
Equality and dependent type theory

Thierry Coquand

24th AILA meeting, Bologna, February 2-4



Equality and dependent type theory

Equality and dependent type theory

This talk: comments on V. Voevodsky Univalent Foundation for Mathematics

A refinement of the propositions-as-types or Curry-Howard interpretation

type = proposition = homotopy type of a space

1



Equality and dependent type theory

Foundations of Mathematics

In the same year 1908

set theory, Zermelo Investigations in the foundation of set theory

type theory, Russell Mathematical logic as based on the theory of types

How do these two foundations compare w.r.t. equality?

2



Equality and dependent type theory

Equality in set theory

Axiom of extensionality: two sets that have the same elements are equal

Axiom I in Zermelo’s 1908 article

3



Equality and dependent type theory

Equality in type theory

First edition of Principia Mathematica (1910): no axiom of extensionality,
but axiom of reducibility (propositions form a type, and we can quantify over
propositions, also known as impredicativity)

Second edition (1925): under the influence of Wittgenstein, Russell introduces
the principle of extensionality

a function of propositions is always a truth function, and a function occurs
only in a proposition through its values

and sees this as a (partial) replacement of the axiom of reducibility

4



Equality and dependent type theory

Equality in type theory

A function can only appear in a matrix though its values

“This assumption is fundamental in the following theory. It has its difficulties,
but for the moment, we ignore them. It takes the place (not quite adequatly) of
the axiom of reducibility”

5



Equality and dependent type theory

Church’s formulation of type theory

Simplification of Russell’s theory of types

A type of proposition o, a type of individuals and function type A→ B

For instance o→ o is the type of the operation of negation

We have the usual connectives on propositions

p→ q : o for the implication if p q : o

quantifiers at any type ∀x : A.ϕ : o if ϕ : o [x : A]

6



Equality and dependent type theory

Church’s formulation

Uses λ-calculus to represent terms (implicit in Principia Mathematica)

If f : A→ B and a : A then f a : B the application of the function f to the
argument a

If t : B [x : A] then λx.t : A→ B

The terms of type o are the propositions

Usual connectives and (classical) logical rules

7



Equality and dependent type theory

Equality in Church’s formulation

We can define an equality (Leibnitz equality) IdA a0 a1 as

∀P : A→ o. P (a0)→ P (a1)

This definition is impredicative

One can show that this is a reflexive, symmetric and transitive relation

The axiom of extensionality has then two forms

on propositions: (p↔ q)→ Ido p q

on functions: (∀x : A. IdB (f x) (g x))→ IdA→B f g

8



Equality and dependent type theory

Dependent Type Theory

Curry-Howard, N. de Bruijn, D. Scott, P. Martin-Löf

Add to simple type theory the notion of dependent type B(x) type for x : A∏
x:A

B(x) type of functions/sections f with f a : B(a) if a : A

∑
x:A

B(x) type of pairs a, b with a : A and b : B(a)

Natural set theoretic interpretation

9



Equality and dependent type theory

Proposition as Types

If B(x) = B does not depend on x : A∏
x:A

B(x) is written A→ B represents both function types and implication

∑
x:A

B(x) is written A×B represents both cartesian product and conjunction

10



Equality and dependent type theory

Proposition as Types

∏
x:A

B(x) represents

-universal quantification and

-the set of sections of the family B(x)

11



Equality and dependent type theory

Proposition as Types

∑
x:A

B(x) represents

-the fiber space over A defined by the family B(x) and

-the set {x : A | B(x)} and

-existential quantification (∃x : A)B(x)

12



Equality and dependent type theory

Universe

Martin-Löf (1972) introduces the notion of universe U , type of “small” types

U can be thought of both as a type of types and as a type of propositions

Predicative system∑
X:U

X × (X → X) or
∏
X:U

(X → X) are large types and not of type U

∑
X:U

X × (X → X)

type of all structures with one constant and one unary operation

13



Equality and dependent type theory

Some Notations

A→ B → C for A→ (B → C)

λx y z.t for λxλyλz.t∏
x0 x1:A

B(x0, x1) for
∏
x0:A

∏
x1:A

B(x0, x1)

14



Equality and dependent type theory

Dependent Type Theory

To summarize: extension of Gödel’s system T with∏
x:A

B(x) and
∑
x:A

B(x)

A type of small types U (closed under products and sums)

N0, N1, N2, N : U

Terms: λ-terms extended with constants 0 : N and x+ 1 : N [x : N ] and

natrec : P (0)→ (
∏
x:N

P (x)→ P (x+ 1))→
∏
x:N

P (x)

natrec a f 0 = a and natrec a f (n+ 1) = f n (natrec a f n)

15



Equality and dependent type theory

Dependent Type Theory

Uniform foundation for logic and type theory: True = Provable = Inhabited

(In Church’s type theory, one needs to add logical rules to the type structure)

For instance∏
A B:U

(A→ B → A)

is true because it is inhabited by λA B x y. x

A : U, B : U ` λx y. x : A→ B → A

A : U, B : U, x : A, y : B ` x : A

16



Equality and dependent type theory

Propositions as Types

Not so intuitive to consider the type N of natural number to be a proposition

A satisfactory answer will be provided by an analysis of equality in type theory

17



Equality and dependent type theory

Equality in Dependent Type Theory

We follow an axiomatic approach: what should be the property of equality?

We should have a type of equality proofs IdA a0 a1 if A type and a0 a1 : A

We write α, β, . . . equality proofs

Some axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1) given B(x) type over x : A

We have b · α : B(a1) if b : B(a0) and α : IdA a0 a1

18



Equality and dependent type theory

Equality as Path

We think of a type A as a space

A proof α : IdA a0 a1 is thought of as a path between a0 and a1

The operation b · α : B(a1) for b : B(a0) corresponds then to the path lifting
property

(For a covering space, this lifting property provides a bijection between two
fibers of two connected points)

We expect to have IdB(a0) (b · 1a0) b

19



Equality and dependent type theory

Equality as Path

3 axioms so far

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

20



Equality and dependent type theory

Contractible Spaces

If A is a type we define a new type iscontr A to be
∑
a:A

∏
x:A

IdA a x

This means that A has exactly one element

In term of space, A is contractible

21



Equality and dependent type theory

A further axiom

(J.P.Serre) when I was working on homotopy groups (around 1950), I
convinced myself that, for a space X, there should exist a fibre space E, with
base X, which is contractible; such a space would allow me (using Leray’s
methods) to do lots of computations on homotopy groups. . . But how to find
it? It took me several weeks (a very long time, at the age I was then) to realize
that the space of “paths” on X had all the necessary properties-if only I dared
call it a “fiber space”. This was the starting point of the loop space method in
algebraic topology.

22



Equality and dependent type theory

A further axiom

Given a point a in X, J.P. Serre was considering the space E of paths α from
a to another point x of A, with the map E → A, α 7−→ x

E is contractible, and we have a contractible fibre space E with base X

In type theory, this translates to

For a : X, the type E =
∑
x:X

IdA a x should be contractible

Any element (x, α) : E is equal to (a, 1a)

23



Equality and dependent type theory

Equality as Path

4 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

24



Equality and dependent type theory

Equivalent formulation

introduction rule 1a : IdA a a

elimination rule: given C(x, α) for x : A and α : IdA a x then we have

elim : C(a, 1a)→
∏
x:A

∏
α:IdA a x

C(x, α)

(C. Paulin’s formulation of equality in type theory)

“computation” rule: IdC(a,1a) (elim c a 1a) c for any c : C(a, 1a)

Dependent type version of IdA a x→ P (a)→ P (x)

25



Equality and dependent type theory

Equivalent formulation

introduction rule 1a : IdA a a

elimination rule: given C(x0, x1, α) for x0 x1 : A and α : IdA x0 x1 we have

J : (
∏
x:A

C(x, x, 1x))→
∏

x0 x1:A

∏
α:IdA x0 x1

C(x0, x1, α)

“computation” rule: IdC(x,x,1x) (J d x x 1x) (d x) for any d :
∏
x:A

C(x, x, 1x)

This is P. Martin-Löf’s formulation of equality in type theory

It expresses in type theory that IdA is the least reflexive relation on A

26



Equality and dependent type theory

Consequences of these axioms

All these different formulations are equivalent axiom systems

Given these axioms any type has automatically a groupoid structure

Proofs-as-programs version of the fact that equality is symmetric and transitive

Any function f : A→ B defines a functor

Hofmann-Streicher 1992

27



Equality and dependent type theory

Equality as Path

Most topological intuitions have a direct formal expression in type theory, e.g.

for any type X and a : X the type π1(X, a) = IdX a a has a group structure

π2(X, a) = π1(IdX a a, 1a), . . . and we have

Proposition: πn(X, a) is commutative for n > 2

More generally, whenever we have a type X with a binary operation and an
element e : X which is both a left and right unit for this operation then the group
π1(X, e) = IdX e e is commutative

28



Equality and dependent type theory

Axiom of extensionality

The usual formulation of this axiom is, with F =
∏
x:A

B(x)

(
∏
x:A

IdB(x) (f x) (g x)))→ IdF f g

(V. Voevodsky) This is equivalent to

A product of contractible types is contractible

(
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

29



Equality and dependent type theory

Equality as Path

5 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

ax5 : (
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

30



Equality and dependent type theory

Stratification of types

A is of h-level 0 iff A is contractible

A is of h-level 1 iff IdA a0 a1 is contractible for any a0 a1 : A

A is a proposition iff A is of h-level 1

A is of h-level 2 iff IdA a0 a1 is a proposition for any a0 a1 : A

A is a set iff A is of h-level 2

. . .

31



Equality and dependent type theory

Stratification of types

These definitions can be internalised in type theory

isprop A =
∏

x0 x1:A

iscontr (IdA x0 x1)

isset A =
∏

x0 x1:A

isprop (IdA x0 x1)

There is no “global” type of all propositions or of all sets

What “matters” is not the “size” of the type, but the complexity of its equality

32



Equality and dependent type theory

Extensionality and impredicativity

The extensionality axiom implies

-a product of propositions is always a proposition∏
x:A

isprop (B(x)) → isprop (
∏
x:A

B(x))

-a product of sets is always a set∏
x:A

isset (B(x)) → isset (
∏
x:A

B(x))

The first implication confirms Russell’s remark that the principle of
extensionality can replace the axiom of reducibility

33



Equality and dependent type theory

Propositions

If we have isprop (B(x)) for all x : A then the canonical projection

(
∑
x:A

B(x))→ A

is a mono, and we can think of
∑
x:A

B(x) as the subset of elements in A

satisfying the property B(x)

34



Equality and dependent type theory

Unique Existence

iscontr(
∑
x:A

B(x)) a generalisation of unique existence ∃!x : A.B(x)

If B(x) is a proposition, iscontr(
∑
x:A

B(x)) reduces to unique existence on x

More refined in general than to state that only one element in A satisfies B(x)

We always have iscontr(
∑
x:A

IdA a x) but IdA a x may not be a proposition

35



Equality and dependent type theory

Hedberg’s Theorem

Define isdec A to be
∏

x0 x1:A

IdA x0 x1 + ¬ (IdA x0 x1)

¬ C denotes C → N0, where N0 is the empty type

M. Hedberg noticed (1995) that we have

isdec A→ isset A

In particular N the type of natural numbers is decidable

So N is a set but it is not a proposition (since ¬ (IdN 0 1) is inhabited)

36



Equality and dependent type theory

Other properties

isprop N0, iscontr N1, isset N2

¬ A→ isprop A

isprop (iscontr A) for all type A

isprop (isprop A) for all type A

isprop (isset A) for all type A

isprop A iff
∏

x0 x1:A

iscontr(IdA x0 x1) iff
∏

x0 x1:A

IdA x0 x1

37



Equality and dependent type theory

Axiom of extensionality

In Church’s type theory (p↔ q)→ Ido p q

What about adding as an axiom (X ↔ Y )→ IdU X Y ?

S. Berardi noticed that this is contradictory (with dependent type theory):

If X inhabited X is logically equivalent to X → X

We would have IdU X (X → X) and then X and X → X are isomorphic

X model of λ-calculus, hence any map on X has a fixed-point

and we get a contradiction if X = N or X = N2

38



Equality and dependent type theory

Axiom of extensionality

So we need a more subtle formulation

Define Isom X Y to be∑
f :X→Y

∑
g:Y→X

(
∏
x:X

IdX (g (f x)) x)× (
∏
y:Y

IdY (f (g y)) y)

Extensionality axiom for small types (Hofmann-Streicher 1996)

Isom X Y → IdU X Y

39



Equality and dependent type theory

Other properties

A consequence of this axiom is

¬(isset U)

Indeed, IdU N2 N2 has two distinct elements

We have

If isset A and
∏
x:A

isset (B(x)) then isset (
∑
x:A

B(x))

isset A is not connected to the size of A but with the complexity of the
equality on A

40



Equality and dependent type theory

Equality as Path

6 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

ax5 : (
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

ax6 : Isom X Y → IdU X Y

41



Equality and dependent type theory

Univalence Axiom

For f : Y → X and x0 : X, the fiber of f above x0 is

f−1(x0) =def

∑
y:Y

IdX x0 (f y)

∑
x:X

f−1(x) =
∑
x:X

∑
y:Y

IdX x (f y) is the graph of f

Any map f : Y → X is isomorphic to a fibration
∑
x:X

f−1(x)→ X

42



Equality and dependent type theory

Univalence Axiom

We define what should be a “path” between two types X and Y

If f : X → Y we define when f is a weak equivalence

isweq f =def

∏
y:Y

iscontr (f−1(y))

Theorem: To be a weak equivalence is always a proposition, i.e.
isprop (isweq f)

We define Weq X Y to be
∑

f :X→Y

isweq f

43



Equality and dependent type theory

Univalence Axiom

Let isiso f be∑
g:Y→X

(
∏
x:X

IdX (g (f x)) x)× (
∏
y:Y

IdY (f (g y)) y)

isiso f ↔ isweq f

However isweq f is a always a proposition while

isiso f may not be a proposition in general

44



Equality and dependent type theory

Univalence Axiom

Warning! Weak equivalence is stronger than logical equivalence, e.g.∏
x:A

∑
y:B

R(x, y) and
∑

f :A→B

∏
x:A

R(x, f x)

are weakly equivalent, since they are isomorphic

This is more precise than only to state logical equivalence

45



Equality and dependent type theory

Univalence Axiom

Clearly we have Weq X X, because the identity map is a weak equivalence

Hence we have a map

IdU X Y →Weq X Y

The Univalence Axiom states that this map is a weak equivalence

V. Voevodsky has shown that this implies functional extensionality

This axiom does not hold for the set-theoretic interpretation of type theory

46



Equality and dependent type theory

Invariance under isomorphisms

We get a formalism where two isomorphic mathematical structures are equal

For instance on the type S =
∑
X:U

X × (X → X) we have

IdS (X, a, f) (Y, b, g) iff

the structures (X, a, f) and (Y, b, g) are isomorphic

As we saw, this property does not hold for set theory

Is this theory consistent?

47



Equality and dependent type theory

Equality as Path

6 axioms

1a : IdA a a if a : A

(·) : B(a0)→ IdA a0 a1 → B(a1)

ax3 : IdB(a0) (b · 1a0) b

ax4 : iscontr (
∑
x:A

IdA a x)

ax5 : (
∏
x:A

iscontr (B(x))) → iscontr (
∏
x:A

B(x))

ax6 : The canonical map IdU X Y → Weq X Y is a weak equivalence

48



Equality and dependent type theory

Model

Since the paper

D. Kan A combinatorial definition of homotopy groups, Annals of Mathematics,
1958, 67, 282-312

a convenient way to represent spaces is to use (Kan) simplicial sets

This forms a model of type theory (V. Voevodsky 2005, Th. Streicher 2006)

V. Voevodsky (2009) has extended this model to universes

This model satisfies (and suggested?) the univalence axiom

49



Equality and dependent type theory

Computational interpretation

We have listed axiomatically some properties that the equality should have

All other notions in type theory are motivated/justified by computation rules

For instance

natrec : P (0)→ (
∏
x:N

P (x)→ P (x+ 1))→
∏
x:N

P (x)

is justified by natrec a f 0 = a and natrec a f (n+ 1) = f n (natrec a f n)

(This represents at the same time both induction and recursion)

Can we justify in a similar way these axioms for equality?

50



Equality and dependent type theory

Gandy’s interpretation

On the Axiom of Extensionality

R. Gandy, The Journal of Symbolic Logic, 1956

Interpret extensional type theory in intensional type theory

The intuition is precisely that in λ-calculus a function can only occur in a
proposition through its values in a term (cf. Russell’s formulation of the axiom of
extensionality)

This is only valid for closed λ-terms: if X is a functional variable f does not
appear in X f through its values

51



Equality and dependent type theory

Gandy’s interpretation

The second part of the paper shows that a similar interpretation works for set
theory

The paper is one of the first instance of the logical relation technique

We need to extend this technique to dependent types

52



Equality and dependent type theory

Remark on Russell’s work on implication

Russell The Theory of Implications 1906, American Journal of Mathematics

Russell does something similar but only for the axiom of extensionality on
propositions

This amounts to show that all connectives preserve equivalences

53



Equality and dependent type theory

Gandy’s interpretation

One goal (current work) is to adapt Gandy’s interpretation to dependent types

Intuitively: we know what the equality should be on all base types (on the
universe U it should be weak equivalence) and so we can define equality on each
type by induction on the types

This is similar to the work on observational type theory (Th. Altenkirch, C.
McBride) and on two-level type theory (M. Maietti, G, Sambin) but generalizes
them to the case of computationally relevant identity proofs

54



Equality and dependent type theory

Invariance under isomorphisms: set theory/type theory

Lindenbaum and Tarski (1936): any provable formula is invariant under
isomorphisms in simple type theory

Logical notions can be characterised as notions invariant under isomorphisms
(Tarski, 1966)

This is not valid for set theory

Problem with abstraction: if we define a structure in set theory, properties of
this structure are not close under isomorphims in general

Example: X = {0, 1}, Y = {a, b} and the property is to contain 0

55



Equality and dependent type theory

Invariance under isomorphisms: set theory/type theory

Sentences of Type Theory: The Only Sentences Preserved Under Isomorphisms
M.V. Marshall and R. Chaqui, The Journal of Symbolic Logic, 56, 1991, 932-948

Bourbaki calls structures defined by sentences preserved under isomorphisms
“transportable”

In type theory, one expects that anything definable is invariant under
isomorphisms (proved for simple type theory in the paper of Lindenbaum and
Tarski 1936)

56



Equality and dependent type theory

Some references

Th. Streicher, M. Hofmann The groupoid interpretation of Type Theory 1996

Home page of V. Voevodsky on Univalent Foundation for Mathematics

Work of S. Awodey and M. A. Warren

57



Equality and dependent type theory

Some references

These works rely on special computation rules for equality

Nils Anders Danielsson has proved formally that we don’t need new
computation rules (axioms are enough)

This has been used crucially in this presentation

See www.cse.chalmers.se/˜nad/listings/equality/README.html

58


