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Introduction

We try to present some of the results of the Chapter 5 and 6 of Northcott [1], in particular the
Theorem of Auslander-Buchsbaum-Hochster (Theorem 2, Chapter 6), without using localisation
at an arbitrary prime or minimal prime. The main (elementary) tool is the long exact sequence
associated to a short exact sequence of complexes, in the particular case of the Koszul complex.

1 Koszul complex

1.1 Exterior algebra

Let R be an arbitrary commutative ring and M a R-module. The exterior algebra \(M) is the
free algebra with a map i : M — A(M) satisfying i(a)i(a) = 0 for all @ in M. This implies
i(a)i(b) +i(b)i(a) = 0 for all a,b in M.

In the case M = R™, any element a of M is determined by a sequence a1, ..., a, of elements
in R. We can give a concrete realisation of A(M): we consider the free R-module V' on the
formal elements ey, where I is a subset of N,, = {1,...,n}. We write also e; = ¢;,. ;, whenever

I is the set of elements 1 <11 < ... < i < n. We denote by |I| the cardinality of I. We define

erey=ecrus [ (6:9)

(,5)EIxJ

with (i,7) = 1if i < j, and (i,7) = —1if 7 < ¢ and (i,5) = 0 if ¢ = j. This satisfies the
associativity law (erej)ex = er(ejex). We also have eje; = 0 and eje; + eje; = 0. This
multiplication extends canonically to V, with a map i : R* — V defined by i(a) = Yaje;. We
can verify that V' together with the map i : R — V is a realisation of A\(M) for M = R™. It is
natural to identify a and i(a) for a in R™.

In this case, \(M) is the direct sum of n 4 1 free modules A\"(M) for k = 0,...,n where
AF(M) is generated by e; for |I| = k. We write A'(M) =0 for n < I. If a is in M and  is in
AF(M) then au is in AFTH(M).

More generally if F is a module over R we define Cj(F) = @y Fey. If u is in AF(E) and
v = Yuvrey is in C)(F) we define uv = Yvruer in Cypyy(E).

1.2 Interior product

If a and b are in R™ we define a - b = Ya;b;. In particular a - ¢; = a;. We define more generally
by induction on k
a- €.y = Gig€iy..iy — Cig(Q - €iy..4))



We then define a - v in A"(R™) for v in A*™(R™) by linearity and we have

a-(bu) = (a-bu—bla-u)

1.3 Complex
To any vector a in R™ we associate the complex Ck(a; E) = Ci(FE) and the derivation
d:Ci(E) — Cr1(E) v — av

We have d?u = a(au) = aau = 0. We write H’(a; E) the corresponding homology group. Any
map E — F defines canonically a complex map Ck(a; E) — Ci(a; F) and if E — F — G is
exact then so is Ck(a; E) — Ci(a; F) — Ci(a; G).

2 Grade

Let R be an arbitrary commutative ring, and a an element of R™ of coordinate ar,...,a,". If

E is a module over R we define Gr(a; E) > k by H'(a; E) = 0 for i < k. In particular:
1. Gr(a; E) > 1 means that ay,...,a, is regular for E: if a;z = 0 for all ¢ then 2 =0

2. Gr(a; E) > 2iff Gr(a; E) > 1 and whenever we have a family x; such that a;z; —a;x; =0
then there exists x such that xz; = a;x

3. Gr(a; E) > 3iff Gr(a; E) > 2 and whenever we have a family x;; such that a;xj; —ajz; +
arx;; = 0 then there exists z; such that z;; = a;z; — a;jx;

4. ...

Notice that we have Gr(a;0) > k for all .
Lemma 2.1 The multiplication by any element of {(a) kills each H'(a; F).
Proof. An element of (a) is of the form b - a for some b in R™. We have
b-(au) +a(b-u) = (b-a)u
which shows that (b- a)u is in the image of v — av if au = 0. O

We write Gr(a) > k for Gr(a; R) > k.

3 Short exact sequence

Lemma 3.1 If0 - E — F — G — 0 is a short exact sequence and Gr(a; E) > k + 1 and
Gr(a; F) > k then Gr(a; G) > k.

Proof. We have a short exact sequence of complexes 0 — C(a; F) — C(a; F) — C(a;G) — 0 to
which we associate the long exact sequence

0— H%a;E) —» H%a; F) — H(a;G) — H'(¢; E) — HY(a; F) —» H'(a:G) — ...

and so we have H'(a;G) = 0 for all i < k if H(a; E) = 0 for all i < k and H(a; F) = 0 for all
i < k. O

!The definition of Gr(a; E) > k that follows will depend only on the ideal {a) = {a1,...,an).




This corresponds to Lemma 12, Chapter 5. We have the following reformulation of Lemma
13, Chapter 5, that has a similar proof.

Lemma 3.2 If0 - F — F — G — 0 is a short exact sequence and Gr(a; F) > k + 1 and
Gr(a;G) > k then Gr(a; E) > k+ 1.

Proof. We have a short exact sequence of complexes 0 — C(a; E) — C(a; F) — C(a; G) — 0 to
which we associate the long exact sequence

0— H%a;E) — H(a; F) — H%(a;G) —» H (a; E) —» H'(a; F) — H'(a;G) — ...
and so we have H'(a; E) = 0 for all i < k if H(a; F) =0 for all i < k and H(a;G) = 0 for all
i < k. O
We get also a direct proof of Theorem 1, Chapter 6.

Theorem 3.3 If0 — R" —2 R™ — E — 0 is a short exact sequence and n > 0, m > 0 and

all coefficients of A are in the ideal corresponding to (a) then Gr(a; E) > k iff Gr(a) > k + 1.

Proof. Let L; be H'(a; R). We associate to the given short exact sequence the long exact
sequence
0— L} - L — Ha;E) — LY — LT — HY(a; E) — LY — LY — H*(a; E) — ...

Each application Lj* — L is represented by the matrix A, and hence it is 0 by Lemma 2.1.
Since A represents an injective map and n > 0, m > 0 we have also Ly = 0. It follows that
Li:Oforalligk:ifin(a;E)zoforalli<k. 0

4 Applications

Most applications are applications of Lemma 3.1. We start by Theorem 22, Chapter 5, which
is due to Peskine and Szpiro.

Theorem 4.1 If we have a complex C

dn, do dq1

0—C, Ch Co
of R-modules such that Gr(a; Cy) > k and (a)Hi(C) =0 for k =1,...,n then C is exact.

Proof. We write By = Im d11 and Cy, = Ker dy, so that Hy = Zy,/ By, where we write Hy, for
Hi(C).

Since H,, = Z, is a submodule of C,, and Gr(a;C,) > 1 and (a)H,, = 0 we have H,, = 0
and hence 0 — C,, — Cp_1 is exact. Furthermore, B,_1 = Im d,, is isomorphic to H,, and so
Gr(a; Bp—1) = n.

Assume n > 2. Since Z,,_1 is a submodule of C),_;1 we have Gr(a; Z,—1) > n—1 > 1. Lemma
3.1 and the short exact sequence

0—Bp-1—2Zyp—1—Hy1—0

shows then that Gr(a; H,—1) > 1 and hence H,,_1 = 0 since (a)H,—; = 0. Using Lemma 3.1
again on the short exact sequence

0— B, 1—Ch1— B 2—0

we have Gr(a; Bp,—2) > n — 1. If n > 3 we then deduce similarly H,_o = 0 and Gr(a; By,—3) >
n—2, ... |



We decompose Theorem 2, Chapter 6 (Auslander-Buchsbaum-Hochster’s Theorem) in two
parts.

Theorem 4.2 If we have a finite free resolution of a module
0—F,—...oF—>FE—Q0
with F; = R™ and Gr(a) > k 4+ m then Gr(a; E) > k.
Proof. We have the exact sequences
O—F—-Fp—-F—-0 0—-FE—-FHN—FEFE—-0... 0—-F,—F,_.1—>FE;,_.1—0

and so, using Lemma 3.1, we get successively Gr(a; E;) > k+ i for i =m —1,m — 2,... until
we have Gr(a; E) > k. O

The following Corollary corresponds to Theorem 4, Chapter 6, which is proved in Northcott
via localisation at a minimal prime ideal.

Corollary 4.3 If we have a finite free resolution of a module E
0O—F,—...oF—>FE—Q0

with F; = R™ and Gr(a) > m+1 and (a)E = 0 then E = 0.

Proof. We have Gr(a; E) > 1 by Theorem 4.2 and so (a)F = 0 implies E = 0. O

Another Corollary corresponds to the Exercise 7, Chapter 7.

Corollary 4.4 If we have a n x (n+ 1) matrix A such that Gr(A,(A)) > 3 then 1 = A, (A).

Proof. We use the fact that if Gr(A,(A)) > 2 then we have an exact sequence
0—R" 25 R SR R/A,(A)— 0
(this is proved in HilbertBurchPart2). The claim follows then from Corollary 4.3. O

Yet another Corollary corresponds to one direction of Theorem 15, Chapter 6.

Corollary 4.5 We assume given a complex
(%) 0—Fn,—...— F

with F; = R™. We define r,, = n,, and r,_1 = np_1 — 1 for k = m, ..., 1 assuming that we
have ri, < nj_1 at each step. Let the map F; — F;_1 be represented by the matrix A; and
I =A(A). IfGr(l;) >l for l =m,...,1 then the complex (x) is exact.

Proof. The result is clear if m = 1 since Gr(A,,(A1)) > 1 implies that the map represented
by A;p is injective. The proof is then by induction on m. By induction, we get a finite free
resolution of Fy/Im As

0—Fyp— ...t = F/lmAy — 0

It follows then from Theorem 4.2 that we have Gr(l,,; F1/Im As) > 1. This implies that, for
showing that F» — F; — Fj is exact, it is enough to show it after localisation at each element
of I,: if z isin F} and Ay x = 0, the = is 0 in F}/Im A if it is 0 after localisation at each



element of I,,, since Gr(l,; F1/Ilm Ag) > 1. But if we localize at an element of I,,, we can find
a finite free module F,, 1 such that F,, 1 = F,;,_1 @& Im A,,, and the complex

Em_lﬁ...—>F1—>F0
is exact by induction. O

When the complex (x) is exact, one can show that we have also A,, 11(Ag) = 0. Thus the
matrix Ay, is stable of rank r: the ideal A,, (A) is regular and A, 11(Ay) is 0.
We finally come to the other direction for the Auslander-Buchsbaum-Hochster’s Theorem.

Theorem 4.6 If we have a finite free resolution of a module E
0—F,—...>F—FE—Q0

with F; = R™ and n; > 0 and the matrix A,, representing the map F,, — F,,_1 has its
coefficients in {(a) and Gr(a; E) > k then Gr(a) > k + m.

Proof. We have the exact sequences
O—-F—>FH—>FE—-0 0—-FE—>F—FF —0... 0F,—>F, 1—FE, 1—0

Since A,, represents an injective map and has its coefficients in (a) we have Gr(a) > 1 and
hence Gr(a; F;) > 1 for all i. It follows that we have Gr(a; E;) > 1 fori=1,...,m — 1. Using
then Theorem 3.3, we deduce Gr(a) > 2. We can then use Lemma 3.2 to deduce Gr(a; E;) > 2

for i = 2,...,m — 1. We can then use Theorem 3.3 to deduce Gr(a) > 3, ... until we get
Gr(a) = k+ m. O
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