Universe of Bishop sets

Introduction

The goal of this note is to present a self-contained presentation of the cubical set model and a natural
sub-presheaf of the universe which corresponds to the notion of Bishop sets!, where two paths having the
same endpoints are necessarily equal for judgemental equality. We show that this sub-presheaf is fibrant
and it is actually closed by the Kan structure of the universe.

All we present can be formalized in Aczel’s system CZFu (constructive version of ZFC with one
Grothendieck universe), and what we present of the cubical set model has been formalized by Mark
Bickford in NuPrl.

1 Base category, fibrations and cofibrations

We write I, J, K, ... the objects of a given small category C.

We write A, B, ..., I A, ... for presheaves over C. (A presheaf A is given by a collection of sets A(I)
with restriction maps A(I) — A(J) sending u to uf for f : J — I.) We use the same notation for an
object I and the presheaf it represents.

We assume given a special presheaf I which has a structure of distributive lattice with an involution
(a.k.a. de Morgan algebra). We also assume that J x I is always representable and we have a functor
J — JT on the base category so that JT represents J x I. We have two maps eg,e; : J — J that are
sections of the projection p: J* — J.

We also assume given a subobject F of the suboject classifier which is a sub-lattice. Any map
1 : A — F defines a subpresheaf A|yp C A where (AJ)(I) is the subset of element p in I'(I) such that
Yp = 1 in F(I). We assume maps dp,d; : A X I — F which classify respectively the two face maps
eo,e1 : A — A x 1. For proving fibrancy of the universe (and that fact that it is univalent) we also
assume that the constant map F — F! has a right adjoint V¥ : F! — F.

If we have 0 : A — B and ¢ : B — F then o induces a map A|o — B[, that sends u in (A|v)(])
to oyu. We may write simply o : Alpo — Bl for this induced map.

We say that a map is a cofibration if, and only if, it is classified by F.

A (generalised) open box b(A,v) C A x I is the subpresheaf determined by dy V ¢p : A x I — F for
some ¢ : A — F.

A fibration is a map that has the right lifting property w.r.t. any open box2. A trivial fibration is a
map which has the right lifting property w.r.t. any cofibration.

2 Dependent types

If T is a cubical set, we can consider its category of elements [T: an object is of the form (I, p) with p
inT'(I) and amap f: (J,v) = (I,p)isamap f:J — I such that v = pf in T'(J).

A dependent type on T', notation I' b A, is a presheaf on the category of elements of T'.

If 0 : A — T then o determines a functor [ A — [T sending (I,v) to (I,ov) and I' - A determines
by composition a dependent type A+ Ao.

Hntuitively, a Bishop set can be seen as a (directed) graph of an equivalence relation, where there is at most one edge
between two nodes.
2This corresponds to what Cisinski calls « naive) fibrations, but in our case they coincide with fibrations.



If we have I' - A we can define a new cubical set T'.A by taking (T'.A)(I) to be the set of elements
pyu with p in I'() and u in A(I,p) and (p,u)f = (pf,uf). We have a canonical map ps : LA = T
defined by pa(p,u) = p.

We define I' F u : A to mean that u is a family of elements u(I, p) in A(I, p) such that u(I,p)f =
u(lJ,pf)if f:J—1. Ifo: A —T we can define A Fuo : Ao by uo(1, p) = u(l,op).

It is convenient to identify the set of maps I — I" with the set I'(1). If p: I - I" and I' - A we can
consider the presheaf I F Ap and the set A(I,p) and we have Ap(I,1) = A(I,p). The set of sections
I'Fwu: Ap can be identified with the set A(I, p).

In the case A C T and I' - A we may write A - A omitting the canonical inclusion map. Similarly if
I'F w: A then we still write A Fu: A if A CTI' omitting the canonical inclusion map.

Though the presheaf category on [T" and the slice category over I' are equivalent, it is important to
distinguish them to be able to state results with strict equality (which is crucial to get a model of type
theory in a simple way without coherence issues).

If'FAandT'Fap: Aand I'F ay : A we define I' - Path A ag a1 by

(Path A ag a1)(I,p) = {w e A(I", pp) | weg = ao(I,p) Awer = ai(I,p)}

and the restriction map (Path A ag a1)(I,p) — (Path A ag a1)(J, pf) for f:J — I, sends w to wf™T.

3 Trivial fibrations and filling structures

Definition 3.1 A filling structure for I' = A is an operation IT = Ca(p,4,u) : Ap given p: IT — T
and ¢ : I — F and b(I,4) F u : A satisfying b(I,%) F Ca(p, ¥, u) = u : A together with the uniformity
condition that if f: J — I then

JTECalp, 0, u)fT =CalpfT 0 f,uft): Apf™

Notice that f: J — I induces a map fT : b(J, 9 f) — b(I, ).

Similarly a trivial fibration structure is giving by explicit operations I F ea(p, 9, u) : Ap with ¢ :
I—Fand p: I —T and I,¥F u: A satistying I,¢ F ea(p,¥,u) = u: A together with the uniformity
condition that if f: J — I then

JE eA(pawau)f = eA(pfa ¢f7uf) tApf

Theorem 3.2 A dependent type I' - A has a filling structure (resp. trivial fibration structure) if, and
only is, p4 is a fibration (resp. a trivial fibration).

Definition 3.3 A composition structure for I' - A is an operation I F ca(p,v,u) : Ape; given p: I —
Pand ¢ : I — F and b(I,9) b w : Ap satisfying I, F ca(p,¥,u) = uey : Apey together with the
uniformity condition that if f : J — I then

JTEcalp,,u)f = calpfT, 0 f,uf™) : Aper f

If ¢4 is a composition structure on I' - A and o : A — I" then we define a composition structure c4o
on A Ao by It cao(v,9,u) = ca(ov, v, u) : Aov.

Theorem 3.4 The set of composition structures on I' - A is a retract of the set of filling structures on
' A.

4 Universe

We consider one (constructive) Grothendieck universe U and define a corresponding cubical set U by
taking U(I) to be the set of all pairs (A, c4) where A is a U-dependent type I - A and cy4 is a composition
structure on I = A. If f: J — I we define (A,cq)f to be Af,caf.

We define U = El by taking El(I, A, ca) to be the set of all sections I - u : A. The element (A, ca)
can be seen as a map I — U and we have I - El(A,ca) = A.



Theorem 4.1 U F El has a canonical composition structure cg such that if I' = A is a U-dependent
type with a composition structure c,, there exists a unique map |A| : T' — U such that El|A| = A and
cg|A| = ca (strict equalities).

Proof. Any map It — U is of the form (A4,c4) with IT™ - A and c4 a corresponding composition
structure. We define then

I+ = CE((A7CA)awau) = CA(la/l/)7u) : EZ(AaCA)
given ¢ in F(I) and b(I,¢) Fu: El(A,cq) = A. We can then check, if f:J — I
CE((A7CA)5 11Z)7 U)f+ = CA(la wau)f+ = CA(f+7wfa uf+) = CAf+(1»¢f7 uf+) = CE((Aa cA)f+a 1/}f7 Uf+)

If T+ A is a U-dependent type with a composition structure c4, we define |A| : T' — U by taking
|Alp = Ap,cap. We then have El|A|p = El(Ap,cap) = Ap and

CE‘A|(PMP’U) = CE(|A|p51/}au) = CE((Apa CAP)JP’U) = CAP(1a¢aU) = CA(p,’l/},U)

hence Fl|A| = A and cg|A| = ca. |

5 Strict propositions and Bishop sets
We say that I' - A is a strict proposition, notation
I' = A sprop

if, and only if, for any p in I'(I) the set A(I, p) is a sub-singleton.
We say that I' - A is a Bishop set, notation

I'+ A bset

if, and only if, for any p : IT — ' and any two elements u,u’ in A(I",p) we have u = u’ as soon as
uey = u'eg and ue; = u'ey.

We have that I' - A is a Bishop set if it is a strict proposition.

The following rules are valid

'+ A sprop I' - A bset 'kaga:A T'F A sprop TFaga: A
'+ A bset I' F Path A ag ay sprop I'Fag=a;: A

We also have that these notions are closed by substitution: if o : A — ' then T' - A sprop (resp.
't A bset) implies A - Ao sprop (resp. A F Ao bset).

I xIFAbsetand ' xIFuw : Aand I' - ueg = v'eg : Aeg and T' - ue; = u'eq : Ae; then we
have ' x I+ u=14u: A

We define then two cubical sets sProp C bSet C U by taking sProp(I) to be the set of all pairs A, ca
in U(I) such that T - A is a strict proposition, and bSet(I) to be the set of all pairs A, c4 in U(I) such
that I+ A is a Bishop set. Since U b El we also have by restriction sProp - El and bSet F EI.

Theorem 5.1 IfT' F A is ald-dependent type with a composition structure c4, and is a strict proposition
(resp. Bishop set) there exists a unique map |A| : I' — sProp (resp. |A| : T' — bSet) such that El|A| = A
and cg|A| = ¢y (strict equalities).

We are going next to see that all these 3 universes are fibrant and the inclusion maps commute
(strictly) with composition.



6 Fibrancy of the universes

The fact that the universe U is fibrant relies on the following «glueing» operation, which can be defined
at the level of presheaves.

Theorem 6.1 Given I' - A and ¢ : I' — Fand I'|p - T and® T|¢p - w : T — A, we can define
I'F Glue(A,¢,T,w) and T' + e(A, ¥, T, w) : Glue(A, ¥, T, w) — A such that I'|¢p b T = Glue(A,, T, w)
and Tl Fw=e(A,¢,T,w): T — Aandifo: A —T then

Glue(A, v, T, w)o = Glue(Ao, o, To,wo) e(A, Y, T, w)o = e(Ao,vo,To,wo)
Proof. we define G = Glue(A, 1, T,w) by defining a family of sets G(I, p) given p : I — T by case on ¢p
1. if ¥p = 1 then G(I, p) is the set T'(I, p) which is well defined since p is in (T'|¢))(I) in this case

2. if p # 1 then G(I,p) is the set of pairs a,t where a is in A(I,p) and I|pp b ¢ : Tp such that
werpp) W, f) =af in A(J, pf) whenever f:J — I and ¢pf = 1.

We define then the restriction map G(I, p) — G(J, pf) for f : J — I by corresponding cases. If ¢p = 1
it is the restriction map of T. If ¥p # 1 and ¢¥pf = 1 then (a,t)f = tf and finally if ¢pf # 1 then

(a,t)f =af,tf. O

Theorem 6.2 IfT' - A is a Bishop set (resp. a strict proposition) and ¢ : T' = F and T|¢p - T is a
Bishop set (resp. a strict proposition) and T'|¢) - w : T — A then T' - Glue(A,, T, w) is a Bishop set
(resp. a strict proposition).

IfAFT and A+ A we write A w: T — A to mean that w is a natural transformation between
the two presheafs 7' and A on [ A. We define the homotopy fiber A.A - F,, by taking F,,(I, p,u) for p in
A(I) and u in A(1, p) to be the set of elements (¢,w) where ¢ is in T'(I, p) and w an element of A(I™T, pp)
such that weg = w t and wey = u. If f:J — I we define (t,w)f = (tf,wf™).

An equivalence structure ¢,, for the map w is then a trivial fibration structure for A.A + F,, (this
expresses that each fiber of w is contractible).

Theorem 6.3 GivenT' - A with a composition structure c4 and ¢ : T' — F and T'|¢) b T with a composi-
tion structure cy and T'|¢) b w : T — A with an equivalence structure c,, we can find a composition struc-
ture Glue(ca, ¥, cr,cyw) on T+ Glue(A, 1, T, w) such that Glue(ca, ¥, cr, cyw)o = Glue(cao, o, cr, cypo) if
o:A =T and Glue(ca, ¥, cr,cy) = cp if p = 1.

Corollary 6.4 The universe U has a composition structure cy such that bSet and sProp are closed by
Cy.

Proof. Given I and ¢ : I — F and b(I,%) b X : U we have to define I F ¢y(¢, X) : U such that
Lyt cy(,X) = Xey : U. We define I H A= Xey and I,p T = Xe; and X defines a transport
map I,¢p b w : T — A which has an equivalence structure. It follows then that we get a composition
structure cg on I - Glue(A,v, T, w) and we define ¢y (v, X) = Glue(A, ¢, T, w), cg. Theorem 6.2 shows
then that bSet and sProp are closed by cp. O

In particular, sProp and bSet are fibrant.
It also follows from Theorems 6.3 and 6.2 that both universes sProp and bSet are univalent.

3This means that w is a natural transformation between the presheaves T and A on the category of elements of T'|.



7 Strict sets

We could define a notion of strict sets, and a corresponding notion of universe, by requiring of I' - A
that, if p: IT™ — T and ug in A(I, pey), we have at most one w in A(I",p) such that ug = weg. A
fibration I' = A which is a strict set would correspond to the notion of covering space and syntactically to
the equality reflection rule. (By contrast, we expect our notion of Bishop sets to correspond syntactically
to a type system with decidable type-checking.)

Notice that, if I' = A is a strict set, it has at most one composition structure. So in this case, to have
a composition is a property and not only a structure.

We can then define a presheaf sSet with sSet(I) is the set of elements A, c4 in U(I) such that I+ A
is a strict set. We have sProp C sSet C bSet.

Let N3 be the set {0,1}. This defines a strict set (constant presheaf). We define a non trivial strict
set I + E corresponding to the bijection swapping 0 and 1, by taking FE(J,r) for r in I(J) to also be
constantly No but with a non trivial restriction map E(J,r) — E(K,rg) for g : K — J which is defined
by cases: if r = 1 or rg # 1 it is constant, and it is the swapping map if » # 1 and rg = 1. It can be
shown that I+ F has a composition structure.

Lemma 7.1 IfT - A then it is a strict set as soon as if w,w’ are in A(IT,p) then wey = W'eq implies
!
wep =wer.

Proof. Let us assume that this condition holds, and that we have wey = w'eq and we prove w = w'.
Since I has a lattice structure, we have m : I+ — It such that me; = 1 and meg = egp. We have
wegp = w'egp and hence wmey = w'mey. Since the condition holds, we have wme; = w'me; that is,
w=uw. O

Theorem 7.2 IfI' - A has a composition structure and I'.A + B sset then I' - II A B sset.

Proof. We use the previous Lemma 7.1. Assume that we have w and w’ in (Il A B)(I*, p) such that
weg = wej. We prove wey = w'eg. For this we take an arbitrary f : J — I and we prove wei f u =
w'er f u in B(J, pe1f,u) for any u in A(J, perf). We have e1 f = fTe; and since A has a composition
structure, we can find @ ub A(JT, pfT) such that @ie; = u. Since B is a strict set and we have weg f u =
(wfT @)eg = (w'f+ @)eg = w'eof u we also have wey f u = (wft @)e; = (W' f+ @)e; = werf u as
desired. O

8 The universe of strict propositions is a strict set

If I' F A is a strict proposition each set A(I,p) is a subsingleton. We can think of this set as a truth
value, and write A(I, p) true to mean that it is inhabited.

Lemma 8.1 IfT'+ A is a strict proposition that has a composition structure then for any p in T'(IT),
we have that A(I", p) is true if, and only if, both A(I, pey) and A(I, pe1) are true if, and only if one of
A(I, peg) or A(I, pey) is true.

While it does not seem possible to prove that sProp is a strict set in our purely abstract and axiomatic
framework, it is possible to prove it in the concrete case of the cubical set model, where the objects of
the base category are finite sets. In this case indeed, it follows from the Lemma that if I' - A is a strict
proposition that has a composition structure, then A(I, p) is true as soon as there exists f : ) — I such
that A((, pf) is true. We get then the following result in this concrete case.

Corollary 8.2 if I' + A is a strict proposition that has a composition structure, and f : J — I and
p: I — T then A(J, pf) is true if, and only if, A(I, p) is true.

From this remark we get that if we have IT - A A’ are strict propositions that have a composition
structure, and I = Aeg = A’eg then I™ = A = A’. Indeed, if f: J — I and A(J, f) is true then so is
A(I,1) and also A(I,eq) = A'(I,ep) and then A’(I",1) is true and also A'(J, f).

It follows that sProp is a strict set.



Bishop sets

Similarly, while it does not seem possible to prove that Bishop sets are closed by dependent product in
our purely abstract and axiomatic framework, it is possible to prove it in the concrete case of the cubical
set model, where the objects of the base category are finite sets. In this case we have the following
alternative characterisation.

Proposition 8.3 T' - A is a Bishop sets if, and only if, any two element u,u’ of A(I,p) are equal as
soon as we have uf =u'f in A(Q,pf) for all f:0 — I.

Corollary 8.4 IfT". A+ B is a Bishop set then I' - 11 A B is a Bishop set.

Proof. We take w and w’ in (I A B)(I, p) and assume that we have wf = w'f in (Il A B)(0, pf) for all
f:0— 1. If we take g : J — I and u in A(J, pg) we show wg v = w'g u in B(J, pg,u). Indeed, since B
is a Bishop set, it is enough to show (wg u)h = (w'g w)h in B(0, pgh,uh) for all h : ) — J, but we have

(wg u)h = wgh uh = w'gh uh = (W'g u)h

since wgh = w’gh by hypothesis. O



