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Abstract
This paper presents a type theory in which it is possible to directly manipulate n-dimensional
cubes (points, lines, squares, cubes, etc.) based on an interpretation of dependent type theory
in a cubical set model. This enables new ways to reason about identity types, for instance,
function extensionality is directly provable in the system. Further, Voevodsky’s univalence axiom
is provable in this system. We also explain an extension with some higher inductive types like
the circle and propositional truncation. Finally we provide semantics for this cubical type theory
in a constructive meta-theory.

1998 ACM Subject Classification F.3.2 Semantics of Programming Languages, F.4.1 Mathem-
atical Logic

Keywords and phrases Univalence Axiom, Dependent Type Theory, Cubical Sets

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

This work is a continuation of the program started in [6, 13] to provide a constructive
justification of Voevodsky’s univalence axiom [25]. This axiom allows many improvements
for the formalization of mathematics in type theory: function extensionality, identification
of isomorphic structures, etc. In order to preserve the good computational properties of type
theory it is crucial that postulated constants have a computational interpretation. Like in
[6, 13, 20] our work is based on a nominal extension of λ-calculus, using names to represent
formally elements of the unit interval [0, 1]. This paper presents two main contributions.

The first one is a refinement of the semantics presented in [6, 13]. We add new opera-
tions on names corresponding to the fact that the interval [0, 1] is canonically a de Morgan
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2 Cubical Type Theory

algebra [3]. This allows us to significantly simplify our semantical justifications. In the pre-
vious work, we noticed that it is crucial for the semantics of higher inductive types [24] to
have a “diagonal” operation. By adding this operation we can provide a semantical justifica-
tion of some higher inductive types and we give two examples (the spheres and propositional
truncation). Another shortcoming of the previous work was that using path types as equal-
ity types did not provide a justification of the computation rule of the Martin-Löf identity
type [17] as a judgmental equality. This problem has been solved by Andrew Swan [23],
in the framework of [6, 13, 20], who showed that we can define a new type, equivalent to,
but not judgmentally equal to the path type. This has a simple definition in the present
framework.

The second contribution is the design of a type system1 inspired by this semantics which
extends Martin-Löf type theory [18, 17]. We add two new operations on contexts: addition
of new names representing dimensions and a restriction operation. Using these we can define
a notion of connectedness which generalizes the notion of being path-connected, and then
a Kan composition operation that expresses that being connected is preserved along paths.
We also define a new operation on types which expresses that this notion of connectedness
is preserved by equivalences. The axiom of univalence, and composition for the universe,
are then both expressible using this new operation.

The paper is organized as follows. The first part, Sections 2 to 7, presents the type
system. The second part, Section 8, provides its semantics in cubical sets. Finally, in
Section 9, we present two possible extensions: the addition of an identity type, and two
examples of higher inductive types.

2 Basic type theory

In this section we introduce the version of dependent type theory on which the rest of the
paper is based. This presentation is standard, but included for completeness. The type
theory that we consider has a type of natural numbers, but no universes (we consider the
addition of universes in Section 7). It also has β and η-conversion for dependent functions
and surjective pairing for dependent pairs.

The syntax of contexts, terms and types is specified by:

Γ,∆ ::= () | Γ, x : A Contexts

t, u,A,B ::= x | λx : A. t | t u | (x : A)→ B Π-types
| (t, u) | t.1 | t.2 | (x : A)×B Σ-types
| 0 | s u | natrec t u | N Natural numbers

We write A → B for the non-dependent function space and A × B for the type of non-
dependent pairs. Terms and types are considered up to α-equivalence of bound variables.
Substitutions, written σ = (x1/u1, . . . , xn/un), are defined to act on expressions as usual,
i.e., simultaneously replacing xi by ui, renaming bound variables whenever necessary. The
inference rules of this system are presented in Figure 1.

We define ∆ ` σ : Γ by induction on Γ. We have ∆ ` () : () (empty substitution) and
∆ ` (σ, x/u) : Γ, x : A if ∆ ` σ : Γ and ∆ ` u : Aσ.

1 We have implemented a type-checker for this system in Haskell, which is available at:
https://github.com/mortberg/cubicaltt

https://github.com/mortberg/cubicaltt
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We write J for an arbitrary judgment and, as usual, we consider also hypothetical judg-
ments Γ ` J in a context Γ.

The following lemma will be valid for all extensions of type theory we consider below.

I Lemma 1. The following rules are admissible:

1. Weakening rules: a judgment valid in a context stays valid in any extension of this
context.

2. Substitution rules:

Γ ` J ∆ ` σ : Γ
∆ ` Jσ

3. From Γ ` A = B we can derive Γ ` A and Γ ` B, and from Γ ` a = b : A we can derive
Γ ` a : A and Γ ` b : A.

3 Path types

As in [6, 20] we assume that we are given a discrete infinite set of names (representing
directions) i, j, k, . . . We define I to be the free de Morgan algebra [3] on this set of names.
The elements of I can be described by the following grammar:

r, s ::= 0 | 1 | i | 1− r | r ∧ s | r ∨ s

The set I also has decidable equality, and as a distributive lattice, it can be described as the
free distributive lattice generated by symbols i and 1− i [3]. As in [6], the elements in I can
be thought as formal representations of elements in [0, 1], with r ∧ s representing min(r, s)
and r ∨ s representing max(r, s).

Contexts can now be extended with name declarations:

Γ,∆ ::= . . . | Γ, i : I

together with the context rule:

Γ `
Γ, i : I `

(i /∈ dom(Γ))

A judgment of the form Γ ` r : I means that Γ ` and r is an element of I depending only
on the names declared in Γ. The judgment Γ ` r = s : I means that r and s are equal as
elements of I, Γ ` r : I, and Γ ` s : I. Note, that judgmental equality for I will be re-defined
once we introduce restricted contexts in Section 4.

3.1 Syntax and inference rules
The extension to the syntax of basic dependent type theory is:

t, u,A,B ::= . . .

| Path A t u | 〈i〉 t | t r Path types

Path abstraction, 〈i〉 t, binds the name i in t, and path application, t r, applies a term t

to an element r : I. This is similar to the notion of name-abstraction in nominal sets [19].
The substitution operation now has to be extended to substitutions of the form (i/r).

There are special substitutions of the form (i/0) and (i/1) corresponding to taking faces of
an n-dimensional cube, we write these simply as (i0) and (i1).
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Well-formed contexts, Γ ` (The condition x /∈ dom(Γ) means that x is not declared in Γ)

() `
Γ ` A

Γ, x : A `
(x /∈ dom(Γ))

Well-formed types, Γ ` A

Γ, x : A ` B
Γ ` (x : A)→ B

Γ, x : A ` B
Γ ` (x : A)×B

Γ `
Γ ` N

Well-typed terms, Γ ` t : A

Γ ` t : A Γ ` A = B

Γ ` t : B
Γ, x : A ` t : B

Γ ` λx : A. t : (x : A)→ B

Γ `
Γ ` x : A

(x : A ∈ Γ)

Γ ` t : (x : A)→ B Γ ` u : A
Γ ` t u : B(x/u)

Γ ` t : (x : A)×B
Γ ` t.1 : A

Γ ` t : (x : A)×B
Γ ` t.2 : B(x/t.1)

Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u) : (x : A)×B

Γ `
Γ ` 0 : N

Γ ` n : N
Γ ` s n : N

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n)
Γ ` natrec a b : (x : N)→ P

Type equality, Γ ` A = B (Congruence and equivalence rules which are omitted)

Term equality, Γ ` a = b : A (Congruence and equivalence rules are omitted)

Γ ` t = u : A Γ ` A = B

Γ ` t = u : B

Γ, x : A ` t : B Γ ` u : A
Γ ` (λx : A. t) u = t(x/u) : B(x/u)

Γ, x : A ` t x = u x : B
Γ ` t = u : (x : A)→ B

Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u).1 = t : A

Γ ` t : A Γ ` u : B(x/t)
Γ ` (t, u).2 = u : B(x/t)

Γ ` t.1 = u.1 : A Γ ` t.2 = u.2 : B(x/t.1)
Γ ` t = u : (x : A)×B

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n)
Γ ` natrec a b 0 = a : P (x/0)

Γ, x : N ` P Γ ` a : P (x/0) Γ ` b : (n : N)→ P (x/n)→ P (x/s n) Γ ` n : N
Γ ` natrec a b (s n) = b n (natrec a b n) : P (x/s n)

Figure 1 Inference rules of the basic type theory
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Γ ` A Γ ` t : A Γ ` u : A
Γ ` Path A t u

Γ ` A Γ, i : I ` t : A
Γ ` 〈i〉 t : Path A t(i0) t(i1)

Γ ` t : Path A u0 u1 Γ ` r : I
Γ ` t r : A

Γ ` A Γ, i : I ` t : A
Γ ` (〈i〉 t) r = t(i/r) : A

Γ, i : I ` t i = u i : A
Γ ` t = u : Path A u0 u1

Γ ` t : Path A u0 u1

Γ ` t 0 = u0 : A
Γ ` t : Path A u0 u1

Γ ` t 1 = u1 : A

Figure 2 Inference rules for path types

The inference rules for path types are presented in Figure 2.
We define 1a : Path A a a as 1a = 〈i〉 a, which corresponds to a proof of reflexivity.
The intuition is that a type in a context with n names corresponds to an n-dimensional

cube:

() ` A • A
i : I ` A A(i0) A(i1)A

i : I, j : I ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)

A(j1)

A

A(j0)

A(i0) A(i1)

...
...

Note that A(i0)(j0) = A(j0)(i0). The substitution (i/j) corresponds to renaming a
dimension, while (i/1− i) corresponds to the inversion of a path. If we have:

a b
p

in direction i, then:
b a

p(i/1−i)

The substitutions (i/i∧j) and (i/i∨j) correspond to special kinds of degeneracies called
connections [7]. The connections p(i/i ∧ j) and p(i/i ∨ j) can be drawn as the squares:

a b

a a

p

p(i/i ∧ j)

p(i0)

p(i0) p(i/j)

b b

a b

p(i1)

p(i/i ∨ j)

p

p(i/j) p(i1)
j

i

where, for instance, the right hand side of the left square is computed as

p(i/i ∧ j)(i1) = p(i/1 ∧ j) = p(i/j)

and the bottom and left hand sides are degenerate.
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3.2 Examples
Representing equalities using path types allows novel definitions of many standard operations
on identity types that are usually proved by identity elimination. For instance, the fact that
the images of two equal elements are equal can be defined as:

Γ ` a : A Γ ` b : A Γ ` f : A→ B Γ ` p : Path A a b

Γ ` 〈i〉 f (p i) : Path B (f a) (f b)

This operation satisfies some judgmental equalities that do not hold judgmentally when the
identity type is defined as an inductive family (see Section 7.2 of [6] for details).

We can also define new operations, for instance, function extensionality for path types
can be proved as:

Γ ` f : (x : A)→ B Γ ` g : (x : A)→ B Γ ` p : (x : A)→ Path B (f x) (g x)
Γ ` 〈i〉 λx : A. p x i : Path ((x : A)→ B) f g

To see that this is correct we check that the term has the correct faces, for instance:

(〈i〉 λx : A. p x i) 0 = λx : A. p x 0 = λx : A. f x = f

We can also justify the fact that singletons are contractible, that is, that any elements
in (x : A)× (Path A a x) is equal to (a, 1a):

Γ ` p : Path A a b

Γ ` 〈i〉 (p i, 〈j〉 p (i ∧ j)) : Path ((x : A)× (Path A a x)) (a, 1a) (b, p)

As in the previous work [6, 13] we need to add composition operations that are defined
by induction on the type.

4 Systems, composition, and transport

In this section we define the operation of context restriction which will allow us to describe
new geometrical shapes corresponding to “sub-polyhedra” of a cube. Using this we can
define the composition operation. From this operation we will also be able to define the
transport operation and the elimination principle for Path types.

4.1 The face lattice
The face lattice, F, is the free distributive lattice on symbols (i = 0) and (i = 1) with the
relation (i = 0) ∧ (i = 1) = 0F. The elements of the face lattice can be described by the
syntax

ϕ,ψ ::= 0F | 1F | (i = 0) | (i = 1) | ϕ ∧ ψ | ϕ ∨ ψ

There is a canonical lattice map I → F sending i to (i = 1) and 1 − i to (i = 0). We
write (r = 1) for the image of r : I in F and we write (r = 0) for (1 − r = 1). We have
(r = 1) ∧ (r = 0) = 0F and we define the lattice map F → F, ψ 7−→ ψ(i/r) sending (i = 1)
to (r = 1) and (i = 0) to (r = 0).

Any element of F is the join of the irreducible elements below it. An irreducible element
of this lattice is a face, i.e., a conjunction of elements of the form (i = 0) and (j = 1).
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This provides a disjunctive normal form for elements of F, and it follows from this that the
equality on F is decidable.

Geometrically, the elements of F describe “sub-polyhedra” of a cube. For instance, the
element (i = 0) ∨ (j = 1) can be seen as the union of two faces of the square in directions j
and i. If I is a finite set of names, we define the boundary of I as the element ∂I of F which
is the disjunction of all (i = 0) ∨ (i = 1) for i in I. It is the greatest element depending at
most on elements in I which is < 1F.

We write Γ ` ψ : F to mean that ψ is an element of F using only the names declared in
Γ. We introduce then the new restriction operation on contexts:

Γ,∆ ::= . . . | Γ, ϕ

together with the rule:

Γ ` ϕ : F
Γ, ϕ `

This allows us to describe new geometrical shapes: as we have seen above, a type in a
context Γ = i : I, j : I can be thought of as a square, and a type in the restricted context
Γ, ϕ will then represent a compatible union of faces of this square. This can be illustrated
by:

i : I, (i = 0) ∨ (i = 1) ` A A(i0) • • A(i1)

i : I, j : I, (i = 0) ∨ (j = 1) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0)

A(j1)

A(i0)

i : I, j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A

A(i0)(j1) A(i1)(j1)

A(i0)(j0) A(i1)(j0)
A(j0)

A(i0) A(i1)

There is a canonical map from the lattice F to the congruence lattice of I, which is dis-
tributive [3], sending (i = 1) to the congruence identifying i with 1 (and 1 − i with 0) and
sending (i = 0) to the congruence identifying i with 0 (and 1 − i with 1). In this way, any
element ψ of F defines a congruence r = s (mod. ψ) on I.

This congruence can be described as a substitution if ψ is irreducible; for instance, if
ψ is (i = 0) ∧ (j = 1) then r = s (mod. ψ) is equivalent to r(i0)(j1) = s(i0)(j1). The
congruence associated to ψ = ϕ0 ∨ ϕ1 is the meet of the congruences associated to ϕ0 and
ϕ1 respectively, so that we have, e.g., i = 1 − j (mod. ψ) if ϕ0 = (i = 0) ∧ (j = 1) and
ϕ1 = (i = 1) ∧ (j = 0).

To any context Γ we can associate recursively a congruence on I, the congruence on
Γ, ψ being the join of the congruence defined by Γ and the congruence defined by ψ. The
congruence defined by () is equality in I, and an extension x : A or i : I does not change the
congruence. The judgment Γ ` r = s : I then means that r = s (mod. Γ).
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In the case where Γ does not use the restriction operation, this judgment means r = s

in I. If i is declared in Γ, then Γ, (i = 0) ` r = s : I is equivalent to Γ ` r(i0) = s(i0) : I.
Similarly any context Γ defines a congruence on F with Γ, ψ ` ϕ0 = ϕ1 : F being equivalent
to Γ ` ψ ∧ ϕ0 = ψ ∧ ϕ1 : F.

As explained above, the elements of I can be seen as formal representations of elements
in the interval [0, 1]. The elements of F can then be seen as formulas on elements of [0, 1].
We have a simple form of quantifier elimination on F: given an element ϕ of F and a name
i, we can define ∀i.ϕ as being the disjunction of all irreducible elements 6 ϕ independent of
i. If ψ is independent of i, we then have ψ 6 ϕ if and only if ψ 6 ∀i.ϕ. For example, if ϕ is
(i = 0)∨ ((i = 1)∧ (j = 0))∨ (j = 1) then ∀i.ϕ is (j = 1). This operation will play a crucial
role in Section 6.2 for the definition of composition of glueing.

Since F is not a Boolean algebra, we don’t have in general ϕ = (ϕ∧(i = 0))∨(ϕ∧(i = 1)),
but we always have the following decomposition:

I Lemma 2. For any element ϕ of F and any name i we have

ϕ = (∀i.ϕ) ∨ (ϕ ∧ (i = 0)) ∨ (ϕ ∧ (i = 1))

We also have ϕ ∧ (i = 0) 6 ϕ(i0) and ϕ ∧ (i = 1) 6 ϕ(i1).

4.2 Syntax and inference rules for systems
The extension to the syntax of dependent type theory with path types is:

t, u,A,B ::= . . .

| S

S ::= [ ϕ1 t1, . . . , ϕn tn ] Systems

We allow n = 0 and get the empty system [ ]. As explained above, a context now
corresponds in general to the union of sub-faces of a cube. In Figure 3 we provide operations
for combining compatible systems of types and elements, the side condition for these rules
is that Γ ` ϕ1 ∨ · · · ∨ϕn = 1F : F. This condition requires Γ to be sufficiently restricted: for
example ∆, (i = 0) ∨ (i = 1) ` (i = 0) ∨ (i = 1) = 1F.

Γ, ϕ1 ` A1 · · · Γ, ϕn ` An Γ, ϕi ∧ ϕj ` Ai = Aj

Γ ` [ ϕ1 A1, . . . , ϕn An ]

Γ ` A Γ, ϕ1 ` t1 : A · · · Γ, ϕn ` tn : A Γ, ϕi ∧ ϕj ` ti = tj : A
Γ ` [ ϕ1 t1, . . . , ϕn tn ] : A

Γ, ϕ1 ` J · · · Γ, ϕn ` J
Γ ` J

Γ ` ϕi = 1F : F
Γ ` [ ϕ1 A1, . . . , ϕn An ] = Ai

Γ ` [ ϕ1 t1, . . . , ϕn tn ] : A Γ ` ϕi = 1F : F
Γ ` [ ϕ1 t1, . . . , ϕn tn ] = ti : A

Figure 3 Inference rules for systems

Note that when n = 0 the second of the above rules should be read as: if Γ ` 0F = 1F : F
and Γ ` A, then Γ ` [ ] : A.
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We extend the definition of the substitution judgment by ∆ ` σ : Γ, ϕ if ∆ ` σ : Γ,
Γ ` ϕ : F, and ∆ ` ϕσ = 1F : F.

If Γ, ϕ ` u : A, then Γ ` a : A[ϕ 7→ u] is an abbreviation for Γ ` a : A and Γ, ϕ ` a =
u : A. In this case, we see this element a as a witness that the partial element u, defined
on the “extent” ϕ (using the terminology from [10]), is connected. More generally, we write
Γ ` a : A[ϕ1 7→ u1, . . . , ϕk 7→ uk] for Γ ` a : A and Γ, ϕi ` a = ui : A for i = 1, . . . , k.

For instance, if Γ, i : I ` A and Γ, i : I, ϕ ` u : A where ϕ = (i = 0) ∨ (i = 1) then the
element u is determined by two elements Γ ` a0 : A(i0) and Γ ` a1 : A(i1) and an element
Γ, i : I ` a : A[(i = 0) 7→ a0, (i = 1) 7→ a1] gives a path connecting a0 and a1.

I Lemma 3. The following rules are admissible:2

Γ ` ϕ 6 ψ Γ, ψ ` J
Γ, ϕ ` J

Γ, 1F ` J

Γ ` J
========

Γ, ϕ, ψ ` J

Γ, ϕ ∧ ψ ` J
===========

Furthermore, if ϕ is independent of i, the following rules are admissible

Γ, i : I, ϕ ` J

Γ, ϕ, i : I ` J
===========

and it follows that we have in general:

Γ, i : I, ϕ ` J
Γ,∀i.ϕ, i : I ` J

4.3 Composition operation
The syntax of compositions is given by:

t, u,A,B ::= . . .

| compi A [ϕ 7→ u] a0 Compositions

where u is a system on the extent ϕ.
The composition operation expresses that being connected is preserved along paths: if a

partial path is connected at 0, then it is connected at 1.

Γ ` ϕ Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i0)[ϕ 7→ u(i0)]
Γ ` compi A [ϕ 7→ u] a0 : A(i1)[ϕ 7→ u(i1)]

Note that compi binds i in A and u and that we have in particular the following equality
judgments for systems:

Γ ` compi A [1F 7→ u] a0 = u(i1)

If we have a substitution ∆ ` σ : Γ, then

(compi A [ϕ 7→ u] a0)σ = compj A(σ, i/j) [ϕσ 7→ u(σ, i/j)] a0σ

where j is fresh for ∆, which corresponds semantically to the uniformity [6, 13] of the
composition operation.

We use the abbreviation [ϕ1 7→ u1, . . . , ϕn 7→ un] for [
∨
i ϕi 7→ [ϕ1 u1, . . . , ϕn un]] and in

particular we write [] for [0F 7→ [ ]].

2 The inference rules with double line are each a pair of rules, because they can be used in both directions.
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I Example 4. With composition we can justify transitivity of path types:

Γ ` p : Path A a b Γ ` q : Path A b c

Γ ` 〈i〉 compj A [(i = 0) 7→ a, (i = 1) 7→ q j] (p i) : Path A a c

This composition can be visualized as the dashed arrow in the square:

a c

a b
p i

a q j
j

i

4.4 Kan filling operation
As we have connections we also get Kan filling operations from compositions:

Γ, i : I ` filli A [ϕ 7→ u] a0 = compj A(i/i ∧ j) [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ a0] a0 : A

where j is fresh for Γ. The element Γ, i : I ` v = filli A [ϕ 7→ u] a0 : A satisfies:

Γ ` v(i0) = a0 : A(i0) Γ ` v(i1) = compi A [ϕ 7→ u] a0 : A(i1) Γ, ϕ ` v(i1) = u : A

This means that we can not only compute the lid of an open box but also its filling. If ϕ is
the boundary formula on the names declared in Γ, we recover the Kan operation for cubical
sets [14].

4.5 Equality judgments for composition
The equality judgments for compi C [ϕ 7→ u] a0 are defined by cases on the type C. There
are five cases to consider:

Product types

In the case of a product type Γ, i : I ` C = (x : A) → B, we have Γ, ϕ, i : I ` µ : C and
Γ ` λ0 : C(i0)[ϕ 7→ µ(i0)]. As the composition will be of type C(i1) we have to explain how
it behaves when applied to some Γ ` u1 : A(i1)

Γ ` (compi C [ϕ 7→ µ] λ0) u1 = compi B(x/v) [ϕ 7→ µ v] (λ0 v(i0)) : B(i1)[ϕ 7→ (µ v)(i1)]

where

Γ, i : I ` w = filli A(i/1− i) [] u1 : A(i/1− i) and Γ, i : I ` v = w(i/1− i) : A.

Sum types

In the case of a sum type Γ, i : I ` C = (x : A) × B, we have Γ, ϕ, i : I ` w : C and
Γ ` w0 : C(i0)[ϕ 7→ w(i0)]. Let Γ, i : I ` a = filli A [ϕ 7→ w.1] w0.1 : A and:

Γ ` c1 = compi A [ϕ 7→ w.1] w0.1 Γ ` c2 = compi B(x/a) [ϕ 7→ w.2] w0.2

Using this we define:

Γ ` compi C [ϕ 7→ w] w0 = (c1, c2) : C(i1)[ϕ 7→ w(i1)]



C. Cohen, T. Coquand, S. Huber, and A. Mörtberg 11

Natural numbers

In the case of Γ, i : I ` C = N we define compi C [ϕ 7→ n] n0 by recursion:

Γ ` compi C [ϕ 7→ 0] 0 = 0 : C[ϕ 7→ 0]
Γ ` compi C [ϕ 7→ s n] (s n0) = s (compi C [ϕ 7→ n] n0) : C[ϕ 7→ s n]

Path types

In the case of a path type Γ, i : I ` C = Path A u v, we have Γ, ϕ, i : I ` p : C and
Γ ` p0 : C(i0)[ϕ 7→ p(i0)]. We define

Γ ` compi C [ϕ 7→ p] p0 = 〈j〉 compi A S (p0 j) : C(i1)[ϕ 7→ p(i1)]

where the system S is [ϕ 7→ p j, (j = 0) 7→ u, (j = 1) 7→ v].

4.6 Transport
Composition for ϕ = 0F corresponds to transport:

Γ ` transpi A a = compi A [] a : A(i1)

Together with the fact that singletons are contractible, from Section 3.2, we get the
elimination principle for Path types in the same manner as explained for identity types in
Section 7.2 of [6].

5 Derived notions and operations

This section defines various notions and operations that will be used for defining composi-
tions for the glue operation in the next section. This operation will then be used to define
the composition operation for the universe and to prove the univalence axiom.

5.1 Contractible types
We define isContr A = (x : A)× ((y : A)→ Path A x y). A proof of isContr A witnesses the
fact that A is contractible.

Given Γ ` p : isContr A and Γ, ϕ ` u : A we define the operation3

Γ ` contr p [ϕ 7→ u] = compi A [ϕ 7→ p.2 u i] p.1 : A[ϕ 7→ u]

Conversely, we can state the following characterization of contractible types:

I Lemma 5. Let Γ ` A and assume that we have one operation

Γ, ϕ ` u : A
Γ ` contr [ϕ 7→ u] : A[ϕ 7→ u]

then we can find an element in isContr A.

Proof. We define x = contr [] : A and prove that any element y : A is path equal to x. For
this, we introduce a fresh name i : I and define ϕ = (i = 0) ∨ (i = 1) and u = [(i = 0) 7→
x, (i = 1) 7→ y]. Using this we obtain Γ, i : I ` v = contr [ϕ 7→ u] : A[ϕ 7→ u]. In this way,
we get a path 〈i〉contr [ϕ 7→ u] connecting x and y. J

3 This expresses that the restriction map Γ, ϕ → Γ has the left lifting property w.r.t. any “trivial fibra-
tion”, i.e., contractible extensions Γ, x : A → Γ. The restriction maps Γ, ϕ → Γ thus represent
“cofibrations” while the maps Γ, x : A → Γ represent “fibrations”.
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5.2 The pres operation
The pres operation states that the image of a composition is path equal to the composition
of the respective images, so that any function preserves composition, up to path equality.

I Lemma 6. We have an operation:

Γ, i : I ` f : T → A Γ ` ϕ Γ, ϕ, i : I ` t : T Γ ` t0 : T (i0)[ϕ 7→ t(i0)]
Γ ` presi f [ϕ 7→ t] t0 : (Path A(i1) c1 c2)[ϕ 7→ 〈j〉 (f t)(i1)]

where c1 = compi A [ϕ 7→ f t] (f(i0) t0) and c2 = f(i1) (compi T [ϕ 7→ t] t0).

Proof. Let Γ ` a0 = f(i0) t0 : A(i0) and Γ, ϕ, i : I ` a = f t : A, together with Γ, i : I ` v =
filli T [ϕ 7→ t] t0 : T . We take presi f [ϕ 7→ t] t0 = 〈j〉 compi A [ϕ 7→ a, (j = 1) 7→ f v] a0. J

Note that presi binds i in f and t.

5.3 The equiv operation
We define isEquiv T A f = (y : A) → isContr ((x : T ) × Path A y (f x)) and Equiv T A =
(f : T → A)× isEquiv T A f . If f : Equiv T A and t : T , we may write f t for f.1 t.

I Lemma 7. If Γ ` f : Equiv T A, we have an operation

Γ, ϕ ` t : T Γ ` a : A Γ, ϕ ` p : Path A a (f t)
Γ ` equiv f [ϕ 7→ (t, p)] a : (x : T )× Path A a (f x)[ϕ 7→ (t, p)]

Conversely, if Γ ` f : T → A and we have such an operation, then we can build a proof that
f is an equivalence.

Proof. We define equiv f [ϕ 7→ (t, p)] a = contr (f.2 a) [ϕ 7→ (t, p)] using the contr operation
defined above. The second statement follows from Lemma 5. J

6 Glueing

In this section, we introduce the glueing operation. This operation expresses that to be
“connected” is invariant by equivalence. From this operation, we can define a composition
operation for universes, and prove the univalence axiom.

6.1 Syntax and inference rules for glueing
We introduce the glueing construction at type and term level by:

t, u,A,B ::= . . .

| Glue [ϕ 7→ (T, f)] A Glue type
| glue [ϕ 7→ t] u Glue term
| unglue [ϕ 7→ (T, f)] u Unglue term

We may write simply unglue b for unglue [ϕ 7→ (T, f)] b. The inference rules for these are
presented in Figure 4.

It follows from these rules that if Γ ` b : Glue [ϕ 7→ (T, f)] A, then Γ, ϕ ` b : T .
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Γ ` A Γ, ϕ ` T Γ, ϕ ` f : Equiv T A

Γ ` Glue [ϕ 7→ (T, f)] A
Γ ` b : Glue [ϕ 7→ (T, f)] A
Γ ` unglue b : A[ϕ 7→ f b]

Γ, ϕ ` f : Equiv T A Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ f t]
Γ ` glue [ϕ 7→ t] a : Glue [ϕ 7→ (T, f)] A

Γ ` T Γ ` f : Equiv T A

Γ ` Glue [1F 7→ (T, f)] A = T

Γ ` t : T Γ ` a : A
Γ ` glue [1F 7→ t] a = t : T

Γ ` b : Glue [ϕ 7→ (T, f)] A
Γ ` b = glue [ϕ 7→ b] (unglue b) : Glue [ϕ 7→ (T, f)] A

Γ, ϕ ` t : T Γ ` a : A[ϕ 7→ f t]
Γ ` unglue (glue [ϕ 7→ t] a) = a : A

Figure 4 Inference rules for glueing

In the case ϕ = (i = 0) ∨ (i = 1) the glueing operation can be illustrated as the dashed
line in:

T0 T1

A(i0) A(i1)

f(i0) ∼ f(i1)∼

A

This illustrates why the operation is called glue: it glues together along a partial equi-
valence the partial type T and the total type A to a total type that extends T .

Using glueing we can construct a path from an equivalence:

I Example 8. Given Γ ` f : Equiv A B we define

Γ, i : I ` E = Glue [(i = 0) 7→ (A, f), (i = 1) 7→ (B, idB)] B

so that E(i0) = A and E(i1) = B, where idB : Equiv B B is defined as

idB = (λx : B. x, λx : B. ((x, 1x), λu : (y : B)× Path B x y. 〈i〉 (u.2 i, 〈j〉 u.2 (i ∧ j))))

We can then define a function (A B : U)→ Equiv A B → Path U A B by:

λA B : U. λf : Equiv A B. 〈i〉 Glue [(i = 0) 7→ (A, f), (i = 1) 7→ (B, idB)] B

6.2 Composition for glueing
We assume Γ, i : I ` B = Glue [ϕ 7→ (T, f)] A, and define the composition in B. In order to
do so, assume

Γ, ψ, i : I ` b : B Γ ` b0 : B(i0)[ψ 7→ b(i0)]
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and define:

Γ, ψ, i : I ` a = unglue b : A[ϕ 7→ f b]
Γ ` a0 = unglue b0 : A(i0)[ϕ(i0) 7→ f(i0) b0, ψ 7→ a(i0)]

The following provides the algorithm for composition b1 = compi B [ψ 7→ b] b0 of type
B(i1)[ψ 7→ b(i1)].

δ = ∀i.ϕ Γ
a′1 = compi A [ψ 7→ a] a0 Γ
t′1 = compi T [ψ 7→ b] b0 Γ, δ
ω = presi f [ψ 7→ b] b0 Γ, δ
(t1, α) = equiv f(i1) [δ 7→ (t′1, ω), ψ 7→ (b(i1), 〈j〉a′1)] a′1 Γ, ϕ(i1)
a1 = compj A(i1) [ϕ(i1) 7→ α j, ψ 7→ a(i1)] a′1 Γ
b1 = glue [ϕ(i1) 7→ t1] a1 Γ

On the extent δ we have B = T and we can check Γ, δ ` b1 = compi T [ψ 7→ b] b0 : T (i1).

In the next section we will use the glue operation to define the composition for the
universe and to prove the univalence axiom.

7 Universe and the univalence axiom

As in [18], we now introduce a universe U à la Russell by reflecting all typing rules and

Γ `
Γ ` U

Γ ` A : U
Γ ` A

In particular, we have Γ ` Glue [ϕ 7→ (T, f)] A : U whenever Γ ` A : U, Γ, ϕ ` T : U, and
Γ, ϕ ` f : Equiv T A.

7.1 Composition for the universe
In order to describe the composition operation for the universe we first have to explain how
to construct an equivalence from a line in the universe. Given Γ ` A, Γ ` B, and Γ, i : I ` E,
such that E(i0) = A and E(i1) = B, we will construct equivi E : Equiv A B. In order to do
this we first define

Γ ` f = λx : A. transpi E x : A→ B

Γ ` g = λy : B. (transpi E(i/1− i) y)(i/1− i) : B → A

Γ, i : I ` u = λx : A. filli E [] x : A→ E

Γ, i : I ` v = λy : B. (filli E(i/1− i) [] y)(i/1− i) : B → E

such that:

u(i0) = λx : A.x u(i1) = f v(i0) = g v(i1) = λy : B.y

We will now prove that f is an equivalence. Given y : B we see that (x : A) ×
Path B y (f x) is inhabited as it contains the element (g y, γ) where

γ = 〈j〉 compi E [(j = 0) 7→ v y, (j = 1) 7→ u (g y)] (g y)
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We then show that two elements (x0, β0) and (x1, β1) in (x : A) × Path B y (f x) are
path-connected. This is obtained by the definitions

ω0 = compi E(i/1− i) [(j = 0) 7→ v y, (j = 1) 7→ u x0] (β0 j)
ω1 = compi E(i/1− i) [(j = 0) 7→ v y, (j = 1) 7→ u x1] (β1 j)
θ0 = filli E(i/1− i) [(j = 0) 7→ v y, (j = 1) 7→ u x0] (β0 j)
θ1 = filli E(i/1− i) [(j = 0) 7→ v y, (j = 1) 7→ u x1] (β1 j)
ω = compj A [(k = 0) 7→ ω0, (k = 1) 7→ ω1] (g y)
θ = fillj A [(k = 0) 7→ ω0, (k = 1) 7→ ω1] (g y)

so that we have Γ, j : I, i : I ` θ0 : E and Γ, j : I, i : I ` θ1 : E and Γ, j : I, k : I ` θ : A. If we
define

δ = compi E [(j = 0) 7→ v y, (j = 1) 7→ u ω, (k = 0) 7→ θ0, (k = 1) 7→ θ1] θ

we then have

〈k〉 (ω, 〈j〉δ) : Path ((x : A)× Path B y (f x)) (x0, β0) (x1, β1)

as desired. We have hence shown that f is an equivalence, so we have constructed equivi E :
Equiv A B.

Using this we can now define the composition for the universe:

Γ ` compi U [ϕ 7→ E] A0 = Glue [ϕ 7→ (E(i1), equivi E(i/1− i))] A0 : U[ϕ 7→ E(i1)]

7.2 The univalence axiom
Given B = Glue [ϕ 7→ (T, f)] A the map unglue : B → A extends f , in the sense that
Γ, ϕ ` unglue b = f b : A if Γ ` b : B.

I Theorem 9. The map unglue : B → A is an equivalence.

Proof. By Lemma 7 it suffices to construct

b̃ : B[ψ 7→ b] α̃ : Path A u (unglue b̃)[ψ 7→ α]

given Γ, ψ ` b : B and Γ ` u : A and Γ, ψ ` α : Path A u (unglue b).
Since Γ, ϕ ` f : T → A is an equivalence and

Γ, ϕ, ψ ` b : T Γ, ϕ, ψ ` α : Path A u (f b)

we get, using Lemma 7

Γ, ϕ ` t : T [ψ 7→ b] Γ, ϕ ` β : Path A u (f t) [ψ 7→ α]

We then define ã = compi A [ϕ 7→ β i, ψ 7→ α i] u, and using this we conclude by letting
b̃ = glue([ϕ 7→ t], ã) and α̃ = filli A [ϕ 7→ β i, ψ 7→ α i] u. J

I Corollary 10. For any type A : U the type C = (X : U)× Equiv X A is contractible.4

4 This formulation of the univalence axiom can be found in the message of Martín Escardó in:
https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ
This is also used in the (classical) proofs of the univalence axiom, see Theorem 3.4.1 of [15] and
Proposition 2.18 of [8], where an operation similar to the glueing operation appears implicitly.

https://groups.google.com/forum/#!msg/homotopytypetheory/HfCB_b-PNEU/Ibb48LvUMeUJ
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Proof. It is enough by Lemma 5 to show that any partial element ϕ ` (T, f) : C is path
equal to the restriction of a total element. The map unglue extends f and is an equivalence
by the previous theorem. Since any two elements of the type isEquiv X A f.1 are path
equal, this shows that any partial element of type C is path equal to the restriction of a
total element. We can then conclude by Theorem 9. J

I Corollary 11 (Univalence axiom). For any term

t : (A B : U)→ Path U A B → Equiv A B

the map t A B : Path U A B → Equiv A B is an equivalence.

Proof. Both (X : U) × Path U A X and (X : U) × Equiv A X are contractible. Hence the
result follows from Theorem 4.7.7 in [24]. J

An alternative proof of univalence can be found in Appendix B.

8 Semantics

In this section we will explain the semantics of the type theory under consideration in cubical
sets. We will first review how cubical sets, as a presheaf category, yield a model of basic type
theory, and then explain the additional so-called composition structure we have to require
to interpret the full cubical type theory.

8.1 The category of cubes and cubical sets
Consider the monad dM on the category of sets associating to each set the free de Mor-
gan algebra on that set. The category of cubes C is the small category whose objects are
finite subsets I, J,K, . . . of a fixed, discrete, and countably infinite set, called names, and a
morphism Hom(J, I) is a map I → dM(J). Identities and compositions are inherited from
the Kleisli category of dM, i.e., the identity on I is given by the unit I → dM(I), and compos-
ition fg ∈ Hom(K, I) of g ∈ Hom(K,J) and f ∈ Hom(J, I) is given by µK ◦dM(g)◦f where
µK : dM(dM(K))→ dM(K) denotes multiplication of dM. We will use f, g, h for morphisms
in C and simply write f : J → I for f ∈ Hom(J, I). We will often write unions with commas
and omit curly braces around finite sets of names, e.g., writing I, i, j for I ∪ {i, j} and I − i
for I − {i} etc.

If i is in I, we have maps (ib) in Hom(I− i, I) sending i to b, for b = 0I or 1I. A face map
is a composition of such maps. A strict map Hom(J, I) is a map I → dM(J) which never
takes the value 0I or 1I. Any f can be uniquely written as a composition f = gh where g is
a face map and h is strict.

I Definition 12. A cubical set is a presheaf on C.

Thus, a cubical set Γ is given by sets Γ(I) for each I ∈ C and maps (called restrictions)
Γ(f) : Γ(I) → Γ(J) for each f : J → I. If we write Γ(f)(ρ) = ρf for ρ ∈ Γ(I) (leaving
the Γ implicit), these maps should satisfy ρ idI = ρ and (ρf)g = ρ(fg) for f : J → I and
g : K → J .

Let us discuss some important examples of cubical sets. Using the canonical de Morgan
algebra structure of the unit interval, [0, 1], we can define a functor

C → Top, I 7→ [0, 1]I . (1)
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If u is in [0, 1]I we can think of u as an environment giving values in [0, 1] to each i ∈ I, so
that iu is in [0, 1] if i ∈ I. Since [0, 1] is a de Morgan algebra, this extends uniquely to ru
for r ∈ dM(I). So any f : J → I in C induces f : [0, 1]J → [0, 1]I by i(fu) = (if)u.

To any topological space X we can associate its singular cubical set S(X) by taking
S(X)(I) to be the set of continuous functions [0, 1]I → X.

For a finite set of names I we get the formal cube y I where y : C → [Cop,Set] denotes
the Yoneda embedding. Note that since Top is cocomplete the functor in (1) extends to a
cocontinuous functor assigning to each cubical set its geometric realization as a topological
space, in such a way that y I has [0, 1]I as its geometric realization.

The formal interval I induces a cubical set given by I(I) = dM(I). The face lattice F
induces a cubical set by taking as F(I) to be those ϕ ∈ F which only use symbols in I.
The restrictions along f : J → I are in both cases simply substituting the symbols i ∈ I by
f(i) ∈ dM(J).

As any presheaf category, cubical sets have a subobject classifier Ω where Ω(I) is the set
of sieves on I (i.e., subfunctors of y I). Consider the natural transformation (· = 1): I→ Ω
where for r ∈ I(I), (r = 1) is the sieve on I of all f : J → I such that rf = 1I. The image
of (· = 1) is F→ Ω, assigning to each ϕ the sieve of all f with ϕf = 1F.

8.2 Presheaf semantics
The category of cubical sets (with morphisms being natural transformations) induce—as
does any presheaf category—a category with families (CwF) [9] where the category of con-
texts and substitutions is the category of cubical sets. We will review the basic constructions
but omit verification of the required equations (see, e.g., [12, 13, 6] for more details).

Basic presheaf semantics
As already mentioned the category of (semantic) contexts and substitutions is given by
cubical sets and their maps. In this section we will use Γ,∆ to denote cubical sets and
(semantic) substitutions by σ : ∆→ Γ, overloading previous use of the corresponding meta-
variables to emphasize their intended role.

Given a cubical set Γ, the types A in context Γ, written A ∈ Ty(Γ), are given by sets
Aρ for each I ∈ C and ρ ∈ Γ(I) together with restriction maps Aρ → A(ρf), u 7→ uf for
f : J → I satisfying u idI = u and (uf)g = u(fg) ∈ A(ρfg) if g : K → J . Equivalently,
A ∈ Ty(Γ) are the presheaves on the category of elements of Γ. For a type A ∈ Ty(Γ) its
terms a ∈ Ter(Γ;A) are given by families of elements aρ ∈ Aρ for each I ∈ C and ρ ∈ Γ(I)
such that (aρ)f = a(ρf) for f : J → I. Note that our notation leaves a lot implicit; e.g.,
we should have written A(I, ρ) for Aρ; A(I, ρ, f) for the restriction map Aρ → A(ρf); and
a(I, ρ) for aρ.

For A ∈ Ty(Γ) and σ : ∆→ Γ we define Aσ ∈ Ty(∆) by (Aσ)ρ = A(σρ) and the induced
restrictions. If we also have a ∈ Ter(Γ;A), we define aσ ∈ Ter(∆;Aσ) by (aσ)ρ = a(ρσ). For
a type A ∈ Ty(Γ) we define the cubical set Γ.A by (Γ.A)(I) being the set of all (ρ, u) with
ρ ∈ Γ(I) and u ∈ Aρ; restrictions are given by (ρ, u)f = (ρf, uf). The first projection yields
a map p : Γ.A → Γ and the second projection a term q ∈ Ter(Γ;Ap). Given σ : ∆ → Γ,
A ∈ Ty(Γ), and a ∈ Ter(∆;Aσ) we define (σ, a) : ∆ → Γ.A by (σ, a)ρ = (σρ, aρ). For
u ∈ Ter(Γ;A) we define [u] = (idΓ, u) : Γ→ Γ.A.

The basic type formers are interpreted as follows. For A ∈ Ty(Γ) and B ∈ Ty(Γ.A)
define ΣΓ(A,B) ∈ Ty(Γ) by letting ΣΓ(A,B)ρ contain all pairs (u, v) where u ∈ Aρ and
v ∈ B(ρ, v); restrictions are defined as (u, v)f = (uf, vf). Given w ∈ Ter(Γ; Σ(A,B)) we
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get w.1 ∈ Ter(Γ;A) and w.2 ∈ Ter(Γ;B[w.1]) by (w.1)ρ = p(wρ) and (w.2)ρ = q(wρ) where
p(u, v) = u and q(u, v) = v are the set-theoretic projections.

Given A ∈ Ty(Γ) and B ∈ Ty(Γ.A) the dependent function space ΠΓ(A,B) ∈ Ty(Γ) is
defined by letting ΠΓ(A,B)ρ for ρ ∈ Γ(I) contain all families w = (wf | J ∈ C, f : J → I)
where

wf ∈
∏

u∈A(ρf)

B(ρf, u) such that (wf u)g = wfg(ug) for u ∈ A(ρf), g : K → J.

The restriction by f : J → I of such a w is defined by (wf)g = wfg. Given v ∈ Ter(Γ.A;B)
we have λΓ;Av ∈ Ter(Γ; Π(A,B)) given by ((λv)ρ)f u = v(ρf, u). Application app(w, u) ∈
Ter(Γ;B[u]) of w ∈ Ter(Γ; Π(A,B)) to u ∈ Ter(Γ;A) is defined by

app(w, u)ρ = (wρ)idI
(uρ) ∈ (B[u])ρ. (2)

Basic data types like the natural numbers can be interpreted as discrete presheaves, i.e.,
N ∈ Ty(Γ) is given by Nρ = N; the constants are interpreted by the lifts of the corresponding
set-theoretic operations on N. This concludes the outline of the basic CwF structure on
cubical sets.

I Remark. Following Aczel [1] we will make use of that our semantic entities are actual sets
in the ambient set theory. This will allow us to interpret syntax in Section 8.3 with fewer
type annotations than are usually needed for general categorical semantics of type theory
(see [22]). E.g., the definition of application app(w, u)ρ as defined in (2) is independent of
Γ, A and B, since set-theoretic application is a (class) operation on all sets. Likewise, we
don’t need annotations for first and second projections. But note that we will need the type
A for λ-abstraction for (λΓ;Av)ρ to be a set by the replacement axiom.

Semantic path types
Note that we can consider any cubical set X as X ′ ∈ Ty(Γ) by setting X ′ρ = X(I) for
ρ ∈ Γ(I). We will usually simply write X for X ′. In particular, for a cubical set Γ we can
form the cubical set Γ.I.

For A ∈ Ty(Γ) and u, v ∈ Ter(Γ;A) the semantic path type PathΓ
A(u, v) ∈ Ty(Γ) is given

by: for ρ ∈ Γ(I), PathA(u, v)ρ consists of equivalence classes 〈i〉 w where i /∈ I, w ∈ A(ρsi)
such that w(i0) = uρ and w(i1) = vρ; two such elements 〈i〉 w and 〈j〉 w′ are equal iff
w(i/j) = w′. Here si : I, i → I is induced by the inclusion I ⊆ I, i and (i/j) setting i to
j. We define (〈i〉 w)f = 〈j〉 w(f, i = j) for f : J → I and j /∈ J . For ϕ ∈ F(I) we set
(〈i〉 w)ϕ = w(i/ϕ). Both operations, name abstraction and application, lift to terms, i.e.,
if w ∈ Ter(Γ.I;A), then 〈 〉w ∈ Ter(Γ; PathA(w[0], w[1])) given by (〈 〉w)ρ = 〈i〉 w(ρsi) for a
fresh i; also if u ∈ Ter(Γ; PathA(a, b)) and ϕ ∈ Ter(Γ;F), then uϕ ∈ Ter(Γ;A) defined as
(uϕ)ρ = (uρ)(ϕρ).

Composition structure
For ϕ ∈ Ter(Γ;F) we define the cubical set Γ, ϕ by taking ρ ∈ (Γ, ϕ)(I) iff ρ ∈ Γ(I) and
ϕρ = 1F ∈ F; the restrictions are those induced by Γ. In particular, we have Γ, 1 = Γ and
Γ, 0 is the empty cubical set. (Here, 0 ∈ Ter(Γ;F) is 0ρ = 0F and similarly for 1F.) Any
σ : ∆→ Γ gives rise to a morphism ∆, ϕσ → Γ, ϕ which we also will denote by σ.

If A ∈ Ty(Γ) and ϕ ∈ Ter(Γ;F), we define a partial element of A ∈ Ty(Γ) of extent ϕ
to be an element of Ter(Γ, ϕ;Aιϕ) where ιϕ : Γ, ϕ ↪→ Γ is the inclusion. So, such a partial
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element u is given by a family of elements uρ ∈ Aρ for each ρ ∈ Γ(I) such that ϕρ = 1,
satisfying (uρ)f = u(ρf) whenever f : J → I. Each u ∈ Ter(Γ;A) gives rise to the partial
element uι ∈ Ter(Γ, ϕ;Aι); a partial element is connected if it is induced by such an element
of Ter(Γ;A).

For the next definition note that if A ∈ Ty(Γ), then ρ ∈ Γ(I) corresponds to ρ : y I → Γ
and thus Aρ ∈ Ty(y I); also, any ϕ ∈ F(I) corresponds to ϕ ∈ Ter(y I;F).

I Definition 13. A composition structure for A ∈ Ty(Γ) is given by the following operations.
For each I, i /∈ I, ρ ∈ Γ(I, i), ϕ ∈ F(I), u a partial element of Aρ of extent ϕ, and a0 ∈ Aρ(i0)
with a0f = uf for all f with ϕf = 1F (i.e., a0ιϕ = u if a0 is considered as element of
Ter(y I;Aρ)), we require

comp(I, i, ρ, ϕ, u, a0) ∈ Aρ(i1)

such that for any f : I → J and j /∈ J ,

(comp(I, i, ρ, ϕ, u, a0))f = comp(J, j, ρ(f, i = j), ϕf, u(f, i = j), a0f),

and comp(I, i, ρ, 1F, u, a0) = uidI
.

A type A ∈ Ty(Γ) together with a composition structure comp on A is called a fibrant
type, written (A, comp) ∈ FTy(Γ). We will usually simply write A ∈ FTy(Γ) and compA
for its composition structure. But observe that A ∈ Ty(Γ) can have different composition
structures. Call a cubical set Γ fibrant if it is a fibrant type when Γ considered as type
Γ ∈ Ty(>) is fibrant where > is a terminal cubical set. A prime example of a fibrant cubical
set is the singular cubical set of a topological space (see Appendix C).

I Theorem 14. The CwF on cubical sets supporting dependent products, dependent sums,
and natural numbers described above can be extended to fibrant types.

Proof. For example, if A ∈ FTy(Γ) and σ : ∆→ Γ, we set

compAσ(I, i, ρ, ϕ, u, a0) = compA(I, i, σρ, ϕ, u, a0)

as the composition structure on Aσ in FTy(∆). Type formers are treated analogously to
their syntactic counterpart given in Section 4. Note that one also has to check that all
equations between types are also preserved by their associated composition structures. J

Note that we can also, like in the syntax, define a composition structure on PathA(u, v)
given that A has one.

Semantic glueing
Next we will give a semantic counterpart to the Glue construction. To define the semantic
glueing as an element of Ty(Γ) it is not necessary that the given types have composition
structures or that the functions are equivalences; this is only needed later to give the compos-
ition structure. Assume ϕ ∈ Ter(Γ;F), T ∈ Ty(Γ, ϕ), A ∈ Ty(Γ), and w ∈ Ter(Γ, ϕ;T → Aι)
(where A→ B is Π(A,Bp)).

I Definition 15. The semantic glueing GlueΓ(ϕ, T,A,w) ∈ Ty(Γ) is defined as follows. For
ρ ∈ Γ(I), we let u ∈ Glue(ϕ, T,A,w)ρ iff either

u ∈ Tρ and ϕρ = 1F; or
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u = glue(ϕρ, t, a) and ϕρ 6= 1F, where t ∈ Ter(y I, ϕρ;Tρ) and a ∈ Ter(y I;Aρ) such
that app(wρ, t) = aι ∈ Ter(y I, ϕρ;Aρι).

For f : J → I we define the restriction uf of u ∈ Glue(ϕ, T,A,w) to be given by the restric-
tion of Tρ in the first case; in the second case, i.e., if ϕρ 6= 1F, we let uf = glue(ϕρ, t, a)f =
tf ∈ Tρf in case ϕρf = 1F, and otherwise uf = glue(ϕρf, tf, af).

Here glue was defined as a constructor; we extend glue to any t ∈ Ter(y I;Tρ), a ∈
Ter(y I;Aρ) such that app(wρ, t) = a (so if ϕρ = 1F) by glue(1F, t, a) = tidI

. This way any
element of Glue(ϕ, T,A,w)ρ is of the form glue(ϕρ, t, a) for suitable t and a, and restriction
is given by (glue(ϕρ, t, a))f = glue(ϕρf, tf, af). Note that we get

GlueΓ(1F, T, A,w) = T and (GlueΓ(ϕ, T,A,w))σ = Glue∆(ϕσ, Tσ,Aσ,wσ) for σ : ∆→ Γ.
(3)

We define unglue(ϕ, T,w) ∈ Ter(Γ. Glue(ϕ, T,A,w);Ap) by

unglue(ϕ, T,w)(ρ, t) = app(wρ, t)idI
∈ Aρ whenever ϕρ = 1F, and

unglue(ϕ, T,w)(ρ, glue(ϕ, t, a)) = a otherwise,

where ρ ∈ Γ(I).

I Definition 16. For A,B ∈ Ty(Γ) and w ∈ Ter(Γ;A→ B) an equivalence structure for w
is given by the following operations such that for each

ρ ∈ Γ(I),
ϕ ∈ F(I),
b ∈ Bρ, and
partial elements a of Aρ and ω of PathB(app(wρ, a), bι)ρ with extent ϕ,

we are given

e0(ρ, ϕ, b, a, ω) ∈ Aρ, and a path e1(ρ, ϕ, b, a, ω) between app(wρ, e0(ρ, ϕ, b, a, ω)) and b

such that e0(ρ, ϕ, b, a, ω)ι = a, e1(ρ, ϕ, b, a, ω)ι = ω (where ι : y I, ϕ → y I) and for any
f : J → I and b = 0, 1:

(eb(ρ, ϕ, b, a, ω))f = eb(ρf, ϕf, bf, af, ωf).

Following the argument in the syntax we can use the equivalence structure to explain a
composition for Glue.

I Theorem 17. If A ∈ FTy(Γ), T ∈ FTy(Γ, ϕ), and we have an equivalence structure for
w, then we have a composition structure for Glue(ϕ, T,A,w) such that the equations (3)
also hold for the respective composition structures.

Semantic universes
Assuming a Grothendieck universe of small sets in our ambient set theory, we can define
A ∈ Ty0(Γ) iff all Aρ are small for ρ ∈ Γ(I); and A ∈ FTy0(Γ) iff A ∈ Ty0(Γ) when
forgetting the composition structure of A.

I Definition 18. The semantic universe U is the cubical set defined by U(I) = FTy0(y I);
restriction along f : J → I is simply substitution along y f .
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We can consider U as an element of Ty(Γ). As such we can, as in the syntactic counter-
part, define a composition structure on U using semantic glueing, so that U ∈ FTy(Γ). Note
that semantic glueing preserves smallness.

For T ∈ Ter(Γ; U) we can define decoding ElT ∈ FTy0(Γ) by (ElT )ρ = (Tρ) idI and
likewise for the composition structure. For A ∈ FTy0(Γ) we get its code pAq ∈ Ter(Γ; U)
by setting pAqρ ∈ FTy0(y I) to be given by the sets (pAqρ)f = A(ρf) and likewise for
restrictions and composition structure. These operations satisfy ElpAq = A and pElTq = T .

8.3 Interpretation of the syntax
Following [22], we define a partial interpretation function from raw syntax to the CwF with
fibrant types given in the previous section.

To interpret the universe rules à la Russell we assume two Grothendieck universes in
the underlying set theory, say tiny and small sets. So that any tiny set is small, and
the set of tiny sets is small. For a cubical set X we define FTy0(X) and FTy1(X) as in
the previous section, now referring to tiny and small sets, respectively. We get semantic
universes Ui(I) = FTyi(y I) for i = 0, 1; we identify those with their lifts to types. As noted
above, these lifts carry a composition structure, and thus are fibrant. We also have U0 ⊆ U1
and thus Ter(X; U0) ⊆ Ter(X; U1). Note that coding and decoding are, as set-theoretic
operations, the same for both universes. We get that pU0q ∈ Ter(X; U1) which will serve as
the interpretation of U.

In what follows, we define a partial interpretation function of raw syntax: [[Γ]], [[Γ; t]], and
[[∆;σ]] by recursion on the raw syntax. Since we want to interpret a universe à la Russell we
cannot assume terms and types to have different syntactic categories. The definition is given
below and should be read such that the interpretation is defined whenever all interpretations
on the right hand sides are defined and make sense; so, e.g., for [[Γ]].El [[Γ;A]] below, we
require that [[Γ]] is defined and a cubical set, [[Γ;A]] is defined, and El [[Γ;A]] ∈ FTy([[Γ]]).
The interpretation for raw contexts is given by:

[[()]] = > [[Γ, x : A]] = [[Γ]].El [[Γ;A]] if x /∈ dom(Γ)
[[Γ, ϕ]] = [[Γ]], [[Γ;ϕ]] [[Γ, i : I]] = [[Γ]].I if i /∈ dom(Γ)

where > is a terminal cubical set and in the last equation I is considered as an element of
Ty([[Γ]]). When defining [[Γ; t]] we require that [[Γ]] is defined and a cubical set; then [[Γ; t]]
is a (partial) family of sets [[Γ; t]](I, ρ) for I ∈ C and ρ ∈ [[Γ]](I) (leaving I implicit in the
definition). We define:

[[Γ; U]] = pU0q ∈ Ter([[Γ]]; U1)
[[Γ; N]] = pNq ∈ Ter([[Γ]]; U0)

[[Γ; (x : A)→ B]] = pΠ[[Γ]](El [[Γ;A]],El [[Γ, x : A;B]])q
[[Γ; (x : A)×B]] = pΣ[[Γ]](El [[Γ;A]],El [[Γ, x : A;B]])q

[[Γ; Path A a b]] = pPath[[Γ]]
El [[Γ;A]]([[Γ; a]], [[Γ; b]])q

[[Γ; Glue [ϕ 7→ (T, f)] A]] = pGlue[[Γ]]([[Γ;ϕ]],El [[Γ, ϕ;T ]],El [[Γ;A]], [[Γ, ϕ; f ]])q
[[Γ;λx : A.t]] = λ[[Γ]];El [[Γ;A]]([[Γ, x : A; t]])

[[Γ; t u]] = app([[Γ; t]], [[Γ;u]])
[[Γ; 〈i〉 t]] = 〈 〉[[Γ]][[Γ, i : I; t]]

[[Γ; t r]] = [[Γ; t]][[Γ; r]]
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where for path application, juxtaposition on the right hand side is semantic path application.
In the case of a bound variable, we assume that x (respectively i) is a chosen variable fresh
for Γ; if this is not possible the expression is undefined. Moreover, all type formers should
be read as those on fibrant types, i.e., also defining the composition structure. In the
case of Glue, it is understood that the function part, i.e., the fourth argument of Glue in
Definition 15 is p ◦ [[Γ, ϕ; f ]] and the required (by Theorem 17) equivalence structure is to be
extracted from q ◦ [[Γ, ϕ; f ]] as in Section 5.1. In virtue of Remark 8.2 we don’t need type
annotations to interpret applications. Note that coding and decoding tacitly refer to [[Γ]] as
well. For the rest of the raw terms we also assume we are given ρ ∈ [[Γ]](I). Variables are
interpreted by:

[[Γ, x : A;x]]ρ = q(ρ) [[Γ, x : A; y]]ρ = [[Γ; y]](p(ρ)) [[Γ, ϕ; y]]ρ = [[Γ; y]]ρ

These should also be read to include the case when x or y are name variables; if x is a name
variable, we require A to be I. The interpretations of [[Γ; r]]ρ where r is not a name and
[[Γ;ϕ]]ρ follow inductively as elements of I and F, respectively.

Constants for dependent sums are interpreted by:

[[Γ; (t, u)]]ρ = ([[Γ; t]]ρ, [[Γ;u]]ρ) [[Γ; t.1]]ρ = p([[Γ; t]]ρ) [[Γ; t.2]]ρ = q([[Γ; t]]ρ)

Likewise, constants for N will be interpreted by their semantic analogues (omitted). The
interpretations for the constants related to glueing are

[[Γ; glue [ϕ 7→ t]u]]ρ = glue([[Γ;ϕ]]ρ, [[Γ, ϕ; t]]ρ̂, [[Γ;u]]ρ)
[[Γ; unglue [ϕ 7→ (T, f)]u]]ρ = unglue([[Γ;ϕ]],El [[Γ;T ]], p ◦ [[Γ; f ]])(ρ, [[Γ;u]]ρ)

where [[Γ, ϕ; t]]ρ̂ is the family assigning [[Γ, ϕ; t]](ρf) to J ∈ C and f : J → I (and ρf refers
to the restriction given by [[Γ]] which is assumed to be a cubical set). Partial elements are
interpreted by

[[Γ; [ ϕ1 t1, . . . , ϕn tn ]]]ρ = [[Γ, ϕi;ui]]ρ if [[Γ;ϕi]]ρ = 1F,

where for this to be defined we additionally assume that all [[Γ, ϕi;ui]] are defined and
[[Γ, ϕi;ui]]ρ′ = [[Γ, ϕj ;uj ]]ρ′ for each ρ′ ∈ [[Γ]](I) with [[Γ;φi ∧ φj ]]ρ′ = 1F.

Finally, the interpretation of composition is given by

[[Γ; compi A [ϕ 7→ u] a0]]ρ = compEl [[Γ,i:I;A]](I, j, ρ′, [[Γ;ϕ]]ρ, [[Γ, ϕ, i : I;u]]ρ′, [[Γ; a0]]ρ)

if i /∈ dom(Γ), and where j is fresh and ρ′ = (ρsj , i = j) with sj : I, j → I induced from the
inclusion I ⊆ I, j.

The interpretation of raw substitutions [[∆;σ]] is a (partial) family of sets [[∆;σ]](I, ρ) for
I ∈ C and ρ ∈ [[∆]](I). We set

[[∆; ()]]ρ = ∗, [[∆; (σ, x/t)]]ρ = ([[∆;σ]]ρ, [[∆; t]]ρ) if x /∈ dom(σ),

where ∗ is the unique element of >(I). This concludes the definition of the interpretation
of syntax.

In the following α stands for either a raw term or raw substitution. In the latter case,
ασ denotes composition of substitutions.

I Lemma 19. Let Γ′ be like Γ but with some ϕ’s inserted, and assume both [[Γ]] and [[Γ′]]
are defined; then:
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1. [[Γ′]] is a sub-cubical set of [[Γ]];
2. if [[Γ;α]] is defined, then so is [[Γ′;α]] and they agree on [[Γ′]].

I Lemma 20 (Weakening). Let [[Γ]] be defined.

1. If [[Γ, x : A,∆]] is defined, then so is [[Γ, x : A,∆;x]] which is moreover the projection to
the x-part.5

2. If [[Γ,∆]] is defined, then so is [[Γ,∆; idΓ]] which is moreover the projection to the Γ-part.
3. If [[Γ,∆]], [[Γ;α]] are defined and the variables in ∆ are fresh for α, then [[Γ,∆;α]] is

defined and for ρ ∈ [[Γ,∆]](I):

[[Γ;α]]([[Γ,∆; idΓ]]ρ) = [[Γ,∆;α]]ρ

I Lemma 21 (Substitution). For [[Γ]],[[∆]], [[∆;σ]], and [[Γ;α]] defined with dom(Γ) = dom(σ)
(as lists), also [[∆;ασ]] is defined and for ρ ∈ [[∆]](I):

[[Γ;α]]([[∆;σ]]ρ) = [[∆;ασ]]ρ

I Lemma 22. If [[Γ]] is defined and a cubical set, and [[Γ;α]] is defined, then ([[Γ;α]]ρ)f =
[[Γ;α]](ρf).

To state the next theorem let us set [[Γ; I]] = pIq and [[Γ;F]] = pFq as elements of Ty0([[Γ]]).

I Theorem 23 (Soundness). We have the following implications, and all occurrences of [[−]]
in the conclusions are defined. Where in (3) and (5) we allow A to be I or F.

1. if Γ ` , then [[Γ]] is a cubical set;
2. if Γ ` A, then [[Γ;A]] ∈ Ter([[Γ]]; U1);
3. if Γ ` t : A, then [[Γ; t]] ∈ Ter([[Γ]]; El [[Γ;A]]);
4. if Γ ` A = B, then [[Γ;A]] = [[Γ;B]];
5. if Γ ` a = b : A, then [[Γ; a]] = [[Γ; b]];
6. if Γ ` σ : ∆, then [[Γ;σ]] restricts to a natural transformation [[Γ]]→ [[∆]].

9 Extensions: identity types and higher inductive types

In this section we consider possible extensions to cubical type theory. The first is an identity
type defined using path types whose elimination principle holds as a judgmental equality.
The second are two examples of higher inductive types.

9.1 Identity types
We can use the path type to represent equalities. Using the composition operation, we
can indeed build a substitution function P (a) → P (b) from any path between a and b.
However, since we don’t have in general the judgmental equality transpi A a0 = a0 if A is
independent of i (which is an equality that we cannot expect geometrically in general, as
shown in Appendix C), this substitution function does not need to be the constant function
when the path is constant. This means that, as in the previous model [6, 13], we don’t get
an interpretation of Martin-Löf identity type [17] with the standard judgmental equalities.

However, we can define another type which does give an interpretation of this identity
type following an idea of Andrew Swan.

5 E.g., if Γ is y : B, z : C, the projection to the x-part maps (b, (c, (a, δ))) to a, and the projection to the
Γ-part maps (b, (c, δ)) to (b, c).
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Identity types
We define a type Id A a0 a1 with the introduction rule

Γ ` ω : Path A a0 a1[ϕ 7→ 〈i〉 a0]
Γ ` (ω, ϕ) : Id A a0 a1

and r(a) = (〈j〉 a, 1F) : Id A a a.
Given Γ ` α = (ω, ϕ) : Id A a x we define Γ, i : I ` α∗(i) : Id A a (α i) by

α∗(i) = (〈j〉 ω (i ∧ j), ϕ ∨ (i = 0))

This is well defined since Γ, i : I, (i = 0) ` 〈j〉 ω (i∧ j) = 〈j〉 a and Γ, i : I, ϕ ` 〈j〉 ω (i∧ j) =
〈j〉 a.

If we have Γ, x : A,α : Id A a x ` C, Γ ` b : A, Γ ` β : Id A a b, and Γ ` d : C(a, r(a))
we define

J b β d = compi C(ω i, β∗(i)) [ϕ 7→ d] d : C(b, β)

where β = (ω, ϕ) and we have J a r(a) d = d as desired.
If i : I ` Id A a b and p0 = (ω0, ψ0) : Id A(i0) a(i0) b(i0) and ϕ, i : I ` q = (ω, ψ) : Id A a b

such that ϕ ` q(i0) = p0 we define compi (Id A a b) [ϕ 7→ q] p0 to be (γ, ϕ ∧ ψ(i1)) where

γ = 〈j〉 compi A [ϕ 7→ ω j, (j = 0) 7→ a, (j = 1) 7→ b] (ω0 j)

It can then be shown that the types Id A a b and Path A a b are (path)-equivalent. In
particular, a type is (path)-contractible if, and only if, it is (Id)-contractible. Corollary 11,
which is a statement about the Path type, holds hence as well for the Id type.

Cofibration-trivial fibration factorization
The same idea can be used to factorize an arbitrary map f : A → B into a cofibration
followed by a trivial fibration. We define a “trivial fibration” to be a first projection from
a total space of a contractible family of types and a “cofibration” to be a map that has the
left lifting property against any trivial fibration. For this we define, for b : B, the type Tf (b)
to be the type of elements ϕ 7→ a with ϕ ` a : A and ϕ ` f a = b : B.

I Theorem 24. The type Tf (b) is contractible and the map

A→ (b : B)× Tf (b), a 7−→ (f a, [1F 7→ a])

is a cofibration.

The definition of the identity type can be seen as a special case of this, if we take the B
the type of paths in A and for f the constant path function.

9.2 Higher inductive types
In this section we consider the extension of cubical type theory with two different higher
inductive types: spheres and propositional truncation. The presentation in this section is
syntactical, but it can be directly translated into semantic definitions.
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Extension to dependent path types
In order to formulate the elimination rules for higher inductive types, we need to extend
the path type to dependent path type, which is described by the following rules. If i : I ` A
and ` a0 : A(i0), a1 : A(i1), then ` Pathi A a0 a1. The introduction rule is that ` 〈i〉 t :
Pathi A t(i0) t(i1) if i : I ` t : A. The elimination rule is ` p r : A(i/r) if ` p : Pathi A a0 a1
with equalities p 0 = a0 : A(i0) and p 1 = a1 : A(i1).

Spheres
We define the circle, S1, by the rules:

Γ `
Γ ` S1

Γ `
Γ ` base : S1

Γ ` r : I
Γ ` loop(r) : S1

with the equalities loop(0) = loop(1) = base.
Since we want to represent the free type with one base point and a loop, we add com-

position as a constructor operation hcompi:

Γ, ϕ, i : I ` u : S1 Γ ` u0 : S1[ϕ 7→ u(i0)]
Γ ` hcompi [ϕ 7→ u] u0 : S1

with the equality hcompi [1F 7→ u] u0 = u(i1).
Given a dependent type x : S1 ` A and a : A(x/base) and l : Pathi A(x/loop(i)) a a we

can define a function g : (x : S1)→ A by the equations6 g base = a and g loop(r) = l r and

g (hcompi [ϕ 7→ u] u0) = compi A(x/v) [ϕ 7→ g u] (g u0)

where v = filli S1 [ϕ 7→ u] u0 = hcompj [ϕ 7→ u(i/i ∧ j), (i = 0) 7→ u0] u0.
This definition is non ambiguous since l 0 = l 1 = a.

We have a similar definition for Sn taking as constructors base and loop(r1, . . . , rn).

Propositional truncation
We define the propositional truncation, inh A, of a type A by the rules:

Γ ` A
Γ ` inh A

Γ ` a : A
Γ ` inc a : inh A

Γ ` u0 : inh A Γ ` u1 : inh A Γ ` r : I
Γ ` squash(u0, u1, r) : inh A

with the equalities squash(u0, u1, 0) = u0 and squash(u0, u1, 1) = u1.
As before, we add composition as a constructor, but only in the form7

Γ, ϕ, i : I ` u : inh A Γ ` u0 : inh A[ϕ 7→ u(i0)]
Γ ` hcompi [ϕ 7→ u] u0 : inh A

with the equality hcompi [1F 7→ u] u0 = u(i1).
This provides only a definition of compi (inh A) [ϕ 7→ u] u0 in the case where A is

independent of i, and we have to explain how to define the general case.

6 For the equation g loop(r) = l r, it may be that l and r are dependent on the same name i, and we
could not have followed this definition in the framework of [6].

7 This restriction on the constructor is essential for the justification of the elimination rule below.
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In order to do this, we define first two operations

Γ, i : I ` A Γ ` u0 : inh A(i0)
Γ ` transp u0 : inh A(i1)

Γ, i : I ` A Γ, i : I ` u : inh A
Γ ` squeezei u : Path (inh A(i1)) (transp u(i0)) u(i1)

by the equations

transp (inc a) = inc (compi A [] a)
transp (squash(u0, u1, r)) = squash(transp u0, transp u1, r)
transp (hcompj [ϕ 7→ u] u0) = hcompj [ϕ 7→ transp u] (transp u0)

squeezei (inc a) = 〈i〉 inc (compj A(i ∨ j) [(i = 1) 7→ a(i1)] a)
squeezei (squash(u0, u1, r)) = 〈k〉 squash(squeezei u0 k, squeezei u1 k, r(i/k))
squeezei (hcompj [ϕ 7→ u] v) = 〈k〉 hcompj S (squeezei v k)

where S is the system

[δ 7→ squeezei u k, ϕ(i/k) ∧ (k = 0) 7→ transp u(i0), ϕ(i/k) ∧ (k = 1) 7→ u(i1)]

and δ = ∀i.ϕ, using Lemma 2.
Using these operations, we can define the general composition

Γ, i : I ` A Γ, ϕ, i : I ` u : inh A Γ ` u0 : inh A(i0)[ϕ 7→ u(i0)]
Γ ` compi (inh A) [ϕ 7→ u] u0 : inh A(i1)[ϕ 7→ u(i1)]

by Γ ` compi (inh A) [ϕ 7→ u] u0 = hcompj [ϕ 7→ squeezei u j] (transp u0) : inh A(i1).

Given Γ ` B and Γ ` q : (x y : B)→ Path B x y and f : A→ B we define g : inh A→ B

by the equations

g (inc a) = f a

g (squash(u0, u1, r)) = q (g u0) (g u1) r
g (hcompj [ϕ 7→ u] u0) = compj B [ϕ 7→ g u] (g u0)

10 Related and future work

Cubical ideas have proved useful to reason about equality in homotopy type theory [16].
In cubical type theory these techniques could be simplified as there are new judgmental
equalities and better notations for manipulating higher dimensional cubes. Indeed some
simple experiments using the Haskell implementation have shown that we can simplify
some constructions in synthetic homotopy theory.8

Other approaches to extending intensional type theory with extensionality principles can
be found in [2, 21]. These approaches have close connections to techniques for internalizing
parametricity in type theory [5]. Further, nominal extensions to λ-calculus and semantical
ideas related to the ones presented in this paper have recently also proved useful for justifying
type theory with internalized parametricity [4].

The paper [11] provides a general framework for analyzing the uniformity condition,
which applies to simplicial and cubical sets.

8 For details see: https://github.com/mortberg/cubicaltt/tree/master/examples

https://github.com/mortberg/cubicaltt/tree/master/examples
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In Section 4.4 we show how to define Kan filling from composition. The semantics of
this, which follows directly the definition in Section 4.4, has been formally verified in NuPrl
by Mark Bickford.9

Following the usual reducibility method, we expect it to be possible to adapt our presheaf
semantics to a proof of normalization and decidability of type checking. We end the paper
with a list of open problems and conjectures:

1. Show that any cubical group has a uniform Kan composition operation.
2. Extend the system with resizing rules and show normalization.
3. Extend the semantics of identity types to the semantics of inductive families.
4. Give a general syntax and semantics of higher inductive types.
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A Details of composition for glueing

We build the element Γ ` b1 = compi B [ψ 7→ b] b0 : (Glue [ϕ 7→ (T, f)] A)(i1) as the element
glue [ψ(i1) 7→ t1] a1 where

Γ, ϕ(i1) ` t1 : T (i1)[ψ 7→ b(i1)]
Γ ` a1 : A(i1)[ϕ(i1) 7→ f(i1) t1, ψ 7→ (unglue b)(i1)]

As intermediate steps, we gradually build elements that satisfy more and more of the
equations that the final elements t1 and a1 should satisfy. The construction of these is given
in five steps.

Before explaining how we can define them and why they are well defined, we illustrate
the construction in the Figure 5, with ψ = (j = 1) and ϕ = (i = 0) ∨ (j = 1) ∨ (i = 1).

We pose δ = ∀i.ϕ (cf. Section 3), so that we have that δ is independent from i, and in
our example δ = (j = 1) and it represents the right hand side of the picture.

1. The element a′1 : A(i1) is a first approximation of a1, but a′1 is not necessarily in the
image of f(i1) in Γ, ϕ(i1);

2. the partial element δ ` t′1 : T (i1), which is a partial final result for ϕ(i1) ` t1;
3. the partial path δ ` ω, between a′1 and the image of t′1;
4. both the final element ϕ(i1) ` t1 and a path ϕ(i1) ` α between a′1 and f(i1) t1;
5. finally, we build a1 from a′1 and α.

unglue b0

Step 5: a1

Step 1: a′1

f

f

f

f

ϕ(i0) ` b0

Step 4: ϕ(i1) ` t1

f

i

j
(unglue b)(j1)

Step 2: δ ` t′1

δ ` f(i1) t′1

b(j1)

Step 3: δ ` ω constant on ψStep 4’: ϕ(i1) ` α

Figure 5 Composition for glueing

We define:

Γ, ψ, i : I ` a = unglue b : A[ϕ 7→ f b]
Γ ` a0 = unglue b0 : A(i0)[ϕ(i0) 7→ f(i0) b0, ψ 7→ a(i0)]

Step 1 We define a′1 as the composition of a and unglue b0, in the direction i, which is well
defined since unglue b0 = (unglue b)(i0) over the extent ψ

Γ ` a′1 = compi A [ψ 7→ a] a0 : A(i1)[ψ 7→ a(i1)] (4)
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Step 2 We also define t′1 as the composition of b and b0, in the direction i:

Γ, δ ` t′1 = compi T [ψ 7→ b] b0 : T (i1)[ψ 7→ b(i1)] (5)

which is well defined because
{

Γ, δ, i : I, ψ ` b : T by Lemma 3
Γ, δ ` b0 : T (i0)[ψ 7→ b(i0)] as δ 6 ϕ(i0)

Moreover, since{
Γ, δ, ψ, i : I ` a = f b by δ 6 ϕ

Γ, δ ` a0 = f(i0) b0 by δ 6 ϕ(i0)

we can re-express a′1 on the extent δ

Γ, δ ` a′1 = compi A [ψ 7→ f b] (f(i0) b0)

Step 3 We can hence find a path ω connecting a′1 and f(i1) t′1 in Γ, δ using Lemma 6:

Γ, δ ` ω = presi f [ψ 7→ b] b0 : (Path A(i1) a′1 (f(i1) t′1)) [ψ 7→ 〈j〉 a(i1)]

Picking a fresh name j, we have

Γ, δ, j : I ` ω j : A(i1)[(j0) 7→ a′1, (j1) 7→ f(i1) t′1, ψ 7→ a(i1)] (6)

Step 4 Now we define the final element t1 as the inverse image of a′1 by f(i1), together
with the path α between a′1 and f(i1) t1, in Γ, ϕ(i1) `, using Lemma 7:

Γ, ϕ(i1) ` (t1, α) = equiv f(i1) [δ 7→ (t′1, ω), ψ 7→ (b(i1), 〈j〉 a′1)] a′1

with
{

Γ, ϕ(i1) ` t1 : T (i1)[δ 7→ t′1, ψ 7→ b(i1)]
Γ, ϕ(i1) ` α : (Path A(i1) a′1 (f(i1) t1)) [δ 7→ ω, ψ 7→ 〈j〉 a′1)]

These are well defined because the two systems in δ and ψ are compatible:{
Γ, δ, ψ ` t′1 = b(i1) by (5)
Γ, δ, ψ ` ω = 〈j〉 a′1 by (6) and (4)

Picking a fresh name j, we have

Γ, ϕ(i1), j : I ` α j : A(i1)[(j0) 7→ a′1, (j1) 7→ f(i1) t1, δ 7→ a′1, ψ 7→ a(i1)] (7)

Step 5 Finally, we define a1 by composition of α and a′1:

Γ ` a1 := compj A(i1) [ϕ(i1) 7→ α j, ψ 7→ a(i1)] a′1 : A(i1)[ϕ(i1) 7→ α 1, ψ 7→ a(i1)]

which is well defined because


Γ, j : I, ϕ(i1), ψ ` α j = a(i1) by (7)
Γ, ϕ(i1) ` α 0 = a′1 by (7)
Γ, ψ ` a(i1) = a′1 by (4)

and since Γ, ϕ(i1) ` α 1 = f(i1) t1, we can re-express the type of a1 in the following way:

Γ ` a1 : A(i1)[ϕ(i1) 7→ f(i1) t1, ψ 7→ a(i1)]
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Which is exactly what we needed to build Γ ` b1 := glue [ϕ(i1) 7→ t1] a1 : B(i1)[ψ 7→ b(i1)].

Finally we check that b1 = compi T [ψ 7→ b] b0 on δ:

b1 = glue [ϕ(i1) 7→ t1] a1 by def.
= t1 : T (i1)[δ 7→ t′1, ψ 7→ b(i1)] as ϕ(i1) = 1F
= t′1 as δ = 1F
= compi T [ψ 7→ b] b0 by def.

B Univalence from glueing

We also give an alternative proof of the univalence axiom for Path only involving the glue
construction and not relying on Section 7.2.10

I Lemma 25. For Γ ` A : U, Γ ` B : U, and an equivalence Γ ` f : Equiv A B we have the
following constructions:

1. Γ ` eqToPath f : Path UAB;
2. Γ ` Path (A→ B) (transpi(eqToPath f i))) (f.1) is inhabited; and
3. if f = equivi(P i) for Γ ` P : Path UAB, then the following type is inhabited:

Γ ` Path (Path UAB) (eqToPath (equivi(P i)))P

Proof. For (1) we define

eqToPath f = 〈i〉 Glue [(i = 0) 7→ (A, f), (i = 1) 7→ (B, equivkB)]B. (8)

Note that here equivkB is an equivalence between B and B (see Section 7.1). For (2) we have
to closely look at how the composition was defined for Glue. By unfolding the definition, we
see that the left hand side of the equality is equal f.1 composed with multiple transports in
a constant type; using filling and functional extensionality, these transports can be shown
to be equal to the identity; for details see the formal proof.

The term for (3) is given by:

C = 〈j〉 〈i〉 Glue [(i = 0) 7→ (A, equivk(P k)),
(i = 1) 7→ (B, equivkB),
(j = 1) 7→ (P i, equivk(P (i ∨ k)))]
B J

I Corollary 26 (Univalence axiom). For the canonical map

pathToEq : (AB : U)→ Path UAB → Equiv A B

we have that pathToEqAB is an equivalence for all A : U and B : U.

10Both proofs of the univalence axiom have been formally verified inside the system using the Haskell
implementation. For details see: https://github.com/mortberg/cubicaltt/blob/master/examples/
univalence.ctt

https://github.com/mortberg/cubicaltt/blob/master/examples/univalence.ctt
https://github.com/mortberg/cubicaltt/blob/master/examples/univalence.ctt
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Proof. Let us first show that the canonical map pathToEq is path equal to:

equiv = λAB : U. λP : Path UAB. equivi(P i)

By function extensionality, it suffices to check this pointwise. Using path-induction, we may
assume that P is reflexivity. In this case pathToEqAA 1A is the identity equivalence by
definition. Because being an equivalence is a proposition, it thus suffices that the first com-
ponent of equiviA is propositionally equal to the identity. By definition, this first component
is given by transport (now in the constant type A) which is easily seen to be the identity
using filling (see Section 4.4).

Thus it suffices to prove that equivAB is an equivalence. To do so it is enough to
give an inverse (see Theorems 4.2.3 and 4.2.6 of [24]). But eqToPath is a left inverse by
Lemma 25 (3), and a right inverse by Lemma 25 (2) using that being an equivalence is a
proposition. J

C Singular cubical sets

Recall the functor C → Top, I 7→ [0, 1]I given at (1) in Section 8.1. In particular, the face
maps (ib) : I − i→ I (for b = 0I or 1I) induce the maps (ib) : [0, 1]I−i → [0, 1]I by i(ib)u = b

and j(ib)u = ju if j 6= i is in I. If ψ is in F(I) and u in [0, 1]I , then ψu is a truth value.
We assume given a family of idempotent functions rI : [0, 1]I × [0, 1] → [0, 1]I × [0, 1]

such that

1. rI(u, z) = (u, z) iff ∂Iu = 1 or z = 0, and
2. for any strict f in Hom(I, J) we have rJ(f × id)rI = rJ(f × id)

Such a family can for instance be defined as in the following picture (“retraction from
above center”). If the center has coordinate (1/2, 2), then rI(u, z) = rI(u′, z′) is equivalent
to (2− z′)(−1 + 2u) = (2− z)(−1 + 2u′).

Property (1) holds for the retraction defined by this picture. The property (2) can be
reformulated as rI(u, z) = rI(u′, z′) → rJ(fu, z) = rJ(fu′, z′). It also holds in this case,
since rI(u, z) = rI(u′, z′) is then equivalent to (2− z′)(−1 + 2u) = (2− z)(−1 + 2u′), which
implies (2− z′)(−1 + 2fu) = (2− z)(−1 + 2fu′) if f is strict.

Using this family, we can define for each ψ in F(I) an idempotent function

rψ : [0, 1]I × [0, 1]→ [0, 1]I × [0, 1]

having for fixed-points the element (u, z) such that ψu = 1 or z = 0. This function rψ is
completely characterized by the following properties

1. rψ = id if ψ = 1
2. rψ = rψrI if ψ 6= 1
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3. rψ(u, z) = (u, z) if z = 0
4. rψ((ib)× id) = ((ib)× id)rψ(ib)

These properties imply for instance r∂I
(u, z) = (u, z) if ∂Iu = 1 or z = 0 and so they

imply r∂I
= rI . They also imply that rψ(u, z) = (u, z) if ψu = 1.

From these properties, we can prove the uniformity of the family of functions rψ.

I Theorem 27. If f is in Hom(I, J) and ψ is in F(J), then rψ(f × id) = (f × id)rψf

This is proved by induction on the number of element of I (the result being clear if I is
empty).

A particular case is rJ(f × id) = (f × id)r∂Jf . Note that, in general, ∂Jf is not ∂I .

A direct consequence of the previous theorem is the following.

I Corollary 28. The singular cubical set associated to a topological space has a composition
structure.


	Introduction
	Basic type theory
	Path types
	Syntax and inference rules
	Examples

	Systems, composition, and transport
	The face lattice
	Syntax and inference rules for systems
	Composition operation
	Kan filling operation
	Equality judgments for composition
	Transport

	Derived notions and operations
	Contractible types
	The pres operation
	The equiv operation

	Glueing
	Syntax and inference rules for glueing
	Composition for glueing

	Universe and the univalence axiom
	Composition for the universe
	The univalence axiom

	Semantics
	The category of cubes and cubical sets
	Presheaf semantics
	Interpretation of the syntax

	Extensions: identity types and higher inductive types
	Identity types
	Higher inductive types

	Related and future work
	Details of composition for glueing
	Univalence from glueing
	Singular cubical sets

