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Introduction

This note presents some remarks connected to Gentzen’s first proof of consistency of arithmetic,
that was actually never published by Gentzen himself, but instead appeared first in a paper of
Bernays [1] (but see also [3]). As emphasized by Bernays, this argument is easier to follow than
the first published proof. It can be read directly as a game-theoretic analysis of the notion of
classical truth: a formula is classically true iff there is a winning strategy for a game defined by
this formula. This provides a semantics of evidence for classical first-order arithmetic (the term
“semantics of evidence” seems due to B. Constable, see [2]). Furthermore, Gentzen’s proof leads
directly to the result that an existential statement provable in classical arithmetic is provable
intuitionistically.

More importantly, when expressed game-theoretically, the dynamic aspect of cut-elimination
becomes clearer. We believe indeed that the main object of study here is the analysis of the
possible sequence of moves in the strategies corresponding to classical proofs.

Such an analysis suggests strongly that it should be possible to find a cut-elimination proof
of a different nature than Gentzen’s which reflects and is inspired by this dynamic aspect. We
try to motivate this point by presenting such a proof for cuts of a low level of logical complexity,
and by a conjecture expressing the termination of an internal communication, result that would
refine Gentzen’s cut-elimination.

We discuss next a concrete example, due to Gabriel Stolzenberg, which suggests that it
can be computationally inefficient to break a multiple cut in its component. In the simplest
possible case that departs from usual cut-elimination, we sketch a way to do this “multiple
cut-elimination.” Here also, it is directly checked that this “protocol for multiple cuts” works
for cuts of low logical complexity.

At the end of the paper we present an inductive formulation of w-logic, very close to Tait’s
formulation [9], which is readily seen to provide a computational content of classical arithmetical
truth.

The contributions of this (preliminary) paper are:

e an “historical” contribution: we think it will be fair to attribute the result that an exis-

tential statement proved in Peano arithmetic has an intuitionsitic proof at least partially

to Gentzen, since this is a direct corollary of his first proof of normalisation ',
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'we conjecture that it is because Gentzen's interpretation of a proof was in general a non deterministic
algorithm that his first proof was for a while forgotten



e a formulation of a conjecture that refines Gentzen’s cut-elimination, with a proof in a
restricted case (that hopefully will be completed for the less preliminary version of this

paper),

e the analysis of a concrete example where it is clear that the “mutiple-conclusion” logic we
manipulate cannot be simulated in a functional way, and so, the discovery of features of
multiple-conclusion logic that are typical of parallel algorithms. We sketch then how to
extend this to a truly parallel cut-elimination for classical arithmetic.

I would like to thank Gabriel Stolzenberg, Lars Hallnds, Jan Smith, Peter Dybjer, Hugo
Herbelin and Chet Murthy for enjoyable discussions on this topic. Karlis Cerans provided
crucial critics.

1 A semantics of evidence

We start with a fixed language for arithmetic that contains (computable) functions like addition,
multiplication and (decidable) basic relations, like equality, <, ... We suppose that whenever an
atomic relation R is in this language we have another one R* which represents its complement,
in such a way that (R*)* is R.

The formulae are built inductively form atomic formulae by conjunction &, disjunction V,
universal and existential quantification. The negation ¢* is defined inductively from ¢ as usual.

To simplify things, we will suppose that all formulae are prenex formulae in which universal
and existential quantifications alternate, that is of the form Vz3yVz..., in which case we say
that the formula is universal, or of the form JxVydz..., in which case we say that the formula
is existential. All quantifier free formulae are decidable.

1.1 The intuitionistic case

We recall first what is a possible game-theoretic semantics of evidence for intuitionistic logic, as
presented for instance in A. Ranta’s thesis [8]. We consider the following game between Nature
and Myself, which consists in making moves, that are existential or universal instantiations, in
a given formula ¢, which is called the configuration of the game. Myself is trying to establish
the truth of formula ¢, and Nature tries to produce a counter-example. If the formula is atomic,
then it is decidable: if it is false, Nature wins, otherwise, Myself wins. If the formula is of the
form 3n A[n], Myself should produce an integer ny and the game goes on with A[ng]. If the
formula is of the form Vn A[n], Nature produces an integer ny and the game goes on with the
formula Alny).

For this game, a formula A can be defined to be intuitionistically true iff there is a winning
strategy for Myself.

1.2 Extension to “multigames”

We can complicate this by allowing the configuration of the game to be a finite multiset of
formulae. We write + the addition on multisets. The game stops when at least one formula
is atomic and true, in which case Myself wins. In the other cases, Myself should make an
instantiation whenever all formulae are existential, and Nature should make a move whenever



at least one formula is universal, by instantiating the universal formulae. If all formulae are
atomic and false, then Nature wins.

In this version, there is a winning strategy for Myself for the configuration of “excluded
middle” A 4+ A*, for any formula A : Myself simply waits for Nature to move, and mimics her
move in the dual formula.

For this notion of game however, it is not the case that there is a winning strategy for
dnVm [A[n] V A*[m]] even in the case where A is decidable. Indeed, suppose that Myself has
such a winning strategy. Myself has to give a value ng for n, because the formula is existential.
We know that if A[ng] does not hold, then we have Ym A*[m|. Otherwise, Nature can win by
playing mg such that A[mg] holds. By checking whether A[ng] holds or not, we would thus
extract a decision algorithm for 3In A[n] vV Vm A*[m)].

Notice however that, as pointed out already, there is a winning strategy for the “equivalent”
multiset formula 3In A[n| +Vm A*[m] : Myself waits for an instantiation m = my from Nature,
and if A*[myg] does not hold, win by playing n = mg (if A*[mg] holds, then Myself wins already
after Nature’s move).

1.3 Games with “backtracking”

For getting a notion of game such that (intuitionistic) winning strategy contains classical prov-
ability, we allow backtracking for moves of Myself. This means that Myself can choose to
complicate a configuration M + 3n A[n] where all the formulae are existential by both instanti-
ating the formula In A[n] and keeping it, which produces the configuration M + 3n A[n]+ A[ng]
where ng is the integer chosen by Myself. The moves of Nature are the same as before.

For this notion of game, there is a winning strategy for Myself for the configuration ¢ iff ¢
is classically true.

Instead of showing formally this equivalence, we will limit ourselves to show that if there is
a winning strategy for the configuration M + A 4+ A, then there is a winning strategy for the
configuration M+ A, and if there is a winning strategy for the configuration M+ A and a winning
strategy for the configuration N + A*, then there is a winning strategy for the configuration
M + N.

This is enough to show that the notion of truth defined by the existence of a winning strategy
has good properties. For instance, if we have a winning strategy for N + A[0] and, for all n, a
winning strategy for M + A[n]* + A[n + 1], then we deduce from these two closure properties
that there is a winning strategy for all n for M + N + A[n].

The first claim is seen by simulating directly the moves of a strategy for M + A + A by
moves for the configuration M + A.

The second claim is more difficult, and we will present it as the proof of termination of some
internal communications between two players following winnning strategies.

1.4 Two examples

There is now for instance a winning strategy for InVm [A[n] V A*[m]]. Myself chooses any
instantiation for n, for instance n = 0, and keeps the formula, waiting for a m = mg given by
Nature. If A*[mg], then Myself wins, and if A[mg] then Myself chooses n = mg for its next
move.



Another example, which shows that we cannot bound a priori the number of backtracking
in Myself’s guess, is the following strategy for the statement

InVm [f(n) < f(m)],

seeing f as an oracle. Myself starts by guessing an arbitrary value for n, for instance n = 0,
and allows himself to backtrack. Nature plays then m = wuq. If f(0) < f(u1), Myself wins. If
f(u1) < f(0), Myself backtracks and plays n = uy, and allows himself to backtrack. Nature
plays then m = uo. If f(u1) < f(u2), Myself wins. Otherwise, Myself backtracks and plays
n = ug, and allows himself to backtrack, and so on.

This will stop eventually, because < is well-founded, but it is not possible to bound a priori
(without knowing anything about f) the number of times that Myself will have to backtrack.

This explanation of classical truth is inspired by the first consistency proof for arithmetic
by Gentzen, see [3, 1]. Note that Bernays, in [1], presents this proof using choice sequences,
for representing the sequence of moves of Nature. We can use inductive definitions instead to
represent the notion of choice sequence, as done for instance in [6].

1.5 The case of existence statement

Let us look at the special case of a winning strategy for a configuration In A[n], where A[n] is
a (decidable) atomic formula. We see the decision procedure for A[n| as an oracle. To have a
winning strategy in this case means that Myself will do a finite number of wrong guesses for n,
until he eventually finds a ng such that A[ng]. We can actually suppose that Myself always is
doing some “auto-censure” by himself, so that he checks internally whether or not his guess is
correct for an existential formula In A[n], where A is atomic. With this assumption, a winning
strategy for an existence statement is exactly a witness.

We thus get that the result “if an existence statement is provable in classical first-order
arithmetic, then it is provable intuitionistically” follows from the identification of classical truth
with the existence of a winning strategy.

1.6 Simple backtracking

In all the examples we have presented so far, the backtracking that Myself uses is of a particular
nature. Myself never changes his mind about a value he has considered as wrong (we will precise
this notion later). We call this behaviour of Myself simple backtracking.

This notion of simple backtracking is interesting because it does involve backtracking, but
it is however a simple enough behaviour so that we can give a complete analysis of what is
happening in the case where all players follow simple backtracking. In particular, we will be
able to analyse later the case of multi-cuts for simple backtraking, that involves already real
concurrency.

In order to analyse a little more this notion of simple backtracking, we introduce the fol-
lowing notations. In the history of configurations of a game which has M + A as an initial
configuration, where A is existential, we follow the moves in A by writing A;, As, ...the in-
stantiations of A (due to Myself), and then Ay;, Ay, ...the respective instantiations of these
instantiations (due to Nature), and so on. If a formula B is of the form A, n,, or A7, . we
say that n;...n, is the index of the formula B, and we write n;...n, = ind(B). We say that
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a sequence nj...n, is a direct extension of a sequence m;...mg iff p = ¢+ 1, and n; = n;
for ¢ < p.

To say that the backtracking is simple for the formula A is to say that once we have
observed the sequence of moves

A, A+ Ay, A+ Aqq, A—|-A11+A2,...,A—|—...—|—An1___np,...

with p even, then the next move of Myself will be A+...+ Ay, m,, where my ... my is strictly
bigger than n;...n, for the alphabetical ordering on sequence of integers.

This is the case if the formula A is of the form J2Vy Blz,y|, where B is atomic, simply
because in this case, Myself cannot play A111. Simple backtracking holds thus when we consider
formulae of low logical complexity.

If Myself follows a strategy that uses only simple backtracking for an existential formula A,
then we can represent Myself’s moves in A (for a given game against nature) as a sequence of
the form

A, Ay, An, Anng, Ann, Ang, A, Ans,. -

Such a sequence can be read as follows (if the sequence of quantifiers of A is JzVy3zVt...):
Myself makes a first guess z = z; about the value of . Nature then answers y = y11. Myself
persists in his choice by guessing z = 211, this choice being refuted by Nature, who plays
t = t1111- At this point, Myself changes his mind about the choice of z (he considers that
Nature has really refutated it and does not persist in his choice, leaving the last refutation of
Nature t1111 without answers). He tries then z = zq12. This is refuted by Nature who plays
t=11121.

One can well imagine a strategy where Myself changes his mind also about the fact that he
was wrong. This is a more subtle kind of behaviour.

The analogy with learning theory, that Myself makes successive guesses according to the
moves of Nature, seems clear here and should be precised. We will limit ourselves here to point
out this analogy.

It would be nice if we can insure that for all classically true multiset M, it is possible to
find a winning strategy using only simple backtracking. Though we don’t have any concrete
counter-example, we suspect that this is not the case, since we don’t see how to get a strategy
for the configuration M 4+ A from a strategy for the configuration M + A + A if we impose
strategies to use only simple backtracking. Any strategy for M + A + A can be simulated by a
strategy for M + A. Even if for both A, a strategy for M + A 4+ A uses only simple backtracking,
this may not be the case for the simulated strategy for M + A.

Here is an example of a sequence of move that uses more than simple backtracking:
A A+ Ay, A+ Ay, A4 A + Ao,

A+An + Ao, A+ Ay + Ao + A,
A+An + A + A, A+ An 4+ Ao + A + Aorg, -

The intuition is that Myself, when he plays Ai11, changes his mind about his first backtracking,
and does not answer to the refutation As; of his last play. But when Nature refutes this last
play Ai11 by playing Aq111, Myself changes his mind again and comes back to the choice of
his second instantiation of A. Myself tries by playing A2 to refute the previous refutation of
Nature As; he had left without answers.



2 A dynamic view of cut-elimination

Let us imagine that we are playing against Nature for a given configuration. We can see a
strategy for this configuration as a player we have at our disposition. Each time Nature plays,
we transmit her move to this player. When all formulae are existential, we wait to see what is
the move of this player on this configuration. We follow the strategy by copying his move.

With this picture in mind, we can conceive that it takes more or less time for the player
to answer our question. We can consider a strategy to be total if we are sure that, eventually,
after a finite amount of time, the player will answer. It is then natural to consider also partial
strategies, that are like players who stay mute, thinking for a too long time about their next
move.

Given two strategies for M + A and N + A*, we show how to build a “partial” strategy
for M 4+ N. The situation is exactly the same as in concurrency theory where partial processes
appear when we use internal communication: a deadlock due to “infinite internal chatter” can
happen when we combine these two strategies. But, and this is what the cut-elimination result
expresses, if both strategies are winning strategies, then we do get a total strategy which is a
winning strategy.

It seems possible to give a definition of this compound strategy by following Gentzen’s
argument. This corresponds to a direct study of the following property of a multiset of formulae
M “there exists a winning strategy for M”. One gives a direct inductive definition of this
property, and one shows that if both M 4+ A and N + A* have this property, then so does
M + N. The argument is a double induction, first on the complexity of the cut-formula, and
then on the proof that the strategies are winning. Such a proof is presented in the last section.
If we follow this approach however, it is not so clear what is the “structure” of the algorithm
we get.

It seems much more interesting to see if a direct termination argument can be given, based
on an analysis of what are the possible interactions between two players I and I17.

2.1 Definition of the compound strategy

Here is an informal description of how this compound stategy is built. We assume that Myself
has at his disposition two coplayers I and I1. The player I represents a strategy for the game of
configuration M + A and the player IT a strategy for the game of configuration N + A*. Myself
follows then the following protocol for the game against Nature of configuration M + N.

As long as one formula in M or N is universal, Myself waits for an instantiation coming
from Nature. It transmits then this instantiation to the player I or IT that is concerned with
it.

After a finite number of such moves, both M and N have only existential formulae, so that
Nature is waiting for an existential instantiation by Myself. Myself noticed that at least A or
A* is existential. Let us say that A is existential. In this case, Myself asks to the player I what
is his move. Myself knows that I will answer, because all the formulae in the configuration of
the player I are existential. There are two cases:

e [ instantiates a formula in M, then Myself does the same move and the game goes on,

e [ instantiates the formula A. This is the difficult case.



In the second difficult case, Myself has not yet available any play against Nature. Indeed,
Nature does not “see” the formula A and so, cannot transmit I’s move as in the first case.

There is a simple subcase however for which it is clear what Myself should do: if the player
I instantiates the formula A without keeping it. In this case, the formula A becomes A, and
Myself transmits this move to the player I1. The configuration of I is then M + A;, and the
configuration of IT is N + Aj. The situation is the same as before, except that Myself is now
waiting for TI’s move. This “ping-pong” kind of play between I and IT (via Myself) goes on
for a finite amount of time, because the formula A is finite.

If during this internal communication, the formula A (resp. A*) becomes true, then the
dual formula becomes false, and the game goes on with only the player IT (resp. I), since this
player follows then a winning strategy for N (resp. M), the other player becoming inactive. If
both players follow a winning strategy, it is then clear that Myself follows a winning strategy
by copying one of these two players.

The only remaining subcase is when Myself gets to a position where, let say, I has a move
in A, but this move is such that I keeps the formula A (allowing backtracking). In such a case,
it is not so clear what Myself can do. Here is a possibility, that we shall analyse (and which
corresponds to Gentzen’s solution).

Myself transmits the move to the player I7, the formula A* becoming A}, but also Myself
keeps a copy of the player I1 in its initial configuration. The motivation is that Myself does not
know whether or not the choice of the player I is definitive, and so, it makes sure that he can
continue in case of a change of mind of the player I.

Once this is done, the configuration is almost like the previous subcase, except that Myself
allows I to backtrack in his choice.

How is the game going on?? Myself asks to the latest copy of the player I, who plays now
with a configuration N + A7, what is his move. If this move is in [V, it is transmitted to Nature.
If this move is in A}, Myself proceeds as before, i.e.:

e if this move is without backtracking (77 is sure of his guess), then the configuration of IT
becomes N + A7, and Myself transmits this move to the player I, whose configuration
becomes M + A + Aqq,

e if this move is with possible backtracking, then Myself does as before. The configuration
of IT becomes N + A7 + Aj,, and Myself transmits this move to the player I, whose
configuration becomes M + A + A;1, but Myself also keeps a copy of the player I in his
configuration M + A 4+ Ay, in case of a possible backtracking of 7T, and so on.

This finishes the description of the cut-elimination process.

A concrete instance of such a situation is the problem where we have a proof of a X}
statement C' by proving C, A* and C, A (for instance, C is Littlewood’s theorem, and A is
Riemann’s hypothesis). This cut-elimination process, if it terminates, gives a way of computing
a witness for C' from the two given proofs of C, A* and C, A.



2.2 Analysis of the problem of termination

The partial correctness of the compound strategy described in the previous subsection is clear.
That is, if the players I and IT follow a winning strategy for their respective configuration, it
is clear that, if a game between Nature and Myself terminates, then Myself wins. However,
it is not clear that the internal moves between the two players I and II terminate. In this
subsection, we want to analyse the nature of the problem of termination.

First, it is not restrictive to assume that both players I and I/, when they make a move
in A, are doing an instantiation with possible backtracking. Second, we can suppose that there
is no moves by I in M and no moves by I in N, so that we can restrict our attention to the
moves in the formula A only. That is, we suppose that we have a (partial) strategy for A and a
(partial) strategy for A*, and we analyse what happens if we let the strategy for A play against
the strategy for A*. We can then analyse the possible “interaction paths”: we are sure that we
will observe the moves

A+ Ay, Al + AY,

and for the next move, there is a choice: A + A1 can become A + Ay + Aj11 or A+ Ay + Ao,
and so on.

What we have to show is that if these moves come from winning strategies, then this
interaction path is finite.

The problem appears then to be the following. We know that a winning strategy (for the
player I) will win against any player that does not backtrack (and hence, in any such game,
the player I will backtrack only a finite number of time). We want to generalise this to a play
against a winning strategy (of IT), which may backtrack. It is possible to show that if the
strategy for Il bactracks only a finite number of time, then the game will stop (because we
have then a finitely branching tree, which has finite branches). The problem is that, a priori,
the only way to be sure that this will happen is to show that I will backtrack a finite number
of time. So there is a circularity here.

We can however formulate this problem as a pure problem of termination. The interaction
can be represented as a sequence of formulae

BOZA*, Bi=A+ A, By = ){—I—Ah, B3 =A+ A1 + Ao, ...
such that each By is a sum of formulae C; + ... + C),, where

1. all C; are existential for 7 < n, and C), is universal, we call C,, the end formula of By,
and we write h(By) = Cy, t(Bg) =C1 + ...+ Cp_1,

2. there is exactly one ¢ < n such that ind(Cy,) is a direct extension of ind(C;). Furthermore,
ind(Cy,) is the least direct extension of o for the lexicographical ordering that does not
occur already in By, ... Bi_1; we say then that ¢ is answered in By,

3. for each i < n, the dual C} appears as the end formula of exactly one Bj, for one j < k,

4. if 7 is answered in By, then ¢(By1) = t(B;) + h(Byg).



The formulae By, ..., By corresponds to the copies of the players I and I1. We call such a
sequence By, ..., B an interaction sequence.

The refinement of Gentzen’s cut-elimination is that such an interaction sequence is finite, if
the players follow a winning strategy. Gentzen’s argument (see the last section) provides only
the existence of a winning strategy, without describing it. It does seem possible however to use
a similar argument to show that the interaction sequence is finite, as will be shown in the next
version of this paper.

2.3 Total correctness in some restricted cases

A termination argument is readily given if A is of low logical complexity, for instance of the
form 3z B[z], or 3zVy B[z,y|. This becomes more complicated in the case 3zVy3z Blz,y, 2],
and we leave to the reader an analysis of all possible behaviours of cut-elimination in this case.

We conjecture the termination of the algorithm in the general case. We will prove here only
the case of simple backtracking.

With this added assumption, we use that A is finite, of depth n, and we remark that
the number of formulae extension of Ay, ,, occuring in the interaction sequence is finite, by
induction on n — p.

2.4 No-counter example interpretation

Another method (maybe inspired by Gentzen’s proof) of giving a computational meaning of
arithmetical truth is the no-counter example interpretation due to Kreisel. This is described
for instance in the introduction of [6]. One can see the present “interaction approach” as an
attempt towards the analysis of a computation at higher-type, in the spirit of Kleene 78 [5].

3 Towards a “symmetric” cut-elimination

We will analyse now a “multiple cut”. We will limit ourselves to the case of a cut of the following
form: we suppose to have a strategy for the games of configurations M + A, N + A* + B* and
L + B, and we try to build from these strategies a strategy for the game of configuration
M+ N+ L.

It appears that there is only one choice if A or B is universal. If both A and B are existential
however, there are several choices. The main point of this paper is to show that the usual two
choices: first eliminate the cut between M + A and N + A* 4+ B*, then between M + N + B*
and L + B, or the opposite solution, first eliminate the cut between L + B and N + A* + B*,
then between L + N 4+ A* and M + A, not only lead to distinct results in general, but also are
not natural w.r.t. the present game-theoretical analysis of cut-elimination.

3.1 A concrete example

This phenomena, is particularly clear for the following concrete exemple, which is due to Gabriel
Stolzenberg. It involves a typically classical lemma: the “infinite box principle”.

The example is the following. We suppose given as an “oracle” a stream of 0 and 1.
Classically, there are infinitely many 0, or infinitely many 1. The question is about a possible
computational meaning of this assertion.



Let us represent the stream of 0 and 1 by a parameter f which is a unary function symbol.
We represent a computational meaning of the infinite box principle as a winning strategy for
the game of configuration

VzoTyo (1o < yo & f(yo) = 0] + Va1 Iy1 (21 <y & f(y1) = 1],

that we will write A(0) + A(1). Here is such a winning strategy: Myself waits for two instantia-
tions zg = up and 1 = uy from Nature. When Myself gets these values, he computes the value
of u =max(ug,u;) and asks to the oracle the value of f(u). If f(u) = 0 Myself wins by playing
yo = u and if f(u) = 1, Myself wins by playing y; = u.

This interpretation seems very natural.

The question now is to see how to use this “computational” interpretation to do some
effective computation. Let us analyse a trivial use of this lemma: from the infinite box principle,
we deduce that there are at least two Os or at least two 1s. Indeed, if there are infinitely many
0, there are two Os (by picking the first two 0s), and similarly in the other case.

We have so a winning strategy for the configuration

JagIbg [ao < bo & f(ag) = f(bo) = 0] + Fzo¥yo [yo < z0 V f(yo) = 1],

i.e. if there are infinitely many Os, then there are two 0s. We will write M (0) + A(0)* this
configuration. and a winning strategy for the configuration

da,3by [a1 <b & f(al) = f(bl) = 1] + 3I1Vy1 [y1 <z1 V f(yl) = 0]

i.e. if there are infinitely many 1s, then there are two 1s. We will write M (1) + A(1)* this
configuration.

Let us precise this winning strategy for the configuration M (0) + A(0)*. Myself starts by
instantiating o = 0, keeping the formula A(0)*. Nature answers then by giving yo = u. If we
have u < 0 V f(u) = 1, then Myself wins. If we have f(u) = 0, then Myself backtracks in
his choice of zy, and choses now zg = u + 1. Nature answers by giving yo = v. If we have
v<u+1 V f(v) =1, then Myself wins. If we have u + 1 < v and f(v) = 0, then Myself wins
by playing ap = u and by = v.

We have now three winning strategies for the respective configurations M (0)+ A(0), A(0)* +
A(1)* and A(1) + M (1), and we want a winning strategy for the configuration M (0) + M (1).
Notice indeed that such a winning strategy will provide us with two Os or two 1s.

One way to solve this problem is to “put parenthesis”. We analyse this way first.

3.2 “Usual” cut-elimination is not symmetric

It consists in reducing the problem of multiple cuts to the problem of simple cut. Symbolically,
we want to do

CUT(M(0) + A(0), A(0)" + A(1)", A(1) + M (1))
and we do this by doing either

(%) CUT(CUT(M(0) + A(0), A(0)* + A(1)*), A(1) + M (1))
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or by doing
(%) CUT(M(0) + A(0), CUT(A(0)" + A(1)*, A(1) + M(1))),

using the algorithm described above.
We will not do it explicitely here, leaving this as an exercise for the reader. The important
points are that

e we do not get the same algorithm doing (*) and doing (**),

e both algorithms (*) and (**) are not symmetric w.r.t. 0/1, that is, they do not provide
the same answer if we interchange 0 and 1 in the values of the oracle f.

3.3 A symmetric cut-elimination

It is remarkable that, on this simple example, a way of doing cut-elimination suggested by
“common sense”, which is neither (*) nor (**), furnishes an algorithm that is symmetric w.r.t.

0/1.

More generally, in the case of a cut between A, A*+ B* and B where A and B are existential,
there seems to be a canonical way of doing the cut-elimination in the case of simple backtracking.
This way differs from the one where we put parenthesis in general.

We will analyse this on one possible interaction sequence (which corresponds to one possible
interaction sequence for the example described above).

Since A and B are existential, the corresponding strategies guess first values for them, with
possible backtracking: A; and B;. Then, Myself asks what is the move for A} 4+ Bj. Let say it
is A7;. In this case, we consider that the choice A has been refuted, and Myself transmits this
refutation to the corresponding player. This player can either persist in his choice playing Aq11,
or changes his mind, playing As. In this last choice, since only simple backtracking is allowed,
Myself can naturally consider that the choice A; has been definitively refuted and will never
come back to this choice again. So, Myself asks what is the move for A5 + Bf. If the answer
is Bi1, and the move for By + By is Bo, it is natural that Myself asks what is the move for
A5 + B3, and so on.

But this is not what will happen if Myself tries to evaluate

CUT(CUT(A, A* + B*), B).

For this “protocol”, Myself asks instead what is the move for A} + B3, forgetting completely
what happened about A.

One can generally expect inefficiency (at least in the case of simple backtracking) if Myself
follows the protocol
CUT(CUT(A, A* + B*), B).

In this case indeed, whenever the player associated with the formula B tries a new instantiation
B; for B, Myself comes back to the first instantiation for A, and asks what is the move for
A} + B;.

11



Symmetrically, if Myself follow the protocol
CUT(A,CUT (A" + B*, B)).

In this case, whenever the player associated with the formula A tries a new instantiation A; for
A, Myself comes back to the first instantiation for B, and asks what is the move for A + BY.

The symmetric protocol, which seems natural, is instead that Myself asks systematically
the move for AY + B where A; (resp. B;) is the last instantiation of A (resp. B) that has been
played. Furthermore, if Myself follows this protocol, then a given game can be analysed as two
sequences of interaction for A and B that are interleaved, hence a direct termination argument.

Notice that this is a new “ternary” way of doing cut-elimination, which is not reducible to
a combination of two “binary” cuts.

In the case where A or B is universal, then the “ternary” cut-elimination is equivalent to a
combination of “two” cuts (except of doing less copies.) This is what happened, in a iterated
way, with the cut-elimination procedure presented above compared to Gentzen’s cut-elimination.

This analysis can be extended to the case of a “multi-cut” A, A* + B*, B, with A, B of
arbitrary complexity, but the players follow a strategy of simple backtracking.

4 An inductive presentation of w-logic

For sake of comparison, we reformulate usual definitions of w-logic in the framework of gener-
alised inductive definitions.

We define inductively when a multiset M of formulae is (classically) true. There are the
following clauses:

e if M contains a true atomic formulae, then M is true,

e if there exists ny such that M + A[ng] is true, then M + In A[n] is true,

e if there exists ng such that M + 3In A[n] + Alno] is true, then M + In A[n] is true,
o if M + A+ B is true, then M + A V B is true,

e if M + A and M + B are true, then M + A & B is true,

o if M + A[ny] is true for all integers ng, then M + Vn Aln] is true.

Only the last clause is not finitary.

If we forget the point that in the game-theoretic presentation we consider only prenex
formulae, the main difference is that in the game-theoretic presentation, we have to use the last
rule whenever one formula is universal in the multiset of sequents. It follows that if there is a
winning strategy for a configuration M, then M is true with the present definition.

Lemma 1 The following properties hold

e if A is a false atomic formula, and M + A is true, then M is true,

12



e if M+ A V B is true, then M + A + B is true,
e if M + A & B is true, then M + A and M + B are true,

o if M +Vn Aln] is true, then M + A[ny] is true for all integer ny.

Proof: All these properties are of the form: if M is true, then M’ is true, and they are proved directly
by induction on the proof that M is true.

Lemma 2 If M + A+ A is true, then so is M + A.

Proof: By double induction: first on the formula A, and then by induction on the proof that M + A is
true, using the previous lemma 1.

Proposition 1 If M + A and N 4+ A* are true, then so is M + N.

Proof: By double induction, first on the formula A, and then by induction on the proofs that M + A
and N + A* are true. Let us look at one case: A is In B[n] and M + A is true because M + B[ng] + A is
true. Then, by lemma 1, we know that N + B[ng]* is true. By induction hypothesis, by a cut between
N + A* and M + B[ng] + A, we get that N + M + B[ng] is true. By induction hypothesis, since B[ng]
is less complex than A, we get that N + N + M is true. By lemma 2, N + M is true.

The important remark is that, with this definition, cut-elimination is not an associative
operation.

Conclusion

We have presented a conjecture of termination of an internal communication, that would refine
Gentzen’s cut-elimination. This conjecture is valid in the case of cuts of low logical complexity,
and in a restricted case of “simple backtracking.” The same idea in the case of multiple cuts
leads to a protocole of cut-elimination distinct in general from the one where we decompose the
multiple cut in binary cuts.

One important point to precise is the connection between the symmetric protocol we pre-
sented and the fact, noticed by Hugo Herbelin, that there does exist a Gentzen like cut-
elimination procedure that lead to a symmetric answer. It is not clear at all yet what is
the game-theoretical meaning of this procedure.
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