
Variation on Cubical sets

November 8, 2014

Introduction

In the model presented in [1, 4] a type is interpreted by a nominal set A equipped with two “face”
operations: if u : A and i is a symbol we can form u(i = 0) : A(i = 0) and u(i = 1) : A(i = 1) elements
independent of i. The unit interval is represented by the nominal set I, whose elements are 0, 1 and the
symbols. Alternatively, we have a presentation as a presheaf category over the category where objects
are finite sets of symbols and morphisms I → J are determined by a disjoint union I = I0, I1, I

′ and an
injection I ′ → J , and the presheaf I is then I(J) = J + {0, 1}. The presheaf I does not satisfy the Kan
filling condition. The equivalence between the two presentations is shown in [4].

In this model, if A represents a type, the path space of A is represented by the affine exponential
I→ ∗A, which is adjoint to the separated product B ∗ I with (b, i) ∈ B ∗ I if i is independent of b.

We modify this model by adding the operations i ∧ j and i ∨ j in the set I. This corresponds to
adding connections [2]. We also have negations, and no linearity conditions. The set I becomes then the
free de Morgan algebra on the set of symbols. Alternatively a morphism on the base category I → J is
now a map I → dM(J) from the set I to the free de Morgan algebra over the set J .

Using connections we can reduce the Kan filling operation to the simpler composition operations and
we can interpret more judgemental equalities. In particular the computation of the elimination rule for
equality is interpreted in a judgemental way.

One important point is that we cannot hope this computation rule to be interpreted as a definitional
equality, since reflexivity is not considered to be an introduction rule/constructor anymore in the present
approach. Instead, we interpret dependent types as regular fibrations (the lifting of a constant path is
constant) and we check that this regularity condition is preserved by all type formers.

1 General remarks about cubical sets

All the notions of cubes are described as (covariant) presheaf categories over a category where the objects
are finite set of symbols I, J,K, . . .

Each time there is a direct geometric interpretation: if X is a topological space, then X defines a
presheaf over the base category by taking X(I) to be the set of continuous maps [0, 1]I → X.

For the simplest notion of cubes the morphisms I → J are determined by a disjoint decomposition
I = I0, I1, I

′ and an injection I ′ → J (the element of I0 are sent to 0 element of I1 to 1, and the symbols
in I ′ are renamed). For instance if I = i, j, k and J = j and we define if = 0, jf = j, kf = 1 then the
map f : I → J sends a cube u(i, j, k) to the line u(0, j, 1) (where intuitively, i, j, k vary in [0, 1]).

This is the category considered in the paper [1].

There we don’t have a diagonal operations. Adding the diagonal operation corresponds to allowing
any map I ′ → J . For instance if I = i, j and J = k and we define f : I → J by if = jf = k, then the
map f corresponds to sending a square u(i, j) to its diagonal u(k, k).

(The category we obtain in this way should be equivalent to what Grothendieck calls the “simplest
test category” in [3].)

To add connections corresponds to adding the operations i ∧ j and i ∨ j on symbols. For instance, if
I = i and J = j, k the map if = j ∧ k corresponds to sending the line u(i) to the square u(j ∧ k). The
faces of this square are two constant lines u(0) and two copies of the line u(i).

1

If we have connections and not diagonal, we can now describe a morphism I → J as a map I → D(J)
where D(J) is the free distributive lattice on J and two distinct elements of I are sent to element of
disjoint support.

If we take away the disjoint support restriction we add the diagonal operation.
All this has still a geometric interpretation with max and min operations on [0, 1].
Finally we can also add an operation corresponding to 1− x on [0, 1] by replacing distributive lattice

by de Morgan algebra.
To add connections allows to reduce the Kan filling operation to the Kan composition operation.

This holds provided we have regularity (a lifting of a constant path is constant).

2 Semantics

Types are interpreted by (covariant) presheaves over the following category. The objects are finite sets
(of “symbols”) and a map I → J is a set theoretic map I → dM(J) where dM(J) is the free de Morgan
algebra on J . A de Morgan algebra is a distributive lattice with an operation 1− x which satisfies

1− 0 = 0 1− 1 = 0 1− (x ∨ y) = (1− x) ∧ (1− y) 1− (x ∧ y) = (1− x) ∨ (1− y)

(The difference with Boolean algebras is that we do not require neither x∧(1−x) = 0 nor x∨(1−x) = 1.)

There is a “nominal” description of a covariant presheaf over this category. We have a set of elements
u which may depends on a finite set of symbols u(i1, . . . , in) and we can do substitutions, replacing
i1, . . . , in by elements in dM(J) for any J = j1, . . . , jm.

If we restrict ourselves to maps I → dM(J) which sends distinct symbols to elements with disjoint
support, we get the notion of cubical sets with connections. If we consider arbitrary maps I → dM(J)
we allow in particular to have the map i = j which corresponds to restriction to a diagonal.

A particular operation that we can do on an element u = u(i, j, k) is to replace i by 0 or 1. We write
(ib) this operation for b = 0, 1 so that u(i0) = u(0, j, k) for instance. This corresponds to restriction to
a face of u.

3 Remarks on the base category

The base category C has for objects finite sets of symbols I, J,K, . . . and a morphism I → J is a map
I → dM(J). A type will be interpreted as a (covariant) presheaf on C, while a type A `I depending on
symbols in I is interpreted by a presheaf on I \C. That is such a type is a family of sets Af for f : I → J
with restriction maps

Af → Afg u 7−→ ug

for g : J → K.
We say that a map f : I → J is strict if if is neither 0 nor 1 for all i in I. One key remark is the

following.

Lemma 3.1 If f : I → J is strict and ψ in dM(I) such that ψf = b (where b is 0 or 1) then ψ = b.

This does not hold for Boolean algebra. For instance the map (i = j) : {i, j} → {j} is strict and
(i ∧ (1− j))(i = j) = 0 but i ∧ (1− j) is neither 0 nor 1.

Each face map α : I → Iα is epi. If f : I → J we write f 6 α to mean that there exists a map f ′

(uniquely determined) such that f = αf ′. This means that if = iα for all i in the domain of α.

Corollary 3.2 If fg 6 α and g is strict then f 6 α.

We consider the partial meet semilattice M generated by the face operations (ib). An element of
M can be thought as a finite sequence of the form (i0)(j1)(k0) We denote by α, β, . . . an element
of M . In particular M contains the empty sequence 1M . There is a canonical partial order on M and

2

a partial product αβ if α and β are compatible. For instance if α = (i0)(j1) and β = (i0)(k0) then
αβ = (i0)(j1)(k0).

Any element α using symbols in I defines a face operation α : I → Iα where Iα = I − dom(α). Given
α, β using symbols in I, we say that α and β are compatible if we have iα = iβ for i in dom(α)∩dom(β).
We can then write αα1 = γ = ββ1 where the domain of γ is the union of the domain of α and β. In the
poset M the element γ is the meet of α and β.

Any map f : I → J can be written uniquely as the composition f = αh of a face map α : I → Iα
and a map h : Iα → J which is strict.

Lemma 3.3 If we have αf = βg with f : Iα → J and g : Iβ → J then α and β are compatible. If γ
is the meet of α and β, then there exists a unique h : Iγ → J such that αf = γh = βg. If we write
αα1 = γ = ββ1 then α1f = h = β1g.

Let A be a type depending on symbols in I, so that A is a system of sets Af with restriction maps
Af → Afg. Let L be a set of incomparable face operations on I. A L-system for A is given by a family
aα in Aα which is compatible: if αα1 = ββ1 then aαα1 = aββ1. This implies that if αf = βg then we
have aαf = aβg. We think of such a system as a system of equations uα = aα for α in L. Notice that
any element v in A1 defines a compatible system aα = vα.

If L is a set of incomparable face operations on I, we write α 6 L to mean that α is 6 some element
in L. If f : I → J we define Lf to be the set of maximal face operations β on J such that fβ 6 L. In
general we have β 6 Lf iff fβ 6 L.

If f : I → J and we have a L-system aα we define a corresponding Lf system bβ by taking bβ = aαg
whenever fβ = αg. If we have bβ0

= aα0
g0 and bβ1

= aα1
g1 it follows from Lemma 9.1 that if β0 and β1

are compatible, with β0δ0 = β1δ1 then bβ0
δ0 = bβ1

δ1.

4 Composition operation

Since we have added connections we need to generalize the operation of Kan composition.
This can be seen for the following example. If we define the following

ai1 = compiA,~u(ai0)

where ~u is the system uj0, uj1 such that ai0(j0) = uj0(i0) and ai0(j1) = uj1(i0), then ai1 can be seen
as a “line” in the direction j connecting uj0(i1) to uj1(i1). What happens if we do the substitution f
which replaces j by k ∧ l? For this, we need to introduce a new kind of composition

ai1f = compi
Af, ~u′(ai0f)

where ~u′ is the system
u′k0 = uj0 u′l0 = uj0 u′(k1)(l1) = uj1

Similarly, if g is the substitution that replaces j by k ∨ l we get

ai1g = compi
Ag, ~u′′(ai0g)

where ~u′′ is now the system

u′′(k0)(l0) = uj0 u′′k1 = uj1 u′′l1 = uj1

In this way, we need to consider not only simple face operations (i0) or (i1) but composition of these
operations of the form (i0)(j1)(k0).

A L-system will be defined to be a finite set L of pairwise incomparable elements α of M and
compatible conditions of the form aα = tα.

For instance, if L consists of (i0), (j0), (i1)(j1) then L(i0) is 1M and L(i1) is (j0), (j1). (All elements
in L(ib) are independent of i.) If L is independent of i then L(ib) is the same as L.

3

If we have a L-system ~u on i, I and we have a map f : I → dM(J) with i not in J we can define a system
~uf on i, J . For instance if ~t is a L-system we define ~t(ib) to be the conditions aα = tα(ib) for α independent
of i and aγ = tγ(ib) if (ib)γ is in L. This is a system of A(ib). For another example, if we consider the
system ai0, ai1 and the substitution i = i ∧ j we obtain the system bi0 = ai0, bj0 = ai0, b(i1),(j1) = ai1.

Here is an example (due to Georges Gonthier) which shows the problem if we use a Boolean algebra
instead of a de Morgan algebra. Consider the system u(i0) = ai0. If we take i = j∧k the system becomes
u(j0) = ai0, u(k0) = ai0. If we then take k = 1 − j we get u(j0) = ai0, u(j1) = ai0. But if we take
directly i = j ∧ (1− j) = 0 then we get the system u = ai0 instead. So there is a coherence problem.

An element a in A is compatible with or satisfies the J-system ~u if we have aα = uα for all α in J .
We can then consider a to be a solution of the constraints defined by ~u.

We only have one operation (0, 1 plays a symmetric role)

compiA,~u(ai0) : A(i1)

where L is independent of i and where ai0 : A(i0) is an element independent of i and satisfying the
L-system ~u(i0) and which produces an element satisfying the L-system ~u(i1).

The symbol i is bound in this operation (but i may occur in A and uα).
This operation should be regular in the sense that

compiA,~u(ai0) = ai0

whenever A, ~u is independent of i.
From this operation we can define

ã = filliA,~u(ai0) = compjA(i∧j),~u(i∧j)(ai0)

element of type A which satisfies ã(i0) = ai0 by regularity and ãα = uα(i ∧ j)(j1) = uα.
The uniformity condition which is required is that we have if f : I → dM(J) and I contains the free

symbols of compiA,~u(ai0)

compiA,~u(ai0)f = compjAg,~ug(ai0f)

where g : I, i → dM(J, j) is any extension of f with g(i) = j not in J (which reflects that i is bound in
this operation and ai0 is independent of i).

Lemma 4.1 If we have a L-system tα of A and ai0 in A(i0) and both u and v in A satisfy

uα = vα = tα u(i0) = v(i0) = ai0

then there is a L-path between u(i1) and v(i1).

Proof. We introduce a fresh symbol j and define a L, (j0), (j1)-system ~w by taking wα = tα and wj0 = u
and wj1 = v. We can then consider compiA,~w(ai0) which is a L-path between u(i1) and v(i1).

Here is a special case of the composition operation which will be convenient.

Lemma 4.2 Given a type A and a in A and a L-system of “lines” tα : aα→ uα in A, there exists a′ in
A such that a′α = uα for all α in L.

Proof. Let i be a fresh symbol. We can define a′ = compiA,~v(a) where vα = tαi, so that vα(i0) = aα and
vα(i1) = uα.

We write a′ = comp(~t, a). Notice that, by regularity, we have comp(~t, a) = a if all lines tα are
constant.

5 Contractible types

A type A is contractible iff we can solve in an uniform way any L-system in A.
For instance the free Boolean algebra on the set of symbols is contractible. This follows from the

fact that there is exactly one way to fill a cube given its corner. For instance, since we have a =
(1− i)a(i0) + ia(i1) any line u : u0 →i u1 has to be u = (1− i)u0 + iu1.

4

6 Equivalence

We say that σ : T → A is an equivalence if, given a L-system ~t in T and a in A compatible with σ~t, we
can find t in T compatible with ~t with a L-path between σt and a. (This implies that σ has a homotopy
inverse; the next Lemma shows that to be an equivalence is in fact logically equivalent to having a
homotopy inverse.)

Lemma 6.1 If σ has a homotopy inverse then σ is an equivalence.

This generalizes slightly the 〈〈graduate lemma 〉〉, and it has a rather direct proof.

Proof. We assume given δ : T → A and ηa : σδa→ a and εt : δσt→ t. We assume given tα and a in A
such that aα = σαtα for all α in L.

We introduce a fresh symbol i and define first by Kan filling θ in T such that

θ = filliT,~t(δa)

where tα = εαtαi, so that θ satisfies

θ(i0) = δa θα = εαtαi

and the composition t = θ(i1) is such that tα = tα for all α in L.
We introduce next a fresh symbol j and we define the system ~v over L, (i0), (i1) by taking

vi1 = εtj vi0 = δa vα = εtα(i ∧ j)

If we define θ′ by (reverse) composition over this system from θ we have

θ′(i0) = δa θ′(i1) = δσt θ′α = δα(σαtα)

We define the system
wi0 = ηa wi1 = ησt wα = ηα(σαtα)

and
θ′′ = compjA,~w(σθ′)

which is a L-path between σt and a.

Notice that if σ, δ are the identity functions and ε, η the constant path function, then t = a and the
L-path between σt = a and a is the constant path a.

For the composition in the universe we need the following fact.

Lemma 6.2 If E : T →i A and we define σ : T → A by σa = compiE(a) then σ is an equivalence.

Proof. We assume given tα and a in A such that aα = σαtα for all α in L.
We define

θ = fill1−iE,~v(a)

with vα = filliEα(tα). If t = θ(i0) in T we have tα = tα for α in L.
We also have θ′ = filliE(t) such that θ′(i1)α = σαtα.
We can then consider

v = compiE,~w(t)

where ~w is a L, (j0), (j1)-system with wα = vα and wj0 = θ′ and wj1 = θ for a fresh j, so that v is a
L-path between σt and a in the direction j.

5

7 Representation of cubical sets

If we have a well-founded set X, we define what is a X-set. This is inductively given by a family of
predicates Aα for α in X where Aα is a set-valued predicate on the set of sequences aβ , β < α such that
aβ is in Aβ(aγ)γ<β . To a given X-set Aα we can associate the set T of sequences (aα) such that aα is
in Aα(aβ)β<α. If we let Tα be the set of sequences aβ , β < α such that aβ is in Aβ(aγ)γ<β , then Aα is
a family of sets over Tα. We also have a canonical restriction map T → Tα for all α in X and Tα → Tβ
if β < α.

For instance if X is the ordinal 0 < 1 < 2 then a X-set consists in a set A0 with a family of sets A1

over A0 and a family of sets A2(a0, a1) for a0 in A0 and a1 in A1(a0).

It also can be noticed that X-sets form in a natural way a model of type theory with Π,Σ and
universes. For instance, for X = 0 < 1 we get the model where a type is interpreted by a set A0 together
with a family of sets A1(a0).

Let XI be the finite (and hence well-founded) poset of face operations on I. If for instance I = i, j
then a XI set consists in 4 sets Aib,jc, and set-valued relations Aib(xib,j0, xib,j1) and Ajc(xi0,jc, xi1,jc) and
a relation A1(xi0,j0, xi0,j1, xi1,j0, xi1,j1, xi0, xi1, xj0, xj1). We shall write simply I-sets instead of XI -sets.

We refine the semantics of a closed type A `I . It is given by a family of sets Af for f : I → J and
restriction maps Af → Afg if g : J → K. We require Af to be a J-set, and Af → Afg is the canonical
restriction map if g is a face map β : J → Jβ .

It can be checked that all type-forming operations produce objects of this form. For instance if F
and G are any presheaves on C then GF (I) is a set of sequences λf in F (J) → G(J) for f : I → J ,
satisfying the condition (λf u)g = λfg ug, and this has a natural structure of I-set.

We define the following operation on I-sets. Let A be a I-set and Tα be a L-system of Iα-sets,
with compatible maps σα : Tα → Aα. Then we can consider the I-set (~T ,A), the element of which are
sequences (uα) where uα is in Tα if α 6 L and in Aα otherwise. For instance, if I = i and A is given by

Ai0, Ai1, A1 and we have σi0 : Ti0 → Ai0 then (~T ,A) is the set of sequences (ti0, ai1, a1) such that a1 is
in A1(σi0ti0, ai1). It is natural to write the elements on the form (~t, a).

The key remark is then that if each σα is the identity map we have (~T ,A) = A and we have (~t, a) = a
if we take tα = aα.

This basic operation will be used to define glueing (which transforms equivalence to equality) and
the composition operation in the universe. In each case, we will get the same underlying type if all maps
are identities. In the case of glueing however, the Kan composition operations does not need to stay the
same, while it will be the same for composition, which ensures regularity for composition in the universe.

If we have B = (~T ,A) then there is a canonical map of I-sets δ : B → A. For instance, if I = i and
A is given by Ai0, Ai1, A1 and we have σi0 : Ti0 → Ai0 then B is the set of sequences (ti0, ai1, a1) such
that a1 is in A1(σi0ti0, ai1) and we define δ(ti0, ai1, a1) = (σi0ti0, ai1, a1).

8 Glueing operation

In order to interpret univalence we explain how to transform an equivalence to an equality.
Given a L-system ~T in U and a type A together with a compatible system of equivalences σα : Tα →

Aα, we define a new type
B = glue(~T ,A, ~σ)

As a cubical set B is (~T ,A). An element of this type is of the form (~t, a) with tα : Tα and a : A such
that aα = σαtα. If L = {1M}, we have only one equivalence σ1 : T1 → A and we take B = T1. If L is
empty we take B = A. If f : I → J we define

Bf = glue(~Tf,Af, ~σf)

If we have one equivalence σ : T → A, then introducing a fresh symbol i, we have A = A(i0)
and B = glue(Ti0, A, σi0) with Ti0 = T and σi0 = σ. This type B will be such that B(i0) = T and
B(i1) = A(i1) = A. So we have an operation transforming an equivalence to an equality. (We are only

6

interested in this case, but since we have to define B as a presheaf we need to consider the general case
as well.)

We have a map δ : B → A defined by δ(~t, a) = a and δαt = σαt for α in L.
The main algorithm is to define compiB,~v(vi0) for a J-system ~v. Using the map δ, we define a J-system

~u in A.

We consider vi0 and ai0 = δ(i0)vi0 in A(i0) and

ai1 = compiA,~u(ai0) : A(i1)

For β in J we have ai1β = uβ(i1).
The goal is to build

vi1 = compiB,~v(vi0) : B(i1)

We let L′ be the subset of γ in L not mentionning i and L′′ subset of γ such that γ(i1) is in L. Since
the element in L are incomparable, L′ and L′′ are disjoint but it may be that some element in L′ is <
some element in L′′. We have that L(i1) is a the union of L′′ and of L′1 subset of element in L′ not < L′′.

We want to write vi1 = (~r, ui1) for some ui1 in A(i1) which should be obtained from ai1 by modifying
some faces in L′ and L′′. What are the constraints on this element ui1?

For γ in L′, we should have ui1γ = σγ(i1)ti1,γ where ti1,γ = compiTγ ,~vγ(vi0γ) is of type Tγ(i1).

For γ in L′′, then ui1γ should be of the form σγ(i1)rγ for some rγ in Tγ(i1).

We first deal with the constraints for γ in L′. We have

ai0γ = σγ(i0)vi0γ ai1γ = compiAγ,~uγ(ai0γ) ti1,γ = compiTγ ,~vγ(vi0γ)

We can build a line wγ : σγ(i1)ti1,γ → ai1γ using Lemma 4.1 since both are two compositions in the
type Aγ of the same shape, namely a composition from ai0γ using ~uγ.

(There is no reason for this line to be constant even if σγ is the identity map. This is why we need
another argument for composition in the universe.)

We apply Lemma 4.2, defining a′i1 = comp(~w, ai1).
Notice that all the lines wγδ are constant for δ in Jγ. By regularity, we have a′i1β = ai1β for β in J .

The second step deals with the element γ in L′′. For such an element γ we have α = γ(i1) in L.
For β in Jγ we have γβ 6 J and so a′i1γβ = σαβtβ for some tβ in Tαβ. Similarly, for β in L′γ we

have γβ 6 L′ and we also have a′i1γβ = σαβtβ for some tβ in Tαβ. Since σα is an equivalence we can
build tγ in Tγ(i1) = Tα and a line sγ : σαtγ → a′i1γ which is a (L′ ∪ J)γ-path. We change then a′i1 to
ui1 = comp(~s, a′i1) again using Lemma 4.2.

By regularity, we have ui1δ = a′i1δ for δ in L′ ∪ J , so we did not modify the L′ ∪ J faces of a′i1.
The element ui1 = comp(~s, a′i1) satisfies ui1γ = σγti1,γ for γ in L′ and ui1γ = σγ(i1)tγ for γ in L′′.

Hence, we can define a corresponding element vi1 = (~r, ui1) in B(i1) with rγ = ti1,γ in Tγ(i1) for γ in
L′1 and rγ = tγ in Tγ(i1) for γ in L′′.

9 Composition in the universe

It is almost the same operation as for glueing. We assume given a type A independent of j and types
Eα such that Eα(j0) = Aα and we explain how to build

B = compj
U, ~E

(A)

We see the type Eα as an equality between Aα = Eα(j0) and Tα = Eα(j1). We have a corresponding

equivalence σα : Tα → Aα using Lemma 6.1. The two types B and glue(~T ,A, ~σ) are the same as cubical
sets but don’t have the same Kan composition operations.

Lemma 9.1 We assume given A, T,E with E(j0) = T and E(j1) = A and we define σ : T → A by
σt = compjE(t). Given a L-system ~t in T and ti0 in T (i0) solution of ~t(i0) we can define the L-system
aα = σαtα in A and ai0 = σ(i0)ti0. We define ai1 = compiA,~a(ai0) and ti1 = compi

T,~t
(ti0). We can build

a L(i1)-path σ(i1)ti1 → ai1 which is constant if E is independent of j.

7

Proof. We define a L-system in E eα = filljEα(tα) and ei0 = filljE(i0)(ti0) so that

eα(j0) = tα eα(j1) = aα ei0(j0) = ti0 ei0(j1) = ai0

If ei1 = compiE,~e(ei0) we also have ei1(j0) = ti1 and ei1(j1) = ai1.

We define e′i1 = filljE(ti1) so that e′i1(j0) = ti1 and e′i1(j1) = σ(i1)ti1. If k is a fresh symbol, we take
uk0 = e′i1 and uk1 = ei1 and

ãi1 = compjE(i1),~u(ti1)

We have then ãi1(k0) = σ(i1)ti1 and ãi1(k1) = ai1. Furthermore if E is independent of j then e′i1 = ti1
by regularity. We have eα = tα ei0 = ti0 as well by regularity, so that ei1 = ti1. It follows that ãi1 = ti1
also by regularity.

As for glueing, we define an element of B to be of the form (~t, a) with a in A and tα in Tα such that
σαtα = aα.

The operation
compiB,~v(vi0)

is almost the same as for glueing. We first build aα and ai0 and ai1 = compiA,~a(ai0).
The difference is in the first step. For γ in L′, we can consider in the type Tγ(i1)

ti1 = compiTγ ,~vγ(vi0γ)

We build a line σγ(i1)ti1 → ai1γ not by using Lemma 4.1 but by building directly a line between ti1 and
ai1γ by using Lemma 9.1. This line reduces then to a constant if Eγ is independent of j.

10 Identity type

The Kan operation for identity type is similar to the one in [1].

11 Function extensionality

Given f, g of type Π A F and p such that p u : f u → g u we compute ext(i, p) : f →i g for a fresh
i. This amounts to define ext(ϕ, p) : Π A F for a de Morgan formula ϕ. Since we don’t have linearity
condition, we define ext(ϕ, p)u = p u ϕ.

12 Propositional truncation

13 Operational semantics

We limit ourselves to the description of the system without universes. The point is to explain how we
can justify function extensionality without using function extensionality at the metalevel.

The syntax for the terms is

t, A, F ::= x | t t | λx.t | Id A t t | Π A F | 〈i〉t | compi
A,~t

(t) | ext t t t | ϕ

where ϕ represents an element in the free de Morgan algebra on the symbols. In this syntax, 〈i〉t
represents the path abstraction operation, and binds the symbol i. Similarly, compi

A,~t
(t) represents Kan

composition; it binds the symbol i and ~t represents a system of terms. For instance ~t may be of the form
tj0, tj1 or of the form tj0, tk0, t(j1)(k1). It may also be empty, in which case we write simply compiA(t).

We have the usual β-reduction rule

(λx.t) u = t(x = u)

8

We write (x : A) → B for Π A (λx.B). If p represents a proof of (x : A) → Id B (t x) (u x) then
ext t u p should be a proof a Id ((x : A)→ B) f g. Its computation rule is then

ext t u p ϕ v = p v ϕ

If f : I → dM(J) we can define the operation t 7−→ tf on terms. (Notice that this is an operation on
terms; we don’t have a term constructor for substitution.) It behaves like ordinary substitution, and we
have for instance

(〈i〉t)f = 〈j〉tg

where g : I, i→ dM(J, j) extends f by g(i) = j not in J . We also have

(λx.t)f = λx.tf xf = x (t u)f = tf uf (Π A F)f = Π Af Ff

We have already defined compi
A,~t

(t)f . For instance we have

compiA,tj0,tj1(ai0)f = compiAf,uk0,ul0,u(k1)(l1)
(ai0f)

if jf = k ∧ l and uk0 = ul0 = tj0 and u(k1)(l1) = tj1. We also have

compiA,tj0,tj1(ai0)(j0) = tj0(i1) compiA,tj0,tj1(ai0)(j1) = tj1(i1)

We can then state the path reduction law

(〈i〉t) ϕ = t(i = ϕ)

A canonical object of type Id A a b is of the form 〈i〉t with t(i0) = a and t(i1) = b. If w is of type
Id A a b and j is a fresh symbol, then w j is of type A and w 0 = a and w 1 = b.

The main new computation rules are for the composition of a product type and the composition of
an identity type.

For product types, we have

compiΠ A F,~µ(λi0) ui1 = compiF u,~v(λi0 u(i0))

with u = fill1−iA (ui1) and vα = µα uα.
If we add sum types

t, A, F ::= Σ A F | (t, t) | t.1 | t.2

we have
compiΣ A F,~w(ai0, bi0) = (ai1, compiF u,~v(bi0))

with a = filliA,~u(ai0) and ai1 = a(i1) and uα = wα.1 and vα = wα.2.
For identity types, we have

compiId A a b,~w(wi0) = 〈j〉compiA,~u(wi0 j)

where j is a fresh symbol and ~u is the system defined by uα = wα j and uj0 = a and uj1 = b.
Using the composition operation we can interpret

Id A a0 a1 → B(a0)→ B(a1)

Indeed if p is of type Id A a0 a1 and b0 : B(a0) then compiB(p i)(b0) is of type B(a1).
Using the operation i ∧ j on symbols we can interpret the fact that

(Σx : A)Id A a x

is contractible. Indeed, if x, p is an element of this type then q = 〈i〉(p i, 〈j〉p (i∧ j)) is a path such that
q 0 = (a, 〈j〉a) and q 1 = (x, 〈j〉p j) = (x, p). If x = a and p = 〈i〉a (which interprets reflexivity) we get
q = 〈i〉(a, 〈j〉a) which is a constant path.

9

We can then interpret the usual J elimination rule. Because of the regularity condition, the compu-
tation rule for J is interpreted as a judgemental equality.

We can add
t, A, F ::= N | zero | s(t) | natrec F t t

with the usual computation rules

natrec F a f zero = a natrec F a f s(n) = f n (natrec F a f n)

The computation rules for compiN,~u(ui0) are the following. First we have

compiN,~u(ui0) = zero

if ui0 = zero and ~u is the constant system uα = zero. Second we have

compiN,~u(ui0) = s(compiN,~v(vi0))

if ui0 = s(vi0) and uα = s(vα).

14 Typing rules

We have judgement of the forms Γ `I , Γ `I` A and Γ `I t : A relativized at a “level” (finite set of
symbols) I . The rules are the usual rules of type theory at all levels I, with the restriction rule

Γ `I t : A

Γf `J tf : Af

if f : I → dM(J).
The new rules are then the following.

Γ `I Γ `I,i A Γ `I ai0 : A(i0) Γα `Iα,i uα : Aα

Γ ` compiA~u(ai0) : A(i1)

with Iα = I − dom(α). We also have

Γ `I A Γ `I a0 : A Γ `I a1 : A

Γ `I Id A a0 a1

Γ `I A Γ `I a0 : A Γ `I a1 : A Γ `I,i t : A Γ `I t(i0) = a0 : A Γ `I t(i1) = a1 : A

Γ `I 〈i〉t : Id A a0 a1

In particular, we get the reflexivity proof of a : A by defining refl a as the constant path function 〈i〉a

Γ `I t : Id A a0 a1

Γ `I,i t i : A

Γ `I t : (x : A)→ B Γ `I u : (x : A)→ B Γ `I p : (x : A)→ Id B (t x) (u x)

Γ `I ext t u p : Id ((x : A)→ B) t u

15 General remarks about the model

The first remark is that all paths in N are constant, as expected.

Proposition 15.1 I is the presheaf defined by I(J) = dM(J) and N is the constant presheaf N(J) = N.
Any natural transformation I→ N is constant and is determined by the image of i by the map I({i})→ N.

10

The second remark is that one cannot hope to have the right lifting property for monomorphisms
against trivial fibrations. Indeed, if we had this property, we could do the following operation. For any
map f : A → B if we have a : A and b : B and a path f a → b then we can find g : A → B such that
g a = b with a path f → g. (I learnt this from Vladimir Voevodsky.) Indeed it is enough to consider the
trivial fibration (Σy : B)IdB (f x) y, x : A and the monomorphism 1→ A defined by a : A. However, it
is not possible to have such a map g in general as is shown by the following Kripke model over 0 6 1.
At time 0 let A have two distinct points a and a′ which becomes equal at time 1. Let B be the groupoid
having two connected component u → b and u′ at time 0 and only one u′ = u → b at time 1. We then
have a map f : A→ B taking f a = u and f a′ = u′ and we have a path f a→ b, but there is no map
g : A→ B such that g a = b with a path f → g.

Acknowledgement

Many thanks to Georges Gonthier and Thomas Streicher for comments and multiple corrections. In
particular, Georges Gonthier noticed a problem with the use of Boolean algebra instead of de Morgan
algebra in the first version of this note.

References

[1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Preprint, 2013.

[2] R. Brown, P. J. Higgins and R. Sivera. Nonabelian Algebraic Topology: Filtered spaces, crossed
complexes, cubical homotopy groupoids. volume 15 of EMS Monographs in Mathematics , European
Mathematical Society, 2011.

[3] A. Grothendieck. Pursuing stacks. Manuscript, 1983.

[4] A. M. Pitts. An Equivalent Presentation of the Bezem-Coquand-Huber Category of Cubical Sets.
Manuscript, 17 September 2013.

11

