
Canonicity and normalization for type theory

Thierry Coquand

ITC talk, December 2021

Canonicity and normalization for type theory

Some history

Hilbert (1925), Gödel (1941)

Tait (1967), Girard (1970), Martin-Löf (1971), Hancock (1973)

Hilbert introduced primitive recursion with higher functions as parameters

f(0) = a f(n+ 1) = g(n, f(n))

Hilbert Über das Unendliche, 1925

1

Canonicity and normalization for type theory

Some history

Example: ι(f, a, 0) = a ι(f, a, n+ 1) = f(a, ι(f, a, n))

ϕ(0, a, b) = a+ b ϕ(n+ 1, a, b) = ι(ϕ(n), a, b)

We can rewrite the computation rules of ϕ as

ϕ(0, a, b) = a+ b
ϕ(n+ 1, a, 0) = a ϕ(n+ 1, a, b+ 1) = ϕ(n, a, ϕ(n+ 1, a, b))

Hilbert asked his student Ackermann to show that one cannot define the
function ϕ(n, a, b) without using higher functions

Early justification of functional programming!

2

Canonicity and normalization for type theory

Some history

Gödel 1941 In what sense is intuitionistic logic constructive

Starts from the “circularity problem” with → and ¬ in intuitionistic logic

In order to solve this problem, he designed a system Σ (what would becomes
system T) based on Hilbert’s functionals

He wants a justification of intuitionistic arithmetic in a “simpler” system, with
only decidable statements, as equations between functionals

What is essential then is to have a system where f = g is decidable

First technical occurence of the notion of definitional equality

3

Canonicity and normalization for type theory

Some history

This 1941 talk became the interpretation known as “Dialectica” presented in

Über eine bisher noch nicht benützte Erweiterung des finiten Standpunktes
Dialectica, 12, pp. 280-287.

and a mathematical proof that f = g is decidable appears in Tait 1967

Intensional interpretations of functionals of finite type, part I
Journal of Symbolic Logic, 32, pp. 198-212.

4

Canonicity and normalization for type theory

Canonicity and normalisation

The key idea in Tait’s argument is presented very clearly in Shoenfield’s book
Mathematical logic

The presentation is in term of combinators, and not λ-calculus, and is actually
close to the original one of Gödel

One introduces constants with defining equation

f x1 . . . xn = t(x1, . . . , xn)

or by recursion equations

f 0 = a and f (S x) = g x (f x)

5

Canonicity and normalization for type theory

Canonicity and normalisation

One defines when a closed term is computable by induction on its type

N ′(t) means t convertible to a numeral Sk 0

(A→ B)′(t) means that A′(u) implies B′(t u)

One proves then that any closed term is computable by induction on the term

All Lemmas are simple and have direct proof

6

Canonicity and normalization for type theory

Canonicity and normalisation

Lemma 1: if a term is built from computable constants, it is computable

Lemma 2: if t0 and t1 are convertible and t0 computable then so is t1

Lemma 3: if t (Sk0) computable for all k then t is computable

Lemma 4: all constants are computable

Theorem: all closed terms are computable

In particular, a closed term of type N is convertible to a numeral!

7

Canonicity and normalization for type theory

Canonicity and normalisation

This is canonicity

The proof is elegant, and uses at the meta language a logic with implication
and universal quantification

There is another more combinatorial proof with ordinals < ε0 but this argument
is technically much more complex (Turing 1940 had a similar argument with < ω3

for simply typed λ-calculus)

Also not clear if we can really explain intuitionistic logic in this way

Gödel was never completely satisfied with this approach (he never published
an english translation of his 58 paper, after several attempts)

8

Canonicity and normalization for type theory

Canonicity and normalisation

Tait also proves normalisation

He defines N ′(t) to mean that t reduces to a numeral

He then proves that if t is computable of a type A then t is normalisable by
induction on A using the function 0A

0N = 0 and 0A→B x = 0B

One proves at the same time that 0A is computable and that if t is computable
at type A then t is normalisable

Tait (and later Girard) considers the reduction where one only reduces
“minimal” inner-most redexes

9

Canonicity and normalization for type theory

Canonicity and normalisation

Canonicity: any closed term of type N is convertible to a numeral Sk0

Normalisation: we can reduce any well-typed term (of any type) to a term
which does not contain any redex

A corollary of normalisation (and Church-Rosser) is that conversion is decidable

One then deduces that type-checking for dependent types is decidable

(Completely different motivation than the one of Gödel!)

10

Canonicity and normalization for type theory

Girard’s system F

In 1971, Girard introduces systems F and Fω

This contains polymorphic types like Πα α→ α with the polymorphic identity
function λαλx:αx

What should computable at type T = Πα α→ α mean?

It cannot be: for all A we have t A computable at type A → A since A may
contain T itself and the definition would be circular

11

Canonicity and normalization for type theory

Computability candidate

In order to solve this problem, Girard introduces the notion of computability
candidate which abstracts the main properties of being computable

(1) CA(t) implies that t is normalisable

(2) If CA(u) and t reduces to u then CA(t)

(3) We have CA(0A)

Girard also introduces a constant 0A with 0A→Bt reduces to 0B and 0ΠαTA
reduces to 0T (A) (not definable in his system)

12

Canonicity and normalization for type theory

Computability candidate

If one extends system F with a base type N and only wants to prove canonicity
the notion of computability candidate becomes much simpler:

A computability candidate just becomes an arbitrary predicate on the set of
closed terms of type A

This notion of abstract computability will play a crucial rôle in what follows

In general, one expects canonicity to be simpler to prove than normalisation

13

Canonicity and normalization for type theory

Type Theory

Girard generalized this to Fω which corresponds to propositional higher-order
logic

Martin-Löf 1971 notices that one wants more than higher-order logic, one
also wants to be able to form the type of all structures (like algebraic structures,
groups, vector spaces, . . .) and quantify over them

He introduces a type system with a type of all types and is able to prove
normalisation, using as a meta theory with a type of all types

This is not at all absurd a priori, since Russell’s paradox does not apply directly

We will explain later how such a proof works (e.g. for canonicity)

14

Canonicity and normalization for type theory

Type Theory

Girard 1972 shows (by chance! He was looking at another system: an
extension of system F with a type of propositions) that Martin-Löf 1971 contains
a non normalisable term!

Martin-Löf presents then a serie of systems 1972, 1975, 1979 with a notion of
predicative universes

We have Πx:AB : U if both A is of type U and B(x) : U

We don’t have U : U anymore

He proves normalisation for 1972 and 1975 systems, and indicates how to
prove canonicity for the 1979 system; normalisation does not hold for the 1979
version

15

Canonicity and normalization for type theory

Type Theory

In 71 version it is stated explicitely that consistency follows from normalisation

There is no normal term of type ΠX:UX

In the 75 version, ⊥ is introduced as a data type with no constructor

In all 71-75 what is stated is that all closed terms of types N → N represent
a computable function

Canonicity will be enough to prove this

16

Canonicity and normalization for type theory

Type Theory

71-72:
untyped conversion, proof of normalisation, only β-conversion,

75:
conversion as judgement, proof of normalisation, no ξ-rule,

79:
conversion as judgement, canonicity, β and η conversion, normalisation does not
hold, type checking not decidable

17

Canonicity and normalization for type theory

Discussion: 71-72 version

Dependent type theory is intuitive (cf. Agda) but not so easy to present in
details

Both 71-72 versions are based on an untyped conversion relation and Church-
Rosser property

Don’t contain η-conversion

It was known from work’s on Automath that we don’t have Church-Rosser at
an untyped level with η-reduction!

18

Canonicity and normalization for type theory

Discussion: 71-72 version

If one wants to present e.g. set theoretic models, one needs to have the
conversion relation as a judgement

Cf. Peter Aczel On relating Type Theories and Set Theories, 1998

The equivalence between the two versions is not easy at all

It needs the key result that Π is one-to-one for conversion

Then, one shows subject reduction for system with conversion as judgement

19

Canonicity and normalization for type theory

Discussion: 75 version

Conversion as judgement

It does not contain ξ-rule, not even less η-conversion!

(Not clear yet if this system can really be used in practice)

New idea for proving that Π is one-to-one, due to Peter Hancock

Not clear how to solve the issue that some types may be empty (solved
by Girard with introduction of 0 terms): if one introduces constants, is this
conservative?

20

Canonicity and normalization for type theory

Discussion: 79 version

Conversion as judgement

Equality reflection rule: implies function extensionality but also non
normalisation in presence of universes

One can extract a canonicity result from the intended semantics but is is more
complex: we have a computability relation and not a predicate

Furthermore it is justified by a complex inductive recursive process (Stuart
Allen LICS 1987)

21

Canonicity and normalization for type theory

Discussion summary

The situation in the 80s was the following

-two different presentations of dependent type theory, one with untyped
reduction and conversion, the other with conversion as judgement (with or
without η-conversion)

-not clear if the two different versions are equivalent

-for the untyped reduction presentation, without η-conversion, one can prove
Π one-to-one, and hence subject reduction, but it is not clear how to do it if we
want η-conversion

-for the conversion as judgement presentation, not clear how to prove Π
one-to-one, and subject reduction

22

Canonicity and normalization for type theory

Discussion summary

-for the conversion as judgement presentation, not even clear how to prove
that N and Uk or Πx:AB are not convertible!

-for the conversion as judgement presentation, not even clear how to prove
canonicity!

23

Canonicity and normalization for type theory

Proof of canonicity

Since canonicity should be simpler than normalisation, a natural attempt is
first to understand how to get a better proof of canonicity

I will start by explaining what is the problem

24

Canonicity and normalization for type theory

Computability predicate

We want to define computable at type T

For T = N it means convertible to a numeral Sk 0

For T = Πx:AB it means t u computable at type B(u/x) if u computable at
type A

For T = Σx:AB it means t.1 computable at type A and t.2 computable at tpe
B(t.1/x)

For T = Uk not so clear what to take as a definition

25

Canonicity and normalization for type theory

Computability predicate

Inductive-recursive definition? This is what is done in the 1972 version

For instance, means that t is convertible to N or to Πx:AB or to Σx:AB

The problem is that, a priori, it may be that N is convertible to a type of the
form Πx:AB

Also, we don’t know a priori that Π is one-to-one for conversion

This works well if we have a Church-Rosser untyped reduction relation

26

Canonicity and normalization for type theory

Computability relation?

This can be solved by introducing a reduction relation and considering a
computability relation instead of a predicate

The argument gets technically quite complex however

This is what is done (for normalisation) in

An algorithm for testing conversion in type theory, Th. C., 1991

A similar argument has been checked in Agda!

A. Abel, J. Öhman, A. Vezzosi
Decidability of conversion for type theory in type theory, 2018

27

Canonicity and normalization for type theory

Computability structure!

Is there a canonicity proof as clear as Shoenfield’s argument?

Yes! The solution is to replace the notion of computability predicate by
computability structure

We define A′(t) to be a set instead of being a proposition

All problems disappear like by magic!

This solution is presented in

Canonicity and normalisation for dependent type theory, Th.C. 2018

28

Canonicity and normalization for type theory

Computability structure

The definition becomes an interpretation/non standard model of type theory

Definition of t′ by induction on t (informal presentation)

For a type T the interpretation T ′ is a family of sets over the set of closed
term of type T modulo conversion

If t : T then t′ is an element of T ′(t)

29

Canonicity and normalization for type theory

Computability structure

If B(x) is a family of types over A

Then B′(u, u′)(v) is a family of sets for v closed term of type B(u/x) (modulo
conversion) provided u closed term of type A and u′ element of the set A′(u)

Note that B′(u, u′) depends both of u and u′

30

Canonicity and normalization for type theory

Computability structure

T = N , T ′(t) is {k | t conv Sk 0}

T = Πx:AB, T ′(t) is Πu∈Elem(A)Πu′∈A′(u)B
′(u, u′)(t u)

T = Σx:AB, T ′(t) is Σu′∈A′(t.1)B
′(t.1, u′)(t.2)

31

Canonicity and normalization for type theory

Computability structure

The key clause is

T = Uk, T ′(X) is Elem(X) → Uk

Elem(A) set of closed terms of type A (modulo conversion)

We assume to have a sequence of universes Uk in our meta theory

One recognises the set of computability candidate!

A similar definition was in Martin-Löf 73 (work with Peter Hancock) but he
also introduced a reduction relation and did not cover ξ-rule

32

Canonicity and normalization for type theory

Computability structure

T = N , T ′(t) is {k | t conv Sk 0}

Even for T = N we have a set which a priori may not be a proposition

Maybe we have 0 and S 0 convertible a priori!

33

Canonicity and normalization for type theory

Computability structure

(t u)′ is t′ u u′

(λx:At)
′ is λu∈Elem(A)λu′∈A′(u)t

′(u, u′)

(t.i)′ is t′.i

(u, v)′ is (u′, v′)

34

Canonicity and normalization for type theory

Computability structure

Note that there is a uniform treatment of terms and types

We define A′ for A type: family of sets A′(u) for u closed term of type A

and we define u′ which is an element of the set A′(u)

35

Canonicity and normalization for type theory

Computability structure

We can prove that if t : T then t′ is an element of T ′(t)

If t0 conv t1 : T then t′0 = t′1 in T ′(t0) = T ′(t1)

In particular for t : N we have t′ which is a numeral k such that and
t conv Sk 0!

36

Canonicity and normalization for type theory

“Equational” presentation of type theory

Present models of type theory with sorts, operations and equations

1982 John Cartmell

1988 Thomas Ehrhard

1992 Eike Ritter

1996 Peter Dybjer, cwf

2010 Vladimir Voevodsky, C-system

The term model is the initial model

Exactly like model of an equational theory!

37

Canonicity and normalization for type theory

Computability method and sconing

The proof of canonicity can be seen as an instance of “sconing” or “glueing”
or “Freyd cover” of the term/initial model of type theory with the set theoretic
model

G. Wraith Artin Glueing, Journal of Pure and Applied Algebra, 1974

The analogy between sconing and proving canonicity were clear in the 80s e.g.
A Note on Freyd Cover and Friedman Slash, A. Scedrov and P.J. Scott, 1982

38

Canonicity and normalization for type theory

Computability method and sconing

Starting from an arbitrary model M we build a new model M∗

A closed type of M∗ is a closed type A of M together with a family of sets
over the set of closed terms of type A

We always have a projection map M∗ →M

For the initial/term model M0 we have the initial map M0 →M∗0

and this should be a section of the projection map

39

Canonicity and normalization for type theory

Computability method and sconing

The metalanguage does not need to be set theory

It can be type theory extended with types of closed terms

Interesting project to make this precise!

40

Canonicity and normalization for type theory

Computability method and sconing

In topos theory, one can apply this method for two models M1 and M2 and a
left exact functor F : M1 →M2

A new object will be A1, A2, f with f : A2 → F (A1)

The same method works for models of type theory!!

This is an important result due to Simon Huber 2018

The only condition is that F is a pseudo-morphism of cwf

41

Canonicity and normalization for type theory

Computability method and sconing

Canonicity is the special case where F (Γ) is the set of closed instance 1 → Γ

M1 term model and M2 set model

This explains the analogy between canonicity and parametricity (Ambrus
Kaposi, 2018)

Parametricity is the special case where F is the identity functor F (Γ) = Γ

M1 term model and M2 term model

42

Canonicity and normalization for type theory

Computability method and parametricity

T = N , T ′(t) is defined inductively T ′(0) and T ′(u) → T ′(S u)

T = Πx:AB, T ′(t) is Πu:AΠu′:A′(u)B
′(u, u′)(t u)

T = Σx:AB, T ′(t) is Σu′:A′(t.1)B
′(t.1, u′)(t.2)

T = Uk, T ′(X) is X → Uk

43

Canonicity and normalization for type theory

Computability method and parametricity

The method works as well with inductive families!

E.g. we define (Id A t u)′ as an inductive family with constructor

(Id A u u)′(refl u)

Canonicity works as well

44

Canonicity and normalization for type theory

Computability method and parametricity

Parametricity works as well if we have U : U

One defines U ′(X) to be X → U

We can do a canonicity proof taking U ′(X) to be Elem(X) → U

We use U in U in the meta theory

This explains what happens for the proof in Martin-Löf 1971

45

Canonicity and normalization for type theory

Computability method and parametricity

The same method will work for canonicity for dependent type theory extended
with modal operations

We use as metalanguage a modal dependent type theory!

46

Canonicity and normalization for type theory

Computability method and parametricity

Not so easy to represent this “proof relevant” argument in Agda

(This will even be more so for the normalisation proof)

On the other hand, the argument is simple at a conceptual level

Important challenge for proof assistants!

47

Canonicity and normalization for type theory

Computability method and parametricity

In general, the “proof relevant” computability method is such that what is
used at the metalevel is “almost the same” as what is going on in the system we
analyse

So the argument is relevant at a technical level, e.g. for ensuring decidability
of conversion

But it cannot be used to argue for consistency

This was also the conclusion understood by Martin-Löf around 1979: presents
meaning explanation instead of normalisation proof (this is discussed in the
“Bibliopolis” 1984 book)

48

Canonicity and normalization for type theory

Some history

In the Princeton notes, Gödel observes that it is not difficult to prove
calculability of the functionals in the following sense: a functional F of type
σ1, . . . , σn → o is said to be calculable if for arbitrary calculable t1, . . . , tn of
types σ1, . . . , σn respectively, Ft1 . . . tn can be proved to be equal to a numeral.
Gödel goes on to say “I don’t want to give this proof in more detail because
it is of no great value for our purpose for the following reason: if you analyse
this proof it turns out that it makes use of logical axioms, also for expressions
containing quantifiers and it is exactly these axioms which we want to deduce
from the system Σ.”

49

Canonicity and normalization for type theory

From canonicity to normalisation

Tait’s (and Girard’s) proof used special terms 0A

How to have such terms for dependent type theory?

Martin-Löf suggested the addition of constants

Technically one needs to iterate this: adding constants for closed typed will
create more closed types

Furthermore, it is not clear if we get a conservative extension when adding
constants if one presents the system with conversion as judgement

50

Canonicity and normalization for type theory

Use of contexts as Kripke world

In 88, I suggested the use of contexts as Kripke worlds in order to deal with
this issue

The motivating observation was that the canonicity proof is constructive and
hence makes sense in any Kripke/presheaf model

I was very pleased by the fact that it gives a notion of “partial terms” which
provides exactly what is needed for normalisation

At first, I saw this only as an alternative of introducing constants, but it
actually solves the problem of showing that this addition of (partial) constants is
conservative

51

Canonicity and normalization for type theory

Use of contexts as Kripke world

This is presented in

An algorithm for testing conversion in type theory, Th. C., 1991

and

Th.C. and J. Gallier A proof of Strong Normalisation for the Theory of
Constructions Using a Kripke-Like Interpretation, 1990

52

Canonicity and normalization for type theory

Use of contexts as Kripke world

This technique applies for dependent type theory

A′(t) is then a dependent presheaf

Not clear yet how to formalise this argument in a proof assistant

If the computability predicate/relation is not proof relevant there is no such
problem

Important challenge for proof assistants!

53

Canonicity and normalization for type theory

Computability method and sconing

Also, because of the type restrictions on the rules of conversion and reduction,
the method for proving the Church-Rosser property developped in combinatory
logic apparently no longer works. Instead, the uniqueness of normal form and
the Church-Rosser propery are proved, almost without effort, as corollaries to the
construction of the term model by a new method, due to Peter Hancock.

54

Canonicity and normalization for type theory

Syntactic category

Given any model M we build a “syntactic” category C from it

An object of C is a telescope X = A1.A2.An of types in M

To any object X of C we can associate a context 〈X〉 of M

For A in Type〈X〉 we define the set Term(X,A) which is the set of syntactical
expressions of type A (terms without quotienting by conversion)

A morphism σ : Y → X of C is defined by induction on the length of X and
we associate 〈σ〉 : 〈Y 〉 → 〈X〉 of M

We can have 〈σ0〉 = 〈σ1〉 without having σ0 = σ1

55

Canonicity and normalization for type theory

Syntactic category

Any expression e in Term(X,A) defines an element 〈e〉 in Elem(〈X〉, A) (by
quotienting modulo conversion)

Any context Γ of M defines a presheaf |Γ| of Ĉ where |Γ|(X) is the set of
substitutions 〈X〉 → Γ

56

Canonicity and normalization for type theory

Syntactic category

If A type over 〈X〉 and a in Elem(〈X〉, A) we define Term(X,A)|a the set of
syntactic expressions e of type A such that 〈e〉 = a in Elem(〈X〉, A)

We work with presheaves over C

57

Canonicity and normalization for type theory

Syntactic category

In this presheaf category

we have a cumulative sequence of types Typen

for A : Typen we have a type Elem(A) and a type Term(A)

We have a quotient map

Term(A) → Elem(A)

u 7→ 〈u〉

This map has for each Γ a section (not natural in Γ)

58

Canonicity and normalization for type theory

Syntactic category

Elem(A→ Un) is canonically isomorphic to Term(A) → Elem(Un)

If B : Elem(A) → Elem(Un) then

Elem(ΠAB) is canonically isomorphic to Πk:Term(A)Elem(B〈k〉)

If F is a dependent presheaf over Type, we have a canonical isomorphism

FTerm(X,A) ' F (X.A,Ap)

59

Canonicity and normalization for type theory

Non standard interpretation

Any term t is interpreted by a “semantical” element t

If T is a type T is a tuple T ′,K, αT , βT where

-T ′ is a family of sets over Elem(T)

-K is a term in Term(Un)|T

-αT u u is in Term(T)|u if u is in T ′(u)

-βT k is in T ′〈k〉 if k is in Term(T)

If t : T then t is an element of T ′(t)

60

Canonicity and normalization for type theory

Non standard interpretation

αT u u is in Term(T)|u if u is in T ′(u)

Proof relevant way to state: if u “satisfies” T ′ then u is normalizable

Note that αT u u may depend on u

βT k is in T ′〈k〉 if k is in Term(T)

Proof relevant replacement of the use of 0T in Tait’s and Girard’s proof!!

61

Canonicity and normalization for type theory

Non standard interpretation

Un = U ′n, Un, αUn, βUn

U ′n(T) is the set of tuples T ′,K, αT , βT

αUn T (T ′,K, α, β) is K

βUn K is (K ′,K, α, β) where K ′(t) is

Term〈K〉|t and α t k = k and β k = k

62

Canonicity and normalization for type theory

Non standard interpretation

We can define

ΠI
AB in Elem(Un)

for A : Elem(Un) and B : Term(A) → Elem(Un) ' Elem(A→ Un)

ΠS
AB in Term(Un)

for A : Term(Un) and B : Term〈A〉 → Term(Un)

such that 〈ΠS
AB〉 = ΠI

〈A〉(λk〈B k〉)

63

Canonicity and normalization for type theory

Non standard interpretation

For T = Πx:AB

Given A0, A
′, αA, βA and B0(u, u), B′(u, u), αB(u, u), βB(u, u)

We define Gk = B0(〈k〉, βA(k)) and

T0 = ΠS
A0
G

T ′(w) = Πu:Elem(A)Πu:A′(u)B
′(u, u)(w u)

αT w w = λS A0 G (λkαB(〈k〉, βA(k)) (w 〈k〉) (w 〈k〉 βA(k))

βT k = λu:Elem(A)λu:A′(u)βB(u, u)(k (αA u u))

64

Canonicity and normalization for type theory

Non standard interpretation

If t closed element of type T then αT t t is a closed normal expression such
that 〈αT t t〉 = t in Elem(T)

In particular if t0 and t1 closed element of type T then t0 = t1 in Elem(T) iff
αT t0 t0 = αT t1 t1 in Term(T)

So conversion is decidable

We can follow Peter Hancock’s argument and prove that Π is one-to-one

We never have to introduce a reduction relation, but we deduce from this
subject reduction w.r.t. untyped reduction

65

