omplement,

in su
h a way that (R

�

)

�

is R.

The formulae are built indu
tively form atomi
 formulae by 
onjun
tion &, disjun
tion _;

universal and existential quanti�
ation. The negation '

�

is de�ned indu
tively from ' as usual.

To simplify things, we will suppose that all formulae are prenex formulae in whi
h universal

and existential quanti�
ations alternate, that is of the form 8x9y8z : : : ; in whi
h 
ase we say

that the formula is universal, or of the form 9x8y9z : : : ; in whi
h 
ase we say that the formula

is existential. All quanti�er free formulae are de
idable.

1.1 The intuitionisti
 
ase

We re
all �rst what is a possible game-theoreti
 semanti
s of eviden
e for intuitionisti
 logi
, as

presented for instan
e in A. Ranta's thesis [8℄. We 
onsider the following game between Nature

and Myself, whi
h 
onsists in makingmoves, that are existential or universal instantiations, in

a given formula '; whi
h is 
alled the 
on�guration of the game. Myself is trying to establish

the truth of formula '; and Nature tries to produ
e a 
ounter-example. If the formula is atomi
,

then it is de
idable: if it is false, Nature wins, otherwise, Myself wins. If the formula is of the

form 9n A[n℄; Myself should produ
e an integer n

0

and the game goes on with A[n

0

℄. If the

formula is of the form 8n A[n℄; Nature produ
es an integer n

0

and the game goes on with the

formula A[n

0

℄:

For this game, a formula A 
an be de�ned to be intuitionisti
ally true i� there is a winning

strategy for Myself.

1.2 Extension to \multigames"

We 
an 
ompli
ate this by allowing the 
on�guration of the game to be a �nite multiset of

formulae. We write + the addition on multisets. The game stops when at least one formula

is atomi
 and true, in whi
h 
ase Myself wins. In the other 
ases, Myself should make an

instantiation whenever all formulae are existential, and Nature should make a move whenever
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at least one formula is universal, by instantiating the universal formulae. If all formulae are

atomi
 and false, then Nature wins.

In this version, there is a winning strategy for Myself for the 
on�guration of \ex
luded

middle" A + A

�

; for any formula A : Myself simply waits for Nature to move, and mimi
s her

move in the dual formula.

For this notion of game however, it is not the 
ase that there is a winning strategy for

9n8m [A[n℄ _ A

�

[m℄℄ even in the 
ase where A is de
idable. Indeed, suppose that Myself has

su
h a winning strategy. Myself has to give a value n

0

for n; be
ause the formula is existential.

We know that if A[n

0

℄ does not hold, then we have 8m A

�

[m℄: Otherwise, Nature 
an win by

playing m

0

su
h that A[m

0

℄ holds. By 
he
king whether A[n

0

℄ holds or not, we would thus

extra
t a de
ision algorithm for 9n A[n℄ _ 8m A

�

[m℄:

Noti
e however that, as pointed out already, there is a winning strategy for the \equivalent"

multiset formula 9n A[n℄ + 8m A

�

[m℄ : Myself waits for an instantiation m = m

0

from Nature,

and if A

�

[m

0

℄ does not hold, win by playing n = m

0

(if A

�

[m

0

℄ holds, then Myself wins already

after Nature's move).

1.3 Games with \ba
ktra
king"

For getting a notion of game su
h that (intuitionisti
) winning strategy 
ontains 
lassi
al prov-

ability, we allow ba
ktra
king for moves of Myself. This means that Myself 
an 
hoose to


ompli
ate a 
on�guration M +9n A[n℄ where all the formulae are existential by both instanti-

ating the formula 9n A[n℄ and keeping it, whi
h produ
es the 
on�gurationM+9n A[n℄+A[n

0

℄

where n

0

is the integer 
hosen by Myself. The moves of Nature are the same as before.

For this notion of game, there is a winning strategy for Myself for the 
on�guration ' i� '

is 
lassi
ally true.

Instead of showing formally this equivalen
e, we will limit ourselves to show that if there is

a winning strategy for the 
on�guration M + A + A; then there is a winning strategy for the


on�gurationM+A; and if there is a winning strategy for the 
on�gurationM+A and a winning

strategy for the 
on�guration N + A

�

; then there is a winning strategy for the 
on�guration

M +N:

This is enough to show that the notion of truth de�ned by the existen
e of a winning strategy

has good properties. For instan
e, if we have a winning strategy for N + A[0℄ and, for all n; a

winning strategy for M + A[n℄

�

+ A[n + 1℄; then we dedu
e from these two 
losure properties

that there is a winning strategy for all n for M +N +A[n℄:

The �rst 
laim is seen by simulating dire
tly the moves of a strategy for M + A + A by

moves for the 
on�guration M +A:

The se
ond 
laim is more diÆ
ult, and we will present it as the proof of termination of some

internal 
ommuni
ations between two players following winnning strategies.

1.4 Two examples

There is now for instan
e a winning strategy for 9n8m [A[n℄ _ A

�

[m℄℄: Myself 
hooses any

instantiation for n; for instan
e n = 0; and keeps the formula, waiting for a m = m

0

given by

Nature. If A

�

[m

0

℄; then Myself wins, and if A[m

0

℄ then Myself 
hooses n = m

0

for its next

move.
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Another example, whi
h shows that we 
annot bound a priori the number of ba
ktra
king

in Myself's guess, is the following strategy for the statement

9n8m [f(n) � f(m)℄;

seeing f as an ora
le. Myself starts by guessing an arbitrary value for n; for instan
e n = 0;

and allows himself to ba
ktra
k. Nature plays then m = u

1

: If f(0) � f(u

1

); Myself wins. If

f(u

1

) < f(0); Myself ba
ktra
ks and plays n = u

1

; and allows himself to ba
ktra
k. Nature

plays then m = u

2

: If f(u

1

) � f(u

2

); Myself wins. Otherwise, Myself ba
ktra
ks and plays

n = u

2

; and allows himself to ba
ktra
k, and so on.

This will stop eventually, be
ause < is well-founded, but it is not possible to bound a priori

(without knowing anything about f) the number of times that Myself will have to ba
ktra
k.

This explanation of 
lassi
al truth is inspired by the �rst 
onsisten
y proof for arithmeti


by Gentzen, see [3, 1℄. Note that Bernays, in [1℄, presents this proof using 
hoi
e sequen
es,

for representing the sequen
e of moves of Nature. We 
an use indu
tive de�nitions instead to

represent the notion of 
hoi
e sequen
e, as done for instan
e in [6℄.

1.5 The 
ase of existen
e statement

Let us look at the spe
ial 
ase of a winning strategy for a 
on�guration 9n A[n℄; where A[n℄ is

a (de
idable) atomi
 formula. We see the de
ision pro
edure for A[n℄ as an ora
le. To have a

winning strategy in this 
ase means that Myself will do a �nite number of wrong guesses for n;

until he eventually �nds a n

0

su
h that A[n

0

℄: We 
an a
tually suppose that Myself always is

doing some \auto-
ensure" by himself, so that he 
he
ks internally whether or not his guess is


orre
t for an existential formula 9n A[n℄; where A is atomi
. With this assumption, a winning

strategy for an existen
e statement is exa
tly a witness.

We thus get that the result \if an existen
e statement is provable in 
lassi
al �rst-order

arithmeti
, then it is provable intuitionisti
ally" follows from the identi�
ation of 
lassi
al truth

with the existen
e of a winning strategy.

1.6 Simple ba
ktra
king

In all the examples we have presented so far, the ba
ktra
king that Myself uses is of a parti
ular

nature. Myself never 
hanges his mind about a value he has 
onsidered as wrong (we will pre
ise

this notion later). We 
all this behaviour of Myself simple ba
ktra
king.

This notion of simple ba
ktra
king is interesting be
ause it does involve ba
ktra
king, but

it is however a simple enough behaviour so that we 
an give a 
omplete analysis of what is

happening in the 
ase where all players follow simple ba
ktra
king. In parti
ular, we will be

able to analyse later the 
ase of multi-
uts for simple ba
ktraking, that involves already real


on
urren
y.

In order to analyse a little more this notion of simple ba
ktra
king, we introdu
e the fol-

lowing notations. In the history of 
on�gurations of a game whi
h has M + A as an initial


on�guration, where A is existential, we follow the moves in A by writing A

1

; A

2

; . . . the in-

stantiations of A (due to Myself), and then A

11

; A

21

, . . . the respe
tive instantiations of these

instantiations (due to Nature), and so on. If a formula B is of the form A

n

1

:::n

p

; or A

�

n

1

:::n

p

; we

say that n

1

: : : n

p

is the index of the formula B; and we write n

1

: : : n

p

= ind(B): We say that
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a sequen
e n

1

: : : n

p

is a dire
t extension of a sequen
e m

1

: : : m

q

i� p = q + 1; and n

i

= n

i

for i < p:

To say that the ba
ktra
king is simple for the formula A is to say that on
e we have

observed the sequen
e of moves

A; A+A

1

; A+A

11

; A+A

11

+A

2

; : : : ; A+ : : :+A

n

1

:::n

p

; : : :

with p even, then the next move of Myself will be A+ : : :+A

m

1

:::m

q

; where m

1

: : : m

q

is stri
tly

bigger than n

1

: : : n

p

for the alphabeti
al ordering on sequen
e of integers.

This is the 
ase if the formula A is of the form 9x8y B[x; y℄; where B is atomi
, simply

be
ause in this 
ase, Myself 
annot play A

111

: Simple ba
ktra
king holds thus when we 
onsider

formulae of low logi
al 
omplexity.

If Myself follows a strategy that uses only simple ba
ktra
king for an existential formula A;

then we 
an represent Myself's moves in A (for a given game against nature) as a sequen
e of

the form

A; A

1

; A

11

; A

111

; A

1111

; A

112

; A

1121

; A

113

; : : :

Su
h a sequen
e 
an be read as follows (if the sequen
e of quanti�ers of A is 9x8y9z8t : : :):

Myself makes a �rst guess x = x

1

about the value of x: Nature then answers y = y

11

: Myself

persists in his 
hoi
e by guessing z = z

111

; this 
hoi
e being refuted by Nature, who plays

t = t

1111

: At this point, Myself 
hanges his mind about the 
hoi
e of z (he 
onsiders that

Nature has really refutated it and does not persist in his 
hoi
e, leaving the last refutation of

Nature t

1111

without answers). He tries then z = z

112

: This is refuted by Nature who plays

t = t

1121

:

One 
an well imagine a strategy where Myself 
hanges his mind also about the fa
t that he

was wrong. This is a more subtle kind of behaviour.

The analogy with learning theory, that Myself makes su

essive guesses a

ording to the

moves of Nature, seems 
lear here and should be pre
ised. We will limit ourselves here to point

out this analogy.

It would be ni
e if we 
an insure that for all 
lassi
ally true multiset M; it is possible to

�nd a winning strategy using only simple ba
ktra
king. Though we don't have any 
on
rete


ounter-example, we suspe
t that this is not the 
ase, sin
e we don't see how to get a strategy

for the 
on�guration M + A from a strategy for the 
on�guration M + A + A if we impose

strategies to use only simple ba
ktra
king. Any strategy for M +A+A 
an be simulated by a

strategy for M +A: Even if for both A; a strategy for M +A+A uses only simple ba
ktra
king,

this may not be the 
ase for the simulated strategy for M +A:

Here is an example of a sequen
e of move that uses more than simple ba
ktra
king:

A; A+A

1

; A+A

11

; A+A

11

+A

2

;

A+A

11

+A

21

; A+A

11

+A

21

+A

111

;

A+A

11

+A

21

+A

1111

; A+A

11

+A

21

+A

1111

+A

211

; : : :

The intuition is that Myself, when he plays A

111

, 
hanges his mind about his �rst ba
ktra
king,

and does not answer to the refutation A

21

of his last play. But when Nature refutes this last

play A

111

by playing A

1111

; Myself 
hanges his mind again and 
omes ba
k to the 
hoi
e of

his se
ond instantiation of A: Myself tries by playing A

211

to refute the previous refutation of

Nature A

21

he had left without answers.
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2 A dynami
 view of 
ut-elimination

Let us imagine that we are playing against Nature for a given 
on�guration. We 
an see a

strategy for this 
on�guration as a player we have at our disposition. Ea
h time Nature plays,

we transmit her move to this player. When all formulae are existential, we wait to see what is

the move of this player on this 
on�guration. We follow the strategy by 
opying his move.

With this pi
ture in mind, we 
an 
on
eive that it takes more or less time for the player

to answer our question. We 
an 
onsider a strategy to be total if we are sure that, eventually,

after a �nite amount of time, the player will answer. It is then natural to 
onsider also partial

strategies, that are like players who stay mute, thinking for a too long time about their next

move.

Given two strategies for M + A and N + A

�

; we show how to build a \partial" strategy

for M +N: The situation is exa
tly the same as in 
on
urren
y theory where partial pro
esses

appear when we use internal 
ommuni
ation: a deadlo
k due to \in�nite internal 
hatter" 
an

happen when we 
ombine these two strategies. But, and this is what the 
ut-elimination result

expresses, if both strategies are winning strategies, then we do get a total strategy whi
h is a

winning strategy.

It seems possible to give a de�nition of this 
ompound strategy by following Gentzen's

argument. This 
orresponds to a dire
t study of the following property of a multiset of formulae

M \there exists a winning strategy for M". One gives a dire
t indu
tive de�nition of this

property, and one shows that if both M + A and N + A

�

have this property, then so does

M + N: The argument is a double indu
tion, �rst on the 
omplexity of the 
ut-formula, and

then on the proof that the strategies are winning. Su
h a proof is presented in the last se
tion.

If we follow this approa
h however, it is not so 
lear what is the \stru
ture" of the algorithm

we get.

It seems mu
h more interesting to see if a dire
t termination argument 
an be given, based

on an analysis of what are the possible intera
tions between two players I and II.

2.1 De�nition of the 
ompound strategy

Here is an informal des
ription of how this 
ompound stategy is built. We assume that Myself

has at his disposition two 
oplayers I and II: The player I represents a strategy for the game of


on�guration M +A and the player II a strategy for the game of 
on�guration N +A

�

: Myself

follows then the following proto
ol for the game against Nature of 
on�guration M +N:

As long as one formula in M or N is universal, Myself waits for an instantiation 
oming

from Nature. It transmits then this instantiation to the player I or II that is 
on
erned with

it.

After a �nite number of su
h moves, both M and N have only existential formulae, so that

Nature is waiting for an existential instantiation by Myself. Myself noti
ed that at least A or

A

�

is existential. Let us say that A is existential. In this 
ase, Myself asks to the player I what

is his move. Myself knows that I will answer, be
ause all the formulae in the 
on�guration of

the player I are existential. There are two 
ases:

� I instantiates a formula in M; then Myself does the same move and the game goes on,

� I instantiates the formula A: This is the diÆ
ult 
ase.
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In the se
ond diÆ
ult 
ase, Myself has not yet available any play against Nature. Indeed,

Nature does not \see" the formula A and so, 
annot transmit I's move as in the �rst 
ase.

There is a simple sub
ase however for whi
h it is 
lear what Myself should do: if the player

I instantiates the formula A without keeping it. In this 
ase, the formula A be
omes A

1

; and

Myself transmits this move to the player II: The 
on�guration of I is then M + A

1

; and the


on�guration of II is N + A

�

1

: The situation is the same as before, ex
ept that Myself is now

waiting for II's move. This \ping-pong" kind of play between I and II (via Myself) goes on

for a �nite amount of time, be
ause the formula A is �nite.

If during this internal 
ommuni
ation, the formula A (resp. A

�

) be
omes true, then the

dual formula be
omes false, and the game goes on with only the player II (resp. I), sin
e this

player follows then a winning strategy for N (resp. M), the other player be
oming ina
tive. If

both players follow a winning strategy, it is then 
lear that Myself follows a winning strategy

by 
opying one of these two players.

The only remaining sub
ase is when Myself gets to a position where, let say, I has a move

in A, but this move is su
h that I keeps the formula A (allowing ba
ktra
king). In su
h a 
ase,

it is not so 
lear what Myself 
an do. Here is a possibility, that we shall analyse (and whi
h


orresponds to Gentzen's solution).

Myself transmits the move to the player II, the formula A

�

be
oming A

�

1

, but also Myself

keeps a 
opy of the player II in its initial 
on�guration. The motivation is that Myself does not

know whether or not the 
hoi
e of the player I is de�nitive, and so, it makes sure that he 
an


ontinue in 
ase of a 
hange of mind of the player I:

On
e this is done, the 
on�guration is almost like the previous sub
ase, ex
ept that Myself

allows I to ba
ktra
k in his 
hoi
e.

How is the game going on?? Myself asks to the latest 
opy of the player II; who plays now

with a 
on�guration N +A

�

1

; what is his move. If this move is in N; it is transmitted to Nature.

If this move is in A

�

1

; Myself pro
eeds as before, i.e.:

� if this move is without ba
ktra
king (II is sure of his guess), then the 
on�guration of II

be
omes N + A

�

11

; and Myself transmits this move to the player I; whose 
on�guration

be
omes M +A+A

11

;

� if this move is with possible ba
ktra
king, then Myself does as before. The 
on�guration

of II be
omes N + A

�

1

+ A

�

11

; and Myself transmits this move to the player I; whose


on�guration be
omes M + A + A

11

; but Myself also keeps a 
opy of the player I in his


on�guration M +A+A

1

; in 
ase of a possible ba
ktra
king of II; and so on.

This �nishes the des
ription of the 
ut-elimination pro
ess.

A 
on
rete instan
e of su
h a situation is the problem where we have a proof of a �

1

0

statement C by proving C;A

�

and C;A (for instan
e, C is Littlewood's theorem, and A is

Riemann's hypothesis). This 
ut-elimination pro
ess, if it terminates, gives a way of 
omputing

a witness for C from the two given proofs of C;A

�

and C;A:
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2.2 Analysis of the problem of termination

The partial 
orre
tness of the 
ompound strategy des
ribed in the previous subse
tion is 
lear.

That is, if the players I and II follow a winning strategy for their respe
tive 
on�guration, it

is 
lear that, if a game between Nature and Myself terminates, then Myself wins. However,

it is not 
lear that the internal moves between the two players I and II terminate. In this

subse
tion, we want to analyse the nature of the problem of termination.

First, it is not restri
tive to assume that both players I and II; when they make a move

in A; are doing an instantiation with possible ba
ktra
king. Se
ond, we 
an suppose that there

is no moves by I in M and no moves by II in N; so that we 
an restri
t our attention to the

moves in the formula A only. That is, we suppose that we have a (partial) strategy for A and a

(partial) strategy for A

�

; and we analyse what happens if we let the strategy for A play against

the strategy for A

�

. We 
an then analyse the possible \intera
tion paths": we are sure that we

will observe the moves

A+A

1

; A

�

1

+A

�

11

;

and for the next move, there is a 
hoi
e: A+A

11


an be
ome A+A

11

+A

111

or A+A

11

+A

2

;

and so on.

What we have to show is that if these moves 
ome from winning strategies, then this

intera
tion path is �nite.

The problem appears then to be the following. We know that a winning strategy (for the

player I) will win against any player that does not ba
ktra
k (and hen
e, in any su
h game,

the player I will ba
ktra
k only a �nite number of time). We want to generalise this to a play

against a winning strategy (of II), whi
h may ba
ktra
k. It is possible to show that if the

strategy for II ba
tra
ks only a �nite number of time, then the game will stop (be
ause we

have then a �nitely bran
hing tree, whi
h has �nite bran
hes). The problem is that, a priori,

the only way to be sure that this will happen is to show that I will ba
ktra
k a �nite number

of time. So there is a 
ir
ularity here.

We 
an however formulate this problem as a pure problem of termination. The intera
tion


an be represented as a sequen
e of formulae

B

0

= A

�

; B

1

= A+A

1

; B

2

= A

�

1

+A

�

11

; B

3

= A+A

11

+A

2

; : : :

su
h that ea
h B

k

is a sum of formulae C

1

+ : : :+ C

n

where

1. all C

i

are existential for i < n; and C

n

is universal, we 
all C

n

the end formula of B

k

;

and we write h(B

k

) = C

n

; t(B

k

) = C

1

+ : : :+ C

n�1

;

2. there is exa
tly one i < n su
h that ind(C

n

) is a dire
t extension of ind(C

i

): Furthermore,

ind(C

n

) is the least dire
t extension of � for the lexi
ographi
al ordering that does not

o

ur already in B

0

; : : : B

k�1

; we say then that i is answered in B

k

;

3. for ea
h i < n; the dual C

�

i

appears as the end formula of exa
tly one B

j

; for one j < k;

4. if i is answered in B

k

; then t(B

k+1

) = t(B

i

) + h(B

k

):

8



The formulae B

0

; : : : ; B

k


orresponds to the 
opies of the players I and II. We 
all su
h a

sequen
e B

0

; : : : ; B

k

an intera
tion sequen
e.

The re�nement of Gentzen's 
ut-elimination is that su
h an intera
tion sequen
e is �nite, if

the players follow a winning strategy. Gentzen's argument (see the last se
tion) provides only

the existen
e of a winning strategy, without des
ribing it. It does seem possible however to use

a similar argument to show that the intera
tion sequen
e is �nite, as will be shown in the next

version of this paper.

2.3 Total 
orre
tness in some restri
ted 
ases

A termination argument is readily given if A is of low logi
al 
omplexity, for instan
e of the

form 9x B[x℄; or 9x8y B[x; y℄: This be
omes more 
ompli
ated in the 
ase 9x8y9z B[x; y; z℄;

and we leave to the reader an analysis of all possible behaviours of 
ut-elimination in this 
ase.

We 
onje
ture the termination of the algorithm in the general 
ase. We will prove here only

the 
ase of simple ba
ktra
king.

With this added assumption, we use that A is �nite, of depth n; and we remark that

the number of formulae extension of A

n

1

:::n

p

o

uring in the intera
tion sequen
e is �nite, by

indu
tion on n� p:

2.4 No-
ounter example interpretation

Another method (maybe inspired by Gentzen's proof) of giving a 
omputational meaning of

arithmeti
al truth is the no-
ounter example interpretation due to Kreisel. This is des
ribed

for instan
e in the introdu
tion of [6℄. One 
an see the present \intera
tion approa
h" as an

attempt towards the analysis of a 
omputation at higher-type, in the spirit of Kleene 78 [5℄.

3 Towards a \symmetri
" 
ut-elimination

We will analyse now a \multiple 
ut". We will limit ourselves to the 
ase of a 
ut of the following

form: we suppose to have a strategy for the games of 
on�gurations M +A; N +A

�

+B

�

and

L + B; and we try to build from these strategies a strategy for the game of 
on�guration

M +N + L:

It appears that there is only one 
hoi
e if A or B is universal. If both A and B are existential

however, there are several 
hoi
es. The main point of this paper is to show that the usual two


hoi
es: �rst eliminate the 
ut between M + A and N + A

�

+ B

�

, then between M +N + B

�

and L+ B; or the opposite solution, �rst eliminate the 
ut between L + B and N + A

�

+ B

�

,

then between L+N +A

�

and M +A; not only lead to distin
t results in general, but also are

not natural w.r.t. the present game-theoreti
al analysis of 
ut-elimination.

3.1 A 
on
rete example

This phenomena is parti
ularly 
lear for the following 
on
rete exemple, whi
h is due to Gabriel

Stolzenberg. It involves a typi
ally 
lassi
al lemma: the \in�nite box prin
iple".

The example is the following. We suppose given as an \ora
le" a stream of 0 and 1.

Classi
ally, there are in�nitely many 0, or in�nitely many 1. The question is about a possible


omputational meaning of this assertion.
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Let us represent the stream of 0 and 1 by a parameter f whi
h is a unary fun
tion symbol.

We represent a 
omputational meaning of the in�nite box prin
iple as a winning strategy for

the game of 
on�guration

8x

0

9y

0

[x

0

� y

0

& f(y

0

) = 0℄ + 8x

1

9y

1

[x

1

� y

1

& f(y

1

) = 1℄;

that we will write A(0) +A(1): Here is su
h a winning strategy: Myself waits for two instantia-

tions x

0

= u

0

and x

1

= u

1

from Nature. When Myself gets these values, he 
omputes the value

of u =max(u

0

; u

1

) and asks to the ora
le the value of f(u). If f(u) = 0 Myself wins by playing

y

0

= u and if f(u) = 1; Myself wins by playing y

1

= u:

This interpretation seems very natural.

The question now is to see how to use this \
omputational" interpretation to do some

e�e
tive 
omputation. Let us analyse a trivial use of this lemma: from the in�nite box prin
iple,

we dedu
e that there are at least two 0s or at least two 1s. Indeed, if there are in�nitely many

0, there are two 0s (by pi
king the �rst two 0s), and similarly in the other 
ase.

We have so a winning strategy for the 
on�guration

9a

0

9b

0

[a

0

< b

0

& f(a

0

) = f(b

0

) = 0℄ + 9x

0

8y

0

[y

0

< x

0

_ f(y

0

) = 1℄;

i.e. if there are in�nitely many 0s, then there are two 0s. We will write M(0) + A(0)

�

this


on�guration. and a winning strategy for the 
on�guration

9a

1

9b

1

[a

1

< b

1

& f(a

1

) = f(b

1

) = 1℄ + 9x

1

8y

1

[y

1

< x

1

_ f(y

1

) = 0℄:

i.e. if there are in�nitely many 1s, then there are two 1s. We will write M(1) + A(1)

�

this


on�guration.

Let us pre
ise this winning strategy for the 
on�guration M(0) + A(0)

�

: Myself starts by

instantiating x

0

= 0; keeping the formula A(0)

�

: Nature answers then by giving y

0

= u: If we

have u < 0 _ f(u) = 1; then Myself wins. If we have f(u) = 0; then Myself ba
ktra
ks in

his 
hoi
e of x

0

; and 
hoses now x

0

= u + 1: Nature answers by giving y

0

= v: If we have

v < u+ 1 _ f(v) = 1; then Myself wins. If we have u+ 1 � v and f(v) = 0; then Myself wins

by playing a

0

= u and b

0

= v:

We have now three winning strategies for the respe
tive 
on�gurationsM(0)+A(0); A(0)

�

+

A(1)

�

and A(1) +M(1); and we want a winning strategy for the 
on�guration M(0) +M(1):

Noti
e indeed that su
h a winning strategy will provide us with two 0s or two 1s.

One way to solve this problem is to \put parenthesis". We analyse this way �rst.

3.2 \Usual" 
ut-elimination is not symmetri


It 
onsists in redu
ing the problem of multiple 
uts to the problem of simple 
ut. Symboli
ally,

we want to do

CUT(M(0) +A(0); A(0)

�

+A(1)

�

; A(1) +M(1))

and we do this by doing either

(�) CUT(CUT(M(0) +A(0); A(0)

�

+A(1)

�

); A(1) +M(1))

10



or by doing

(��) CUT(M(0) +A(0);CUT(A(0)

�

+A(1)

�

; A(1) +M(1)));

using the algorithm des
ribed above.

We will not do it expli
itely here, leaving this as an exer
ise for the reader. The important

points are that

� we do not get the same algorithm doing (*) and doing (**),

� both algorithms (*) and (**) are not symmetri
 w.r.t. 0/1, that is, they do not provide

the same answer if we inter
hange 0 and 1 in the values of the ora
le f:

3.3 A symmetri
 
ut-elimination

It is remarkable that, on this simple example, a way of doing 
ut-elimination suggested by

\
ommon sense", whi
h is neither (*) nor (**), furnishes an algorithm that is symmetri
 w.r.t.

0/1.

More generally, in the 
ase of a 
ut between A; A

�

+B

�

and B where A and B are existential,

there seems to be a 
anoni
al way of doing the 
ut-elimination in the 
ase of simple ba
ktra
king.

This way di�ers from the one where we put parenthesis in general.

We will analyse this on one possible intera
tion sequen
e (whi
h 
orresponds to one possible

intera
tion sequen
e for the example des
ribed above).

Sin
e A and B are existential, the 
orresponding strategies guess �rst values for them, with

possible ba
ktra
king: A

1

and B

1

: Then, Myself asks what is the move for A

�

1

+B

�

1

: Let say it

is A

�

11

: In this 
ase, we 
onsider that the 
hoi
e A

1

has been refuted, and Myself transmits this

refutation to the 
orresponding player. This player 
an either persist in his 
hoi
e playing A

111

;

or 
hanges his mind, playing A

2

: In this last 
hoi
e, sin
e only simple ba
ktra
king is allowed,

Myself 
an naturally 
onsider that the 
hoi
e A

1

has been de�nitively refuted and will never


ome ba
k to this 
hoi
e again. So, Myself asks what is the move for A

�

2

+ B

�

1

: If the answer

is B

11

; and the move for B

1

+ B

11

is B

2

; it is natural that Myself asks what is the move for

A

�

2

+B

�

2

; and so on.

But this is not what will happen if Myself tries to evaluate

CUT(CUT(A;A

�

+B

�

); B):

For this \proto
ol", Myself asks instead what is the move for A

�

1

+ B

�

2

; forgetting 
ompletely

what happened about A.

One 
an generally expe
t ineÆ
ien
y (at least in the 
ase of simple ba
ktra
king) if Myself

follows the proto
ol

CUT(CUT(A;A

�

+B

�

); B):

In this 
ase indeed, whenever the player asso
iated with the formula B tries a new instantiation

B

i

for B; Myself 
omes ba
k to the �rst instantiation for A; and asks what is the move for

A

�

1

+B

�

i

:

11



Symmetri
ally, if Myself follow the proto
ol

CUT(A;CUT(A

�

+B

�

; B)):

In this 
ase, whenever the player asso
iated with the formula A tries a new instantiation A

i

for

A; Myself 
omes ba
k to the �rst instantiation for B; and asks what is the move for A

�

i

+B

�

1

:

The symmetri
 proto
ol, whi
h seems natural, is instead that Myself asks systemati
ally

the move for A

�

i

+B

�

j

where A

i

(resp. B

j

) is the last instantiation of A (resp. B) that has been

played. Furthermore, if Myself follows this proto
ol, then a given game 
an be analysed as two

sequen
es of intera
tion for A and B that are interleaved, hen
e a dire
t termination argument.

Noti
e that this is a new \ternary" way of doing 
ut-elimination, whi
h is not redu
ible to

a 
ombination of two \binary" 
uts.

In the 
ase where A or B is universal, then the \ternary" 
ut-elimination is equivalent to a


ombination of \two" 
uts (ex
ept of doing less 
opies.) This is what happened, in a iterated

way, with the 
ut-elimination pro
edure presented above 
ompared to Gentzen's 
ut-elimination.

This analysis 
an be extended to the 
ase of a \multi-
ut" A; A

�

+ B

�

; B; with A; B of

arbitrary 
omplexity, but the players follow a strategy of simple ba
ktra
king.

4 An indu
tive presentation of !-logi


For sake of 
omparison, we reformulate usual de�nitions of !-logi
 in the framework of gener-

alised indu
tive de�nitions.

We de�ne indu
tively when a multiset M of formulae is (
lassi
ally) true. There are the

following 
lauses:

� if M 
ontains a true atomi
 formulae, then M is true,

� if there exists n

0

su
h that M +A[n

0

℄ is true, then M + 9n A[n℄ is true,

� if there exists n

0

su
h that M + 9n A[n℄ +A[n

0

℄ is true, then M + 9n A[n℄ is true,

� if M +A+B is true, then M +A _ B is true,

� if M +A and M +B are true, then M +A & B is true,

� if M +A[n

0

℄ is true for all integers n

0

; then M + 8n A[n℄ is true.

Only the last 
lause is not �nitary.

If we forget the point that in the game-theoreti
 presentation we 
onsider only prenex

formulae, the main di�eren
e is that in the game-theoreti
 presentation, we have to use the last

rule whenever one formula is universal in the multiset of sequents. It follows that if there is a

winning strategy for a 
on�guration M; then M is true with the present de�nition.

Lemma 1 The following properties hold

� if A is a false atomi
 formula, and M +A is true, then M is true,
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� if M +A _ B is true, then M +A+B is true,

� if M +A & B is true, then M +A and M +B are true,

� if M + 8n A[n℄ is true, then M +A[n

0

℄ is true for all integer n

0

:

Proof: All these properties are of the form: if M is true, then M

0

is true, and they are proved dire
tly

by indu
tion on the proof that M is true.

Lemma 2 If M +A+A is true, then so is M +A:

Proof: By double indu
tion: �rst on the formula A; and then by indu
tion on the proof that M +A is

true, using the previous lemma 1.

Proposition 1 If M +A and N +A

�

are true, then so is M +N:

Proof: By double indu
tion, �rst on the formula A; and then by indu
tion on the proofs that M + A

and N +A

�

are true. Let us look at one 
ase: A is 9n B[n℄ and M +A is true be
ause M +B[n

0

℄ +A is

true. Then, by lemma 1, we know that N +B[n

0

℄

�

is true. By indu
tion hypothesis, by a 
ut between

N + A

�

and M + B[n

0

℄ +A; we get that N +M + B[n

0

℄ is true. By indu
tion hypothesis, sin
e B[n

0

℄

is less 
omplex than A; we get that N +N +M is true. By lemma 2, N +M is true.

The important remark is that, with this de�nition, 
ut-elimination is not an asso
iative

operation.

Con
lusion

We have presented a 
onje
ture of termination of an internal 
ommuni
ation, that would re�ne

Gentzen's 
ut-elimination. This 
onje
ture is valid in the 
ase of 
uts of low logi
al 
omplexity,

and in a restri
ted 
ase of \simple ba
ktra
king." The same idea in the 
ase of multiple 
uts

leads to a proto
ole of 
ut-elimination distin
t in general from the one where we de
ompose the

multiple 
ut in binary 
uts.

One important point to pre
ise is the 
onne
tion between the symmetri
 proto
ol we pre-

sented and the fa
t, noti
ed by Hugo Herbelin, that there does exist a Gentzen like 
ut-

elimination pro
edure that lead to a symmetri
 answer. It is not 
lear at all yet what is

the game-theoreti
al meaning of this pro
edure.
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