# Auslander-Buchsbaum-Hochster 

May 18, 2010

## Introduction

We try to present some of the results of the Chapter 5 and 6 of Northcott [1], in particular the Theorem of Auslander-Buchsbaum-Hochster (Theorem 2, Chapter 6), without using localisation at an arbitrary prime or minimal prime. The main (elementary) tool is the long exact sequence associated to a short exact sequence of complexes, in the particular case of the Koszul complex.

## 1 Koszul complex

### 1.1 Exterior algebra

Let $R$ be an arbitrary commutative ring and $M$ a $R$-module. The exterior algebra $\bigwedge(M)$ is the free algebra with a map $i: M \rightarrow \Lambda(M)$ satisfying $i(a) i(a)=0$ for all $a$ in $M$. This implies $i(a) i(b)+i(b) i(a)=0$ for all $a, b$ in $M$.

In the case $M=R^{n}$, any element $a$ of $M$ is determined by a sequence $a_{1}, \ldots, a_{n}$ of elements in $R$. We can give a concrete realisation of $\Lambda(M)$ : we consider the free $R$-module $V$ on the formal elements $e_{I}$, where $I$ is a subset of $N_{n}=\{1, \ldots, n\}$. We write also $e_{I}=e_{i_{1} \ldots i_{k}}$ whenever $I$ is the set of elements $1 \leqslant i_{1}<\ldots<i_{k} \leqslant n$. We denote by $|I|$ the cardinality of $I$. We define

$$
e_{I} e_{J}=e_{I \cup J} \prod_{(i, j) \in I \times J}(i, j)
$$

with $(i, j)=1$ if $i<j$, and $(i, j)=-1$ if $j<i$ and $(i, j)=0$ if $i=j$. This satisfies the associativity law $\left(e_{I} e_{J}\right) e_{K}=e_{I}\left(e_{J} e_{K}\right)$. We also have $e_{i} e_{i}=0$ and $e_{i} e_{j}+e_{j} e_{i}=0$. This multiplication extends canonically to $V$, with a map $i: R^{n} \rightarrow V$ defined by $i(a)=\Sigma a_{j} e_{j}$. We can verify that $V$ together with the map $i: R \rightarrow V$ is a realisation of $\bigwedge(M)$ for $M=R^{n}$. It is natural to identify $a$ and $i(a)$ for $a$ in $R^{n}$.

In this case, $\Lambda(M)$ is the direct sum of $n+1$ free modules $\bigwedge^{k}(M)$ for $k=0, \ldots, n$ where $\bigwedge^{k}(M)$ is generated by $e_{I}$ for $|I|=k$. We write $\bigwedge^{l}(M)=0$ for $n<l$. If $a$ is in $M$ and $u$ is in $\bigwedge^{k}(M)$ then $a u$ is in $\bigwedge^{k+1}(M)$.

More generally if $E$ is a module over $R$ we define $C_{l}(E)=\oplus_{|I|=l} E e_{I}$. If $u$ is in $\bigwedge^{k}(E)$ and $v=\Sigma v_{I} e_{I}$ is in $C_{l}(E)$ we define $u v=\Sigma v_{I} u e_{I}$ in $C_{k+l}(E)$.

### 1.2 Interior product

If $a$ and $b$ are in $R^{n}$ we define $a \cdot b=\Sigma a_{i} b_{i}$. In particular $a \cdot e_{i}=a_{i}$. We define more generally by induction on $k$

$$
a \cdot e_{i_{0} \ldots i_{k}}=a_{i_{0}} e_{i_{1} \ldots i_{k}}-e_{i_{0}}\left(a \cdot e_{i_{1} \ldots i_{k}}\right)
$$

We then define $a \cdot v$ in $\bigwedge^{k}\left(R^{n}\right)$ for $v$ in $\bigwedge^{k+1}\left(R^{n}\right)$ by linearity and we have

$$
a \cdot(b u)=(a \cdot b) u-b(a \cdot u)
$$

### 1.3 Complex

To any vector $a$ in $R^{n}$ we associate the complex $C_{k}(a ; E)=C_{k}(E)$ and the derivation

$$
d: C_{k}(E) \rightarrow C_{k+1}(E) \quad v \longmapsto a v
$$

We have $d^{2} u=a(a u)=a a u=0$. We write $H^{i}(a ; E)$ the corresponding homology group. Any map $E \rightarrow F$ defines canonically a complex map $C_{k}(a ; E) \rightarrow C_{k}(a ; F)$ and if $E \rightarrow F \rightarrow G$ is exact then so is $C_{k}(a ; E) \rightarrow C_{k}(a ; F) \rightarrow C_{k}(a ; G)$.

## 2 Grade

Let $R$ be an arbitrary commutative ring, and $a$ an element of $R^{n}$ of coordinate $a_{1}, \ldots, a_{n}{ }^{1}$. If $E$ is a module over $R$ we define $\operatorname{Gr}(a ; E) \geqslant k$ by $H^{i}(a ; E)=0$ for $i<k$. In particular:

1. $\operatorname{Gr}(a ; E) \geqslant 1$ means that $a_{1}, \ldots, a_{n}$ is regular for $E$ : if $a_{i} x=0$ for all $i$ then $x=0$
2. $\operatorname{Gr}(a ; E) \geqslant 2$ iff $\operatorname{Gr}(a ; E) \geqslant 1$ and whenever we have a family $x_{i}$ such that $a_{i} x_{j}-a_{i} x_{j}=0$ then there exists $x$ such that $x_{i}=a_{i} x$
3. $\operatorname{Gr}(a ; E) \geqslant 3$ iff $\operatorname{Gr}(a ; E) \geqslant 2$ and whenever we have a family $x_{i j}$ such that $a_{i} x_{j k}-a_{j} x_{i k}+$ $a_{k} x_{i j}=0$ then there exists $x_{i}$ such that $x_{i j}=a_{i} x_{j}-a_{j} x_{i}$
4. ...

Notice that we have $\operatorname{Gr}(a ; 0) \geqslant k$ for all $k$.
Lemma 2.1 The multiplication by any element of $\langle a\rangle$ kills each $H^{l}(a ; E)$.
Proof. An element of $\langle a\rangle$ is of the form $b \cdot a$ for some $b$ in $R^{n}$. We have

$$
b \cdot(a u)+a(b \cdot u)=(b \cdot a) u
$$

which shows that $(b \cdot a) u$ is in the image of $v \longmapsto a v$ if $a u=0$.
We write $\operatorname{Gr}(a) \geqslant k$ for $\operatorname{Gr}(a ; R) \geqslant k$.

## 3 Short exact sequence

Lemma 3.1 If $0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0$ is a short exact sequence and $\operatorname{Gr}(a ; E) \geqslant k+1$ and $G r(a ; F) \geqslant k$ then $\operatorname{Gr}(a ; G) \geqslant k$.

Proof. We have a short exact sequence of complexes $0 \rightarrow C(a ; E) \rightarrow C(a ; F) \rightarrow C(a ; G) \rightarrow 0$ to which we associate the long exact sequence

$$
0 \rightarrow H^{0}(a ; E) \rightarrow H^{0}(a ; F) \rightarrow H^{0}(a ; G) \rightarrow H^{1}(a ; E) \rightarrow H^{1}(a ; F) \rightarrow H^{1}(a ; G) \rightarrow \ldots
$$

and so we have $H^{i}(a ; G)=0$ for all $i<k$ if $H^{i}(a ; E)=0$ for all $i \leqslant k$ and $H^{i}(a ; F)=0$ for all $i<k$.

[^0]This corresponds to Lemma 12, Chapter 5. We have the following reformulation of Lemma 13, Chapter 5, that has a similar proof.

Lemma 3.2 If $0 \rightarrow E \rightarrow F \rightarrow G \rightarrow 0$ is a short exact sequence and $\operatorname{Gr}(a ; F) \geqslant k+1$ and $\operatorname{Gr}(a ; G) \geqslant k$ then $\operatorname{Gr}(a ; E) \geqslant k+1$.

Proof. We have a short exact sequence of complexes $0 \rightarrow C(a ; E) \rightarrow C(a ; F) \rightarrow C(a ; G) \rightarrow 0$ to which we associate the long exact sequence

$$
0 \rightarrow H^{0}(a ; E) \rightarrow H^{0}(a ; F) \rightarrow H^{0}(a ; G) \rightarrow H^{1}(a ; E) \rightarrow H^{1}(a ; F) \rightarrow H^{1}(a ; G) \rightarrow \ldots
$$

and so we have $H^{i}(a ; E)=0$ for all $i \leqslant k$ if $H^{i}(a ; F)=0$ for all $i \leqslant k$ and $H^{i}(a ; G)=0$ for all $i<k$.

We get also a direct proof of Theorem 1, Chapter 6.
Theorem 3.3 If $0 \rightarrow R^{n} \xrightarrow{A} R^{m} \rightarrow E \rightarrow 0$ is a short exact sequence and $n>0, m>0$ and all coefficients of $A$ are in the ideal corresponding to $\langle a\rangle$ then $\operatorname{Gr}(a ; E) \geqslant k$ iff $\operatorname{Gr}(a) \geqslant k+1$.
Proof. Let $L_{i}$ be $H^{i}(a ; R)$. We associate to the given short exact sequence the long exact sequence

$$
0 \rightarrow L_{0}^{n} \rightarrow L_{0}^{m} \rightarrow H^{0}(a ; E) \rightarrow L_{1}^{n} \rightarrow L_{1}^{m} \rightarrow H^{1}(a ; E) \rightarrow L_{2}^{n} \rightarrow L_{2}^{m} \rightarrow H^{2}(a ; E) \rightarrow \ldots
$$

Each application $L_{i}^{n} \rightarrow L_{i}^{m}$ is represented by the matrix $A$, and hence it is 0 by Lemma 2.1. Since $A$ represents an injective map and $n>0, m>0$ we have also $L_{0}=0$. It follows that $L_{i}=0$ for all $i \leqslant k$ iff $H^{i}(a ; E)=0$ for all $i<k$.

## 4 Applications

Most applications are applications of Lemma 3.1. We start by Theorem 22, Chapter 5, which is due to Peskine and Szpiro.

Theorem 4.1 If we have a complex $C$

$$
0 \rightarrow C_{n} \xrightarrow{d_{n}} \ldots \xrightarrow{d_{2}} C_{1} \xrightarrow{d_{1}} C_{0}
$$

of $R$-modules such that $\operatorname{Gr}\left(a ; C_{k}\right) \geqslant k$ and $\langle a\rangle H_{k}(C)=0$ for $k=1, \ldots, n$ then $C$ is exact.
Proof. We write $B_{k}=\operatorname{Im} d_{k+1}$ and $C_{k}=\operatorname{Ker} d_{k}$, so that $H_{k}=Z_{k} / B_{k}$, where we write $H_{k}$ for $H_{k}(C)$.

Since $H_{n}=Z_{n}$ is a submodule of $C_{n}$ and $\operatorname{Gr}\left(a ; C_{n}\right) \geqslant 1$ and $\langle a\rangle H_{n}=0$ we have $H_{n}=0$ and hence $0 \rightarrow C_{n} \rightarrow C_{n-1}$ is exact. Furthermore, $B_{n-1}=\operatorname{Im} d_{n}$ is isomorphic to $H_{n}$ and so $\operatorname{Gr}\left(a ; B_{n-1}\right) \geqslant n$.

Assume $n \geqslant 2$. Since $Z_{n-1}$ is a submodule of $C_{n-1}$ we have $\operatorname{Gr}\left(a ; Z_{n-1}\right) \geqslant n-1 \geqslant 1$. Lemma 3.1 and the short exact sequence

$$
0 \rightarrow B_{n-1} \rightarrow Z_{n-1} \rightarrow H_{n-1} \rightarrow 0
$$

shows then that $\operatorname{Gr}\left(a ; H_{n-1}\right) \geqslant 1$ and hence $H_{n-1}=0$ since $\langle a\rangle H_{n-1}=0$. Using Lemma 3.1 again on the short exact sequence

$$
0 \rightarrow B_{n-1} \rightarrow C_{n-1} \rightarrow B_{n-2} \rightarrow 0
$$

we have $\operatorname{Gr}\left(a ; B_{n-2}\right) \geqslant n-1$. If $n \geqslant 3$ we then deduce similarly $H_{n-2}=0$ and $\operatorname{Gr}\left(a ; B_{n-3}\right) \geqslant$ $n-2, \ldots$

We decompose Theorem 2, Chapter 6 (Auslander-Buchsbaum-Hochster's Theorem) in two parts.

Theorem 4.2 If we have a finite free resolution of a module $E$

$$
0 \rightarrow F_{m} \rightarrow \ldots \rightarrow F_{0} \rightarrow E \rightarrow 0
$$

with $F_{i}=R^{n_{i}}$ and $\operatorname{Gr}(a) \geqslant k+m$ then $\operatorname{Gr}(a ; E) \geqslant k$.
Proof. We have the exact sequences

$$
0 \rightarrow E_{1} \rightarrow F_{0} \rightarrow E \rightarrow 0 \quad 0 \rightarrow E_{2} \rightarrow F_{1} \rightarrow E_{1} \rightarrow 0 \ldots 0 \rightarrow F_{m} \rightarrow F_{m-1} \rightarrow E_{m-1} \rightarrow 0
$$

and so, using Lemma 3.1, we get successively $\operatorname{Gr}\left(a ; E_{i}\right) \geqslant k+i$ for $i=m-1, m-2, \ldots$ until we have $\operatorname{Gr}(a ; E) \geqslant k$.

The following Corollary corresponds to Theorem 4, Chapter 6, which is proved in Northcott via localisation at a minimal prime ideal.

Corollary 4.3 If we have a finite free resolution of a module $E$

$$
0 \rightarrow F_{m} \rightarrow \ldots \rightarrow F_{0} \rightarrow E \rightarrow 0
$$

with $F_{i}=R^{n_{i}}$ and $\operatorname{Gr}(a) \geqslant m+1$ and $\langle a\rangle E=0$ then $E=0$.
Proof. We have $\operatorname{Gr}(a ; E) \geqslant 1$ by Theorem 4.2 and so $\langle a\rangle E=0$ implies $E=0$.
Another Corollary corresponds to the Exercise 7, Chapter 7.
Corollary 4.4 If we have a $n \times(n+1)$ matrix $A$ such that $\operatorname{Gr}\left(\Delta_{n}(A)\right) \geqslant 3$ then $1=\Delta_{n}(A)$.
Proof. We use the fact that if $\operatorname{Gr}\left(\Delta_{n}(A)\right) \geqslant 2$ then we have an exact sequence

$$
0 \rightarrow R^{n} \xrightarrow{A} R^{n+1} \rightarrow R \rightarrow R / \Delta_{n}(A) \rightarrow 0
$$

(this is proved in HilbertBurchPart2). The claim follows then from Corollary 4.3.
Yet another Corollary corresponds to one direction of Theorem 15, Chapter 6.
Corollary 4.5 We assume given a complex

$$
\begin{equation*}
0 \rightarrow F_{m} \rightarrow \ldots \rightarrow F_{0} \tag{*}
\end{equation*}
$$

with $F_{i}=R^{n_{i}}$. We define $r_{m}=n_{m}$ and $r_{k-1}=n_{k-1}-r_{k}$ for $k=m, \ldots, 1$ assuming that we have $r_{k} \leqslant n_{k-1}$ at each step. Let the map $F_{l} \rightarrow F_{l-1}$ be represented by the matrix $A_{l}$ and $I_{l}=\Delta_{r_{l}}\left(A_{l}\right)$. If $G r\left(I_{l}\right) \geqslant l$ for $l=m, \ldots, 1$ then the complex (*) is exact.

Proof. The result is clear if $m=1$ since $\operatorname{Gr}\left(\Delta_{n_{1}}\left(A_{1}\right)\right) \geqslant 1$ implies that the map represented by $A_{1}$ is injective. The proof is then by induction on $m$. By induction, we get a finite free resolution of $F_{1} / \mathrm{Im} A_{2}$

$$
0 \rightarrow F_{m} \rightarrow \ldots F_{1} \rightarrow F_{1} / \operatorname{lm} A_{2} \rightarrow 0
$$

It follows then from Theorem 4.2 that we have $\operatorname{Gr}\left(I_{m} ; F_{1} / \mathrm{Im} A_{2}\right) \geqslant 1$. This implies that, for showing that $F_{2} \rightarrow F_{1} \rightarrow F_{0}$ is exact, it is enough to show it after localisation at each element of $I_{m}$ : if $x$ is in $F_{1}$ and $A_{1} x=0$, the $x$ is 0 in $F_{1} / \mathrm{lm} A_{2}$ if it is 0 after localisation at each
element of $I_{m}$ since $\operatorname{Gr}\left(I_{m} ; F_{1} / \operatorname{Im} A_{2}\right) \geqslant 1$. But if we localize at an element of $I_{m}$ we can find a finite free module $E_{m-1}$ such that $F_{m-1}=E_{m-1} \oplus \operatorname{Im} A_{m}$, and the complex

$$
E_{m-1} \rightarrow \ldots \rightarrow F_{1} \rightarrow F_{0}
$$

is exact by induction.
When the complex $(*)$ is exact, one can show that we have also $\Delta_{r_{k}+1}\left(A_{k}\right)=0$. Thus the matrix $A_{k}$ is stable of rank $r_{k}$ : the ideal $\Delta_{r_{k}}\left(A_{k}\right)$ is regular and $\Delta_{r_{k}+1}\left(A_{k}\right)$ is 0 .

We finally come to the other direction for the Auslander-Buchsbaum-Hochster's Theorem.
Theorem 4.6 If we have a finite free resolution of a module $E$

$$
0 \rightarrow F_{m} \rightarrow \ldots \rightarrow F_{0} \rightarrow E \rightarrow 0
$$

with $F_{i}=R^{n_{i}}$ and $n_{i}>0$ and the matrix $A_{m}$ representing the map $F_{m} \rightarrow F_{m-1}$ has its coefficients in $\langle a\rangle$ and $\operatorname{Gr}(a ; E) \geqslant k$ then $\operatorname{Gr}(a) \geqslant k+m$.

Proof. We have the exact sequences

$$
0 \rightarrow E_{1} \rightarrow F_{0} \rightarrow E \rightarrow 0 \quad 0 \rightarrow E_{2} \rightarrow F_{1} \rightarrow E_{1} \rightarrow 0 \ldots 0 \rightarrow F_{m} \rightarrow F_{m-1} \rightarrow E_{m-1} \rightarrow 0
$$

Since $A_{m}$ represents an injective map and has its coefficients in $\langle a\rangle$ we have $G r(a) \geqslant 1$ and hence $\operatorname{Gr}\left(a ; F_{i}\right) \geqslant 1$ for all $i$. It follows that we have $\operatorname{Gr}\left(a ; E_{i}\right) \geqslant 1$ for $i=1, \ldots, m-1$. Using then Theorem 3.3, we deduce $G r(a) \geqslant 2$. We can then use Lemma 3.2 to deduce $G r\left(a ; E_{i}\right) \geqslant 2$ for $i=2, \ldots, m-1$. We can then use Theorem 3.3 to deduce $\operatorname{Gr}(a) \geqslant 3, \ldots$ until we get $G r(a) \geqslant k+m$.

## References

[1] D.G. Northcott. Finite Free Resolutions. Cambridge Tracts in Mathematics, 1976.


[^0]:    ${ }^{1}$ The definition of $G r(a ; E) \geqslant k$ that follows will depend only on the ideal $\langle a\rangle=\left\langle a_{1}, \ldots, a_{n}\right\rangle$.

