Some examples of complete Cisinski model structures

Introduction

We assume given a Grothendieck universe U/ and a category C in this universe. We write C the category of
presheaves on C and denote by Yo : C — C the Yoneda functor. The goal of this note is to describe a new
class of complete Cisinski model structures (abreviated as “C-model structures”). These are the C-model
structures determined by a segment I, i.e. a presheaf with two distinct elements 0 and 1, satisfying the
following two conditions

1. T has a connection structure, i.e. two maps A,V : I = Isuch that zA0 = 0Az =0, Al = 1Az ==z
andzVv0=0Vz=2x,zvl=1Vvz=1

2. there is a functor J — J* on C with a natural isomorphism Yo(J") ~ 1 x Yo(J)

The first condition holds for the “Lawvere-segment” (subobject classifier) €2, but the second condition
will then typically not hold. An example where the two conditions are realized is when C is the Lawvere
theory associated to the equational theory of distributive lattices (resp. Boolean algebra) and I the
generic distributive lattice (resp. Boolean algebra). Another example is the category of nonempty finite
sets and arbitrary maps, with I being represented by the set {0, 1}.

For proving that the associated model structure is complete, we are going to build another model
structure (“S-model structure”) where the fibrations are the naive fibrations and cofibrations are the
monomorphisms. This S-model structure will then have the same fibrant objects and cofibrations and
hence will coincide with the C-model structure. It will follow that the two notions of naive fibrations
and (Cisinski) fibrations coincide.

One key point will be to build a (naive) U-fibration F — F, with F fibrant, which is universal for the
U-fibrations, i.e. for any (naive) U-fibration X — Y we have a (non necessarily unique) pull-back square

X

M +— T

Y

1 Cofibrations, anodyne maps, fibrations and trivial fibrations
of the S-model structure

We write I, J, K, ... the objects of the given U-category C. We write I', A, XY, , ... for presheaves over
C and T is the terminal presheaf. A presheaf X is given by a collection of sets X (I) with restriction
maps X (I) — X(J) sending u to uf for f: J — I satisfying the usual functorial equations. We write
the subobject classifier: (1) is the set of sieves on 1.

Any map ¢ : X —  defines a subpresheaf X|¢ of X where (X|¢)(I) is the subset of element p in
X (I) such that ¢¥p = 1 in Q(I). We write ¢y : X|¢p — X the canonical inclusion. If ¢ : ¥ — X and
¥ : X — Q we denote by ¥*o : Y|po — X|o the map (¢*0)(v) = o(v). If we have o =1inY — Q
then o factorizes to a map Y — X that we still write o.



We say that a map is a cofibration if, and only if, it is a monomorphism. A trivial fibration is a map
that has the right lifting property w.r.t. any monomorphism. In particular the map X — T is a trivial
fibration if, and only if, X is an injective object.

A (generalized) open box is a map of the form A xIUBx0— BxITor AxIUBx1— BxI for
A — B monomorphism. A fibration is a map that has the right lifting property w.r.t. any open box.

Finally a map is anodyne if it has the left lifting property w.r.t. any fibration.

We are going to prove that the pullback of an andoyne map along any fibration is anodyne (using
only condition 1 on the segment) and that we can extend a fibration along any anodyne map (using both
conditions).

We indicate then how to define weak equivalence and conclude the proof that these notions of cofi-
brations, fibrations and weak equivalence do define a model structure.

2 Types and elements

From now on, we will identify C with the full subcategory of C via the Yoneda embedding. We have a
natural bijection I - I' ~T'(I): if p: I = T = Yo(I) = T then p(1;) is an element of I'(1) and if u is
in I'(I) then we can define w: I — I" by u(f) = uf, in such a way that p(1) = p and @(1) = w.

Given a presheaf I', the category of elements of I' is the category Yo | I', so that an object of this
category is of the form (I, p) with p: I — T and a map f: (J,v) = (I,p) is a map f : J — I such that
pf=v.

We write Type(T") the set of all U-valued presheaf on the category of elements of I'. We let Elem(T", A)
be the set of global sections of A: it is given by a family u(I, p) in A(I, p) such that u(Z, p)f = u(J, pf)
if f:J—=1I1 Ifo:A—T and A in Type(T') we define by composition an element Ao of Type(A). If u
is in Elem(T", A) we define uo in Elem(A, Ao) by taking uo(I,v) = w(I,o(v)).

If A is in Type(T') we define a new presheaf I". A by taking (I'.A)(I) to be the set of pairs p,u with p
in T'(I) and w in A(I, p). We define a projection p4 : X.A — X by pa(p,u) = p and an element g4 in
Elem(X.A, Apa) by qa(I, (p,u)) = u. We may write simply p and ¢ instead of p4 and g4 if A is clear
from the context.

If o : A - T and A is in Type(T') and u is in Elem(A, Ao), we can define (o,u) : A — T".A by
(o,u)(v) = o(v),u(l,o(v)) for v in A(I). We then have p(c,u) = o and ¢(o,u) = u. If a is in Elem(T", A)
we write [a] = (1,a) : T' = I".A. In this way, if we have B in Type(I".A) then Bl[a] is in Type(T).

From the hypotheses on the segment we deduce natural transformations eg,eq : [ — IT andp: [T —
I such that pey = pe; = 11 We also have the maps dy, 61 : I — € corresponding to the monomorphisms
epand ey : [ — I,

The following remark will be useful. Given A in Type(I') an element a in Elem(T', A) is completely
determined by a family of elements u, in Elem(I, Ap) for p : I — T" such that u,f = u,y for f : J — I.
We say then that we define such an element by the equations ap = u,. Using the natural isomorphism
Jt ~ J x 1T we can refine this remark to the following result.

Lemma 2.1 If¢ : I — Q and A in Type(I'|¢p), an element in Elem(I*|yp, A) is completely determined
by a family uy in Elem(J*, Af*t), for f : J — I such that ¢ f =1, satisfying uggt = us, if g: K — J.

3 Partial elements and trivial fibration structures

If Aisin Type(T') and p: I — T, a partial element of A at p is given by a pair ¢ — a with ¢ : I — Q
and a in Elem(I]y), Apry). We say that @ is the extent of this partial element. The partial element is
total if ¢» = 1. If w = 9 + a is a partial element at p and f : J — I we define uf = ¥f — ap*(f)
partial element at pf : J — T'. If ¢ < ¢ we have a canonical map ¢ : Il — I|¢) and we write u|y, partial
element of extent ¢, instead of ut. In general a partial element u of extent o is compatible with a partial
element v of extent 9 if u|lp A = v|¢o Atp. We can then form the join u Vv of u and v (of extent ¢ V 9)
in a natural way. The following notation will be convenient: the join of two compatible partial elements
@ — a and 1 — b will be written ¢ — a, 1 — b.



A trivial fibration structure k on A is an operation which extends a partial element to a total element,
that is k(p, u) is in Elem(I, A) such that x(p, u)ty = w if u is of extent ¢ and which satisfies the uniformity
condition k(p,u)f = k(pf,uf) if f:J —I.

We have the following remark, which is a direct generalisation of the fact that an object X is injective
if, and only if, it has a uniform extension operation given by a left inverse of the inclusion of X in its
object of subsingleton.

Theorem 3.1 Given A in Type(T'), the projection p : T.A — T is a trivial fibration if, and only if, A
has a trivial fibration structure.

4 Open boxes, filling and composition structures

We use this to define the notion of lower and upper open boxes for A in Type(T') at p : [T — T. A
lower (resp. upper) open box is given by a partial element b of extent dy V 1p (resp. 1 V ¢p) for some
W T — €. Since! ¥ = (6 V ¥p)er, we can recover 1) : [ — € from the element b. A missing lid for such
a lower open box b = (dy + ag,¥p — a) is an element a; in Elem(I, Ape;) such that aity = a(¥p)*e;
(and similarly for upper open box).

A filling structure (resp. composition structure) for A in Type(I") is given by an operation «(p,b)
which takes a lower open box and produces a filler (resp. missing lid) for this box, and which furthermore
satisfies the following uniformity condition that we have x(p,b)fT = rk(pfT,bfT) (resp. k(p,b)f =
k(pft,bf1)), if f:J — I, together with a similar operation on upper open boxes. We write Fill(T', A)
(resp. Comp(T', A)) the set of all such filling (resp. composition) structures.

If k is in Fill(T', A) and 0 : A — T we define ko in Fill[(A, Ao) by the equation ko (v,b) = k(ov,b) and
similarly for x in Comp(T", A).

As for trivial fibration structures, we have the following result.

Theorem 4.1 Given a type A in Type(T'), the projection p : I.A — T is a fibration if, and only if, A
has a filling structure.

We can now use the connection structure on I to reduce the notion of filling structure to the notion of
composition structure. To the connections A,V on I correspond operations p,d : T — I respectively.
We thus have for instance pe; = pel =1 and peg = ped = egp.

Lemma 4.2 We define an operation that takes a lower open box b at p: IT — I' and produces an open
box L(b) at pp: I™" — T and such that L(b)e; = b. Furthermore L(b)ft+ = L(bf*) if f:J — I.

Proof. We define L(8o — ao, ¥p — a) = (Jo — agdg(p™), dop — aodsp, pp — a(vp)* ). O

Theorem 4.3 The set Comp(T', A) is a retract of the set Fill(I', A) (in a natural way).

Proof. If k4 is a filling structure, it is clear that we define a (lower) composition structure c4 by the
equation ca(p,b) = ka(p,b)es.

Conversely, given a composition structure c4 we define a filling structure x4 by the equation k4 (p, b) =
ca(pu, L(b)). This defines a filling structure which satisfies k4 (p,b)er = ca(p,b). O

5 Dependent products

Given B in Type(I'.A) we define TI(A, B) in Type(T') by taking II(A, B)(I, p) to be the set of families
As, f:J — I such that \; is a function taking an element w in Elem(J, Apf) and producing an element
As(u) is in Elem(J, B(pf,u)), and we have (Af(w))g = Apg(ug) if g: K — J. If 0 : A — T we then have
II(A, B)o = II(Ao, B(ap, q))-

1This uses that 0 and 1 are distinct element of I.



If ¢ is in Elem(T", II(A, B)) and a is in Elem(T", A) we define app(c, a) in Elem(T", Ba]) by the equation
app(e,a)p = cp1,(ap). (We recall that [a] = (1,a) : T' = T'".A.) If we have partial elements v = ¢ — ¢ for
IMABandu=1¢+r—afor Aatp:I — T of the same extent ¢ : I — Q we also write app(v,u) = ¢ —
app(c, a).

Using in a crucial way the reduction from filling to composition structures (and hence the connection
structure of I), we can show that dependent product can be lifted to filling structures.

Theorem 5.1 Given filling structures k4 on A and kg on B we can build a fibration structure w(k 4, kg)
on II(A, B). Furthermore 7w(ka,kp)o = w(kao,kp(op,q)) ifoc: A = T.

Proof. Using Theorem 4.3, we instead define a composition structure for II(A, B). Given p : [T — T
and an open box b, of extent ¢, at p, we explain how to build a missing lid A in Elem(I, (IT A B)pey).
Given f : J — I and a1 in Elem(I, Ape1 f) we define Af(a1) to be p(pf,app(bf,at,r))er where a =
ka(pf, 61— aipts,). U

Corollary 5.2 The pullback of an anodyne map along any fibration is anodyne.
Proof. This follows from Theorems 4.1 and 5.1. O

6 Universe

So far, we only have used the connection structure on the segment I and could have used everywhere
J x I instead of J*. The second hypothesis on the segment, that we can represent J x I by J*, will be
used in a crucial way for the definition of the universe.

6.1 Definition of the universe

We define Fib(T") to be the set of pairs A, x where A is in Type(T') and « in Fill(T', A). If X = (A, k) is
an element in Fib(T") we write X.1 = A in Type(T") the first component of X.

The universe is the presheaf F(I) = Fib(I). We define El in Type(F) by EI(I, (A, k)) = A(I,17). With
this definition, if p: I — F = Yo(I) — F and p(1) = (4, k) we have Elp = A since if f : J — I we have
Elp(J, f) = EI(J,p(f)) = EI(J,p(1)f) = EI(J,(Af,&f)) = Af(J,1;) = A(J, f). Furthermore a partial
element ¢ — u of El at p: I — F is an element in Elem(I|¢, Elpty) = Elem(I|y), Avy) and thus it is the
same as a partial element of A at 1;.

Theorem 6.1 We can build kg in Fill(F, El) such that El, kg is “universal”: if A,k is in Fib(T") there
exists a unique map |(A, k)| : ' — F such that El|(A, k)| = A and kg|(A4, k)| = k.

Proof. Given p: It — F = Yo(I*) — F we can consider p(1) = (A, &) in F(IT) and define kg(p,b) =
k(17+,b) which is in Elem(I*, A) = Elem(I™, Elp) using the fact that a box of El at p is the same as a
box of A at 1;+.

If Aisin Type(T') and « is in Fill(T", A) we define X : I' — F by taking X (a) = Aa, k@ wherea@: [ — T
is defined by a@(f) = af for f : J — I. We then have EIX = A since EIX (I, p) = EI(I, Xp) = Ap(I,1;) =
A(I, p) since Xp(1) = Ap,kp and kpX = k since kX (p,b) = kp(Xp,b) = kp(11+,b) = K(p,b) since
Xp(1) = Ap, kp. O

The rest of this section will be the proof that F is fibrant.

6.2 Alignment operation

Let ¢ be a map I' — Q. The following result almost allows us to think of a fibration structure as a
property. We use the fact that if ¢ : IT™ — Q then we can define Vi : I — Q such that (Vo) f = 1 if, and
only if, of* =1for f:J — I.

The following Lemma has a more conceptual proof by building first an alignment operation for trivial
fibration structures, which is direct, and then reducing the case of fibration structures to the notion of
trivial fibration structures using the notion of Leibitz exponential. It is then clear that what is needed if
that m! : AT — BT is a cofibration if m is a cofibration, which corresponds to the use of the V operation.



Lemma 6.2 We can define an operation which, given k is in Fil(T,A) and ¢ : T — Q and ' in
Fill(T'|%, Avy) produces Al(k,, k") in Fill(T', A) such that Al(k,v, k" )ty = k' and furthermore satisfies
Al(k, v, k"o = Al(ko, Yo, k'p*(0)) if o : A = T.

Proof. Given p: It — T' and b a box at p for A we define Al(k, &")(p,b) to be k(p,bV (Tp — u)) with
7 =V(¢p) in I — Q and u in Elem(I"|rp, Aptrp) is determined using Lemma 2.1: for f : J — I such
that 7f = 1, i.e. YpfT =1 we define uy in Elem(J*, Apf™) to be &'(pfT,bfT) so that uf* = uy O

6.3 Equivalence extension property

If A and B are in Type(A) we write w : B — A to mean that w is a natural transformation between B
and A (that are presheaves on the category of elements of A). If 0 : A} — A we define w|o : Bo — Ac by
wlo(v) = w(v) for v in Bo(I,v) = B(I,ov). If bis in Elem(Ay, Bo) we define app(w, b) in Elem(Aq, Ao)
by app(w, b)(I,v) = w(b(I, ov)).

We define the set Ext(T") of extension problems at T' as the set of all tuples E = (A, 4, B,w) with
A in Type(T') and ¢ : I' — Q and B in Type(I'|yp) with w : B — Auy. If 0 : A — T' we define
Eo = (Ao, o, By*o,w|o).

Lemma 6.3 We can build operations G(E) in Type(T') and e(E) : G(E) — A such that G(E)., = B
and e(E)|uy = w. Furthermore G(E)o = G(Ec¢) and e(E)|oc =e(Eo) ifo: A —» T.

Proof. We define the set G(E)(I,p) for p: I — T by case on pp : I — Q. If pp = 1 we take it to be
the set B(I, p) since then p can be seen as a map I — T'|¢p, and if ¢p # 1 we take it to be the set of
pairs a,b with a in Elem(I, Ap) and b in Elem(I|¢p, Ay*(p)) such that aty, = app(w,b). We define then
e(E)(b) = w(b) if bisin G(E)(I,p) = B(I,p) if p =1 and e(E)(a,b) = a(I,1y) if p # 1. O

Given a in Elem(T", A) and b in Elem(T"|¢, B) such that app(w, b) = a we define glue(a, b) in Elem(T’, G(E))
by taking glue(a,b)(I, p) = b(I, p) if 1p = 1 and glue(a, b)(I, p) = (ap,by*(p)) if Yp # 1.

If A and B are in Type(A) an equivalence structure for a map w : B — A is given by an operation e
which express that all fibers of w are “contractible”. It takes p: I — A and a in Elem(I, Ap) and a partial
element ¢ — b of B at p such that app(w, b) = aty and produces a pair (&w) = e(p,a,v — b) where b
in Elem(I, Bp) is such that by, = b and w in Elem(I*, App) is such that we; = a and wey = app(w, b)
and wiyp = aplyp (i.e. w is constant on the extend v). Furthermore, if f : J — I we should have
e(pf.af,vf) = bf,wf").

A filling structure for E = (A, ¢, B,w) is a tuple kg = (ka, ¥, kB, €,) where k4 is in Fill(T', A) and
kp in Fill(T'|¢, B) and €, is an equivalence structure for w. We define kpo = (kao,v0, kp*o, €,9*0)
ifo:A—=T.

Lemma 6.4 We can lift the previous operation G to filling structures: we can build g(kg) in Fill(T', G(E))
such that g(kg)o = g(kgo) if o : A = T and g(kg)Ly = KB.

Proof. Using Lemma 6.2 we can forget the last condition. The proof is then similar to the proof of the
extension of an equivalence along a cofibration in the simplicial set model. We could follow this proof,
but instead describe here explicitely a filling structure x for G(E).

Let v be an open box for G at p : I™ — I'. We can form the open box app(e,v) for A at p and
define @’ = ka(p, app(e(E)e,v)). We define then (b,w) = €,(a’, 9 A ¢,v) where ¢ is the extent of v. If
a = ra(pp, (61 — a'pp,p — w)) then we can take x(p,v) = glue(a, b). 0

With these hypotheses, We can also show that the extension e(E) : G(E) — A of the map w also has
an equivalence sructure, but we will not this fact here. (It corresponds to the fact that the universe we
build is univalent.)



6.4 The universe is fibrant

We denote by [i] : T' — T' x I the map x — (x,) for i =0, 1.

Lemma 6.5 From any E is in Fib(I' x I) we can build a map e(E) : E.1[0] — E.1[1] with an equivalence
structure €(FE). Furthermore, if o : A — T we have e(E)|oc = e(E(c x I)) and e(E)o = e(E(c x I)).

Lemma 6.6 We can build an operation x which takes A in Fib(T") and ¢ : T' — Q and E in Fib((T'|¢)) x I)
and produces k(A, ¥, E) in Fib(T") such that k(A, ¢, E)ty = E[0] and k(A, ¥, E)o = k(Ac,¢o, E(o x 1)).

Proof. This follows from Lemma 6.5 and the equivalence extension Lemma 6.4. O

Corollary 6.7 The map F — T is a fibration.

Proof. Lemma 6.6 (and its dual swapping 0 and 1) defines essentially a composition structure for F. We
can then conclude by Theorems 4.3 and 4.1. O

Corollary 6.8 We can extend fibrations along anodyne maps.

Proof. We assume given o : A — T" which is anodyne, and B in Type(A) such that pg : A.B — A which
is a fibration. By Theorem 4.1, B has a fibration structure (which may not be uniquely determined) k.
By Theorem 6.1, we have a map Y = |(B,xp)| : A — F such that EIY = B and kgY = kp. Since F is
fibrant and o is anodyne, we can find a map X : I' = F such that Xo =Y. The element A = EIX is
then such that Ac = (EIX)o = El(Xo) = EIY = B and kX is a fibration structure for A. (Note that
this fibration structure k4 satisfies furthermore k40 = kp but we don’t need this fact.) O

7 S-model structure

It can be shown that any map a : X — Y can be written o = pi where i is a cofibration and p a trivial
fibration and as o = ¢qj where j is a trivial fibration and ¢ a fibration. More precisely, we can build an
element A in Type(Y) with a trivial fibration structure and a map i : X — Y.A which is a cofibration
and such that psi = o and we can build an element B in Type(Y) with a fibration structure and a map
j : X — Y.A which is anodyne and such that pgj = a. The first decomposition is direct, while the
second decomposition requires an (effective) inductive argument

We can then define « to be a weak equivalence either by the fact that pp is a trivial fibration (definition
1) or by that fact that ¢ is anodyne (definition 2).

The surprising result is that, with either of these definitions, a map is a trivial fibration (resp.
anodyne) if, and only if it is a fibration (resp. cofibration) and a weak equivalence.

Here is the structure of the remaining of Sattler’s argument. What we cover in this paper is essentially
the point 4:

1. We have 2-out-of-3 for trivial fibrations among fibrations.

2. For any triangle A -+ B — C with A — B anodyne, fibration B — C', and cofibration A — C, we
have that B — C is a trivial fibration exactly if A — C is anodyne.

3. Let (j1,p1) and (jo2,p2) be two factorizations of a map into an anodyne map followed by a fibration.
If py is a trivial fibration, then so is ps.

4. We can extend fibrations along anodyne maps, trivial fibrations along cofibrations, and trivial
fibrations along anodyne maps. (This property allows us to compose factorizations.)

We have 2-out-of-3 for weak equivalences (as per definition 1).
Definitions 1 and 2 of weak equivalences are equivalent.

A cofibration is anodyne exactly if it is a weak equivalence.

® N = o

A fibration is a trivial fibration exactly if it is an equivalence.



