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Introduction

One important question about Voevodsky’s simplicial model of type theory is if there is a constructive
version of this model. We give a version of this model where the only non constructive principle which
is used is the decidability of degeneracy.

1 Simplicial sets

The notion of simplicial set makes sense in constructive mathematics as a presheaf from the category ∆
of finite nonempty linear orders. We write [0], [1], . . . the objects of the category ∆ and εi : [n− 1]→ [n]
the injection that skips the value i ∈ [n] and ηj : [n+ 1]→ [n] the surjection covering j ∈ [n] twice. Any
surjection [n]→ [p] can be written uniquely ηjt . . . ηj1 with jt < . . . < j1 < n and n−m = t. Also, any
map α : [p] → [n] can be decomposed uniquely as α = εη with ε : [q] → [n] injective and η : [p] → [q]
surjective.

Let X be a simplicial set. Eilenberg-Zilber Lemma states that any x ∈ X[n] can be written uniquely
on the form x = yη with η : [n]→ [m] surjection and y ∈ X[m] non degenerate, In a constructive setting,
this does not hold since it may not be decidable in general if a given x ∈ X[n] is degenerate or not.

Definition 1.1 We say that a simplicial set X is decidable iff it is decidable whether or not x ∈ X[n+1]
is of the form yηi for some y ∈ X[n] and in this case we can find the (uniquely determined) y explicitely.

It is clear that Eilenberg-Zilber Lemma holds constructively for decidable X. If u : X[n] then there
exists exactly one surjective map η : [n] → [m] and one non degenerate element v : X[m] such that
u = vη : X[n].

2 Model of type theory

A model is given by a collection of contexts. If Γ,∆ are context we have a collection ∆→ Γ of substitutions
from ∆ to Γ. This should form a category: we have a substitution 1 : Γ→ Γ and a composition operator
σδ : Θ→ Γ if δ : Θ→ ∆ and σ : ∆→ Γ. Furthermore we should have σ1 = 1σ = σ and (θσ)δ = θ(σδ).
If Γ is a context we have a collection of types over Γ. We write Γ ` A to express that A is a type over Γ.
If Γ ` A and σ : ∆→ Γ we should have ∆ ` Aσ. Furthermore A1 = A and (Aσ)δ = A(σδ). If Γ ` A we
have also a colection of elements of type A. We write Γ ` a : A to express that a is an element of type
A. If Γ ` a : A and σ : ∆→ Γ we should have ∆ ` aσ : Aσ. Furthermore a1 = a and (aσ)δ = a(σδ).

We have a context extension operation: if Γ ` A then we have a new context Γ.A. Furthermore there
is a projection p ∈ Γ.A→ Γ and a special element Γ.A ` q : Ap. If σ : ∆→ Γ and Γ ` A and ∆ ` a : Aσ
we have an extension operation (σ, a) : ∆ → Γ.A. We should have p(σ, a) = σ and q(σ, a) = a and
(σ, a)δ = (σδ, aδ) and (p, q) = 1.

If Γ ` a : A we write [a] = (1, a) : Γ → Γ.A. Thus if Γ.A ` B and Γ ` a : A we have Γ ` B[a]. If
furtermore Γ.A ` b : B we have Γ ` b[a] : B[a]. Models are usually presented by giving a class of special
maps (fibrations), in our case they are the maps p : Γ.A→ Γ, and the elements are the sections of these
fibrations, in our case the maps [a] : Γ→ Γ.A determined by an element Γ ` a : A.

We suppose furthermore one operation Π A B such that Γ ` Π A B if Γ ` A and Γ.A ` B. We
should have (Π A B)σ = Π (Aσ) (Bσ+) where σ+ = (σp, q). We have an abstraction operation λb such
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that Γ ` λb : Π A B if Γ.A ` b : B. We have an application operation such that Γ ` app(c, a) : B[a] if
Γ ` a : A and Γ ` c : Π A B. These operations should satisfy the equations

app(λb, a) = b[a], c = λ(app c+), (λb)σ = λ(bσ+), app(c, a)σ = app(cσ, aσ)

where we write c+ = (cp, q) and σ+ = (σp, q).
To define a model of type theory with one universe, we assume that we have a special type Γ ` U

such that Uσ = U and Γ ` A whenever Γ ` A : U . Furthermore we assume that Γ ` Π A B : U whenever
Γ ` A : U and Γ.A ` B : U .

All equations we have been using can be grouped together in the equations of C-monoid [2]. There
are the following equations of a monoid with a special constants p, q, app and operations (x, y) and λx

(xy)z = x(yz) x1 = 1x = x

p(x, y) = x q(x, y) = y (x, y)z = (xz, yz) 1 = (p, q)

app(λx, y) = x[y] (λx)y = λ(xy+) 1 = λ app

where we define [y] = (1, y) and x+ = (xp, q). We have x+(y, z) = (xy, z) and x+y+ = (xy)+ and
x+[y] = (x, y).

We can add also descibe a model of type theory with dependent sums. We should have Γ ` Σ A B
if Γ ` A and Γ.A ` B. If σ : ∆ → Γ we should have (Σ A B)σ = Σ (Aσ) (Bσ+). If Γ ` a : A and
Γ ` b : B[a] we should have Γ ` (a, b) : Σ A B. We require the equation (a, b)σ = aσ, bσ. We ask also
for two operations Γ ` pc : A and Γ ` qc : B[pc] if Γ ` c : Σ A B and the equations p(a, b) = a and
q(a, b) = b.

2.1 Simplicial set model

If C is any small category, the presheaf model of type theory over C can be described as follows.
We write X,Y, Z, . . . the objects of C and f, g, h, . . . the maps of C. If f : X → Y and g : Y → Z we

write gf the composition of f and g. We write 1X : X → X or simply 1 : X → X the identity map of
X. Thus we have (fg)h = f(gh) and 1f = f1 = f .

A context is interpreted by a presheaf Γ: for any object X of C we have a set Γ(X) and if f : Y → X
we have a map ρ 7−→ ρf, Γ(X) → Γ(Y ). This should satisfy ρ1 = ρ and (ρf)g = ρ(fg) for f : Y → X
and g : Z → Y .

A type Γ ` A over Γ is given by a set Aρ for each ρ : Γ(X). Furthermore if f : Y → X we have
ρf : Γ(Y ) and we can consider the set Aρf . We should have a map u 7−→ uf, Aρ→ Aρf which should
satisfy u1 = u and (uf)g = u(fg).

An element Γ ` a : A is interpreted by a family aρ : Aρ such that (aρ)f = a(ρf) for any ρ : Γ(X)
and f : Y → X.

This can be seen as a concrete description of what is respectively a fibration and a section of this
fibration.

If Γ ` A we can define a new presheaf Γ.A by taking (ρ, u) : (Γ.A)(X) to mean ρ : Γ(X) and u : Aρ.
We define (ρ, u)f = ρf, uf.

If we have a map σ : ∆→ Γ and Γ ` A we define ∆ ` Aσ by (Aσ)ρ = Aσρ.
We can interpret dependent products Γ ` Π A B and sums Γ ` Σ A B if we have Γ ` A and Γ.A ` B.

For ρ : Γ(X) we define (u, v) : (Σ A B)ρ to mean u : Aρ and v : B(ρ, u). We define (u, v)f = uf, vf for
f : Y → X. On the other hand an element of (Π A B)ρ is a family w indexed by h : Y → X with

wh :
∏
u:Aρh

B(ρh, u)

and such that app(wh, u)g = app(whg, ug) if h : Y → X and g : Z → Y . We define then (wh)f = w(hf).
We write w = w1.

We can interpret Γ ` λt : Π A B whenever Γ.A ` t : B and Γ ` app(v, u) : B[u] if Γ ` u : A and
Γ ` v : Π A B. Here we write [u] the map Γ→ Γ.A defined by [u]ρ = ρ, uρ. If ρ : Γ(X) and f : Y → X
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we define app((λt)ρf, a) = t(ρf, a) : B(ρf, a) for a : Aρf . We take app(v, u)ρ = app(vρ, uρ) : B(ρ, uρ).
We can then check that we have

app(λt, u)ρ = t(ρ, uρ) = t[u]ρ : B(ρ, uρ)

if Γ.A ` t : B and Γ ` u : A and ρ : Γ(X), which shows that the model validates the conversion rule
Γ ` app(λt, u) = t[u] : B[u].

For the simplicial model, we take C to be the cateory ∆, and we get a model of MLTT.

3 Kan simplicial set

We define Γ to be a Kan simplicial set if we have a filling operator which fills any horn Λkn → Γ to
∆n → Γ. We say that Γ ` A is a Kan fibration iff given any α : ∆n → Γ, any partial section in∏
i:Λk

n

A(α i) can be extended to a section in u :
∏
i:∆n

A(α i).

We say that Γ ` A has the transfer property iff we have two operators in
∏
α:ΓI

Aα0 → Aα1 and∏
α:ΓI

Aα1 → Aα0 which sends the constant path to the identity map.

Lemma 3.1 If Γ ` A has the transfer property then given any α : ΓI and i : ∆1 and u : A(α i) we can

find v :
∏
j:∆1

A(α j) such that v i = u : A(α i). It follows that given any α : ∆n → Γ and i : ∆n and

u : A(α i) we can find v :
∏
j:∆n

A(α j) such that v i = u : A(α i).

If Γ ` A is a Kan fibration and Γ,Γ.A are decidable then whenever we have α : σ0 → σ1 in Γ[1]
we can define a simplicial map A0 → A1 where Ai = Aσi. By the Kan property of Γ ` A we first
define a map on points A0[0] → A1[0]. We can then extend this map using the Kan property of Γ ` A
to fα : A0[n] → A1[n] by induction on n and by case if the simplex u : A0[n] is degenerate or not.
Furthermore we have a homotopy in Γ.A between u : A0[n] and fαu. For n = 2 we have a prism, that
we can fill by the Kan property getting the homotopy between u and fαu. There are different ways to
fill this prism, and there does not seem to be a canonical way. What matters is that there is at least one
way to do it.

This remark can be strengthened as follows. This next result is important since it is used both for
showing that dependent product preserves the Kan property and for the interpretation of the elimination
rule for the identity type.

Theorem 3.2 If Γ ` A is a Kan fibration and Γ,Γ.A are decidable then Γ ` A has the transfer property.

Concretely, this corresponds to a program that given a path (v0, . . . , vn) in Γ([n + 1]) such that
viε

i+1 = vi+1ε
i+1 for i < n and given t0 in Av0ε0 build an element t1 in Avnεn+1.

Corollary 3.3 If Γ ` A and Γ.A ` B are Kan fibration and Γ,Γ.A are decidable then Γ ` Π A B is a
Kan fibration.

Proof. We take α : ∆n → Γ and w(i) : (Π A B)α(i) for i : Λkn. We want to extend w to ∆n. We take
i0 : ∆n and u : Aα(i0). We can extend u to ũ(i) : Aα(i) by Theorem 3.2 and Lemma 3.4. We then have
the section w(i)(ũ(i)) : B(α, ũ)(i) for i : Λkn that we can extend to ṽ(i) : B(α, ũ)(i) for i : ∆n. We define
then

app(w̃(i0), u) = ṽ(i0) : B(α, ũ)(i0) = B(α(i0), u)

and this is the required extension of w. Indeed if i0 is in Λkn we have

app(w̃(i0), u) = ṽ(i0) = app(w(i0), u) : B(α(i0), u)

for all u : Aα(i0) so that w̃(i0) = w(i0) : (Π A B)α(i0) in this case and w̃ is an extension of w.
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If ρ ∈ Γ we define (PathA a b)ρ to be the set of elements w in I → Aρ such that w(0) = aρ and
w(1) = bρ.

If Γ ` a : A we can interpret Γ ` Ref a : PathA a a by taking (Ref a)ρ to be the constant path: it is
the map (Ref a)ρ(i) = aρ for i : I.

The extensionality property of the path space holds for this model.

Lemma 3.4 The path space satisfies the extensionality axiom: if we have Γ.A ` b : B and Γ.A ` c : B
and Γ.A ` p : PathB b c then we can find a section of Γ ` PathΠ A B (λb) (λc).

Proof. Given ρ in Γ we have to define an object ext(p)ρ of type (PathΠ A B (λb) (λc))ρ. This should be
an element in I→ (Π A B)ρ. We take i : I and we should define ext(p)ρ(i) in (Π A B)ρ. We define

ext(p)ρ = λi.λu.p(ρ, u)(i)

for i : I and u : Aρ. We can then check that

app(ext(p)ρ(0), u) = p(ρ, u)(0) = b(ρ, u) : B(ρ, u)

and
app(ext(p)ρ(1), u) = p(ρ, u)(1) = c(ρ, u) : B(ρ, u)

Roughly speaking, what is going on is an isomorphism between function types of the form I→ (C → D)
and C → (I→ D).

We need the following notation: if Γ ` a : A we write Γ.A ` S(A, a) the “singleton type” associated
to the element Γ ` a : A. If ρ : Γ and u : Aρ then S(A, a)(ρ, u) is the set of paths ω : I→ Aρ such that
ω(0) = aρ and ω(1) = u. We have S(A, a)[b] = PathA a b if Γ ` b : A.

Lemma 3.5 Given Γ ` a : A we define Γ ` T by T = Σ A S(A, a). We have Γ ` (a,Ref a) : T . If Γ ` A
has the 2-transfer property then all elements in T are connected to (a,Ref a), i.e. there is a section of
Γ.T ` S(T, (a,Ref a)).

Proof. Given ρ : Γ and (u, ω) : Tρ we need to define an element of PathTρ (aρ, (Ref a)ρ) (u, ω). For this,
we use the square

aρ - aρ

aρ
?

ω
- u

ω

?

which is of type PathTρ (aρ, (Ref a)ρ) (u, ω).

Lemma 3.6 If Γ ` A is decidable and Kan and Γ ` a0 : A, Γ ` a1 : A then Γ ` PathA a0 a1 is decidable
and Kan.

Using Lemmas 3.5 and 3.6 and Theorem 3.2, we get a model of WMLTT with identity types. Lemma
3.4 shows that this model satisfies the extensionality axiom.

4 Propositional Reflection

Given a decidable Kan simplicial set A we define A∗ which is a proposition. An element of A∗[n] is of the
form Sη(u) where η : [n]→ [m] is a surjection and u : A[0]m+1. Since A is decidable we have a canonical
map A→ A∗. Also if A is a proposition we have a map A∗ → A. This is because it is possible to build for
any sequence a0, . . . , an in A[0]n+1 an element u in A[n] such that uεi = ai where εi : [0]→ [n], εi0 = i.
This is built by induction on n using the fact that A is a proposition and a Kan simplicial set.
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5 Univalence

We define the universe by taking U [n] to be the set of all small decidable Kan fibration ∆n ` A.

5.1 Any weak equivalence defines a path between types

Given a map σ : A→ B between two decidable simplicial sets, we build a small decidable fibration I ` E
such that E0 = A and E1 = B. The set I[n] has n + 2 elements 0 < ρ1 < . . . < ρn < 1. We define
E0 = A[n], E1 = B[n] and Eρk is the set of pairs a, b with b : B[n] and a : A[n− k] and σa = bε where
ε : [n− k]→ [n] is the inclusion map.

We use the following characterisation of weak equivalence: given any commutative square

∂∆n
a - A

∆n

? b - B

σ

?

we can find a map u : ∆n → A such that the upper triangle commutes and the lower triangle commutes
up to homotopy relative to ∂∆n, i.e. σu ∼ b using the notation in [4].

Lemma 5.1 If A is a Kan simplicial set and a : A[n] and we have aεi ∼ u then we can find a′ : A[n]
such that a′εi = u and a′εj = aεj for i 6= j.

We show that I ` E is a Kan fibration if σ is a weak equivalence. Given an element ρ : ∆n → I and
a partial section u i : E (ρ i) for i : Λkn, we should build an element of Eρ. Since B is a Kan simplicial
set, only the case ρ = ρ1 is problematic. But this follows directly from the previous characterisation of
weak equivalence. For instance in the case n = 2, we give two lines σa0 → b, σa1 → b that we have to
complete to a triangle. Since B has the Kan property, we can complete it to a triangle in B. We then
have a line µ : σa0 → σa1 in B. Since σ is a weak equivalence we can find λ : a0 → a1 in A such that
σλ ∼ µ, and we can replace µ by σλ using Lemma 5.1.

5.2 The universe is Kan

We describe the case n = 2 and define only the composition. Given for instance two fibrations ∆1 ` E
and ∆1 ` F such that E0 = A, E1 = B = F0, F1 = C we have to build a fibration ∆1 ` G such that
G0 = A, G1 = C. Given ∆1 ` E we associate a transfer function α : A→ B. There also, there does not
seem to be a canonical definition of G. We have to define a set Gρ for each ρ : ∆1[n]. The set ∆1[n] is a
linear poset with n+ 2 elements 0 < ρ1 < . . . < ρn < 1. We define Gρk to be the set of pairs (a, b) with
a in A[n− k] and b in Fρk such that bε = αa where ε is the inclusion map [n− k]→ [n].
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