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Introduction

We try to present some of the results of the Chapter 5 and 6 of Northcott [1], in particular the
Theorem of Auslander-Buchsbaum-Hochster (Theorem 2, Chapter 6), without using localisation
at an arbitrary prime or minimal prime. The main (elementary) tool is the long exact sequence
associated to a short exact sequence of complexes, in the particular case of the Koszul complex.

1 Koszul complex

1.1 Exterior algebra

Let R be an arbitrary commutative ring and M a R-module. The exterior algebra
∧

(M) is the
free algebra with a map i : M →

∧
(M) satisfying i(a)i(a) = 0 for all a in M . This implies

i(a)i(b) + i(b)i(a) = 0 for all a, b in M .
In the case M = Rn, any element a of M is determined by a sequence a1, . . . , an of elements

in R. We can give a concrete realisation of
∧

(M): we consider the free R-module V on the
formal elements eI , where I is a subset of Nn = {1, . . . , n}. We write also eI = ei1...ik whenever
I is the set of elements 1 6 i1 < . . . < ik 6 n. We denote by |I| the cardinality of I. We define

eIeJ = eI∪J

∏
(i,j)∈I×J

(i, j)

with (i, j) = 1 if i < j, and (i, j) = −1 if j < i and (i, j) = 0 if i = j. This satisfies the
associativity law (eIeJ)eK = eI(eJeK). We also have eiei = 0 and eiej + ejei = 0. This
multiplication extends canonically to V , with a map i : Rn → V defined by i(a) = Σajej . We
can verify that V together with the map i : R→ V is a realisation of

∧
(M) for M = Rn. It is

natural to identify a and i(a) for a in Rn.
In this case,

∧
(M) is the direct sum of n + 1 free modules

∧k(M) for k = 0, . . . , n where∧k(M) is generated by eI for |I| = k. We write
∧l(M) = 0 for n < l. If a is in M and u is in∧k(M) then au is in

∧k+1(M).
More generally if E is a module over R we define Cl(E) = ⊕|I|=lEeI . If u is in

∧k(E) and
v = ΣvIeI is in Cl(E) we define uv = ΣvIueI in Ck+l(E).

1.2 Interior product

If a and b are in Rn we define a · b = Σaibi. In particular a · ei = ai. We define more generally
by induction on k

a · ei0...ik = ai0ei1...ik − ei0(a · ei1...ik)
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We then define a · v in
∧k(Rn) for v in

∧k+1(Rn) by linearity and we have

a · (bu) = (a · b)u− b(a · u)

1.3 Complex

To any vector a in Rn we associate the complex Ck(a; E) = Ck(E) and the derivation

d : Ck(E)→ Ck+1(E) v 7−→ av

We have d2u = a(au) = aau = 0. We write H i(a; E) the corresponding homology group. Any
map E → F defines canonically a complex map Ck(a; E) → Ck(a; F ) and if E → F → G is
exact then so is Ck(a; E)→ Ck(a; F )→ Ck(a; G).

2 Grade

Let R be an arbitrary commutative ring, and a an element of Rn of coordinate a1, . . . , an
1. If

E is a module over R we define Gr(a; E) > k by H i(a; E) = 0 for i < k. In particular:

1. Gr(a; E) > 1 means that a1, . . . , an is regular for E: if aix = 0 for all i then x = 0

2. Gr(a; E) > 2 iff Gr(a; E) > 1 and whenever we have a family xi such that aixj −aixj = 0
then there exists x such that xi = aix

3. Gr(a; E) > 3 iff Gr(a; E) > 2 and whenever we have a family xij such that aixjk−ajxik +
akxij = 0 then there exists xi such that xij = aixj − ajxi

4. . . .

Notice that we have Gr(a; 0) > k for all k.

Lemma 2.1 The multiplication by any element of 〈a〉 kills each H l(a; E).

Proof. An element of 〈a〉 is of the form b · a for some b in Rn. We have

b · (au) + a(b · u) = (b · a)u

which shows that (b · a)u is in the image of v 7−→ av if au = 0.

We write Gr(a) > k for Gr(a; R) > k.

3 Short exact sequence

Lemma 3.1 If 0 → E → F → G → 0 is a short exact sequence and Gr(a; E) > k + 1 and
Gr(a; F ) > k then Gr(a; G) > k.

Proof. We have a short exact sequence of complexes 0→ C(a; E)→ C(a; F )→ C(a; G)→ 0 to
which we associate the long exact sequence

0→ H0(a; E)→ H0(a; F )→ H0(a; G)→ H1(a; E)→ H1(a; F )→ H1(a; G)→ . . .

and so we have H i(a; G) = 0 for all i < k if H i(a; E) = 0 for all i 6 k and H i(a; F ) = 0 for all
i < k.

1The definition of Gr(a; E) > k that follows will depend only on the ideal 〈a〉 = 〈a1, . . . , an〉.
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This corresponds to Lemma 12, Chapter 5. We have the following reformulation of Lemma
13, Chapter 5, that has a similar proof.

Lemma 3.2 If 0 → E → F → G → 0 is a short exact sequence and Gr(a; F ) > k + 1 and
Gr(a; G) > k then Gr(a; E) > k + 1.

Proof. We have a short exact sequence of complexes 0→ C(a; E)→ C(a; F )→ C(a; G)→ 0 to
which we associate the long exact sequence

0→ H0(a; E)→ H0(a; F )→ H0(a; G)→ H1(a; E)→ H1(a; F )→ H1(a; G)→ . . .

and so we have H i(a; E) = 0 for all i 6 k if H i(a; F ) = 0 for all i 6 k and H i(a; G) = 0 for all
i < k.

We get also a direct proof of Theorem 1, Chapter 6.

Theorem 3.3 If 0→ Rn A−−→ Rm → E → 0 is a short exact sequence and n > 0, m > 0 and
all coefficients of A are in the ideal corresponding to 〈a〉 then Gr(a; E) > k iff Gr(a) > k + 1.

Proof. Let Li be H i(a; R). We associate to the given short exact sequence the long exact
sequence

0→ Ln
0 → Lm

0 → H0(a; E)→ Ln
1 → Lm

1 → H1(a; E)→ Ln
2 → Lm

2 → H2(a; E)→ . . .

Each application Ln
i → Lm

i is represented by the matrix A, and hence it is 0 by Lemma 2.1.
Since A represents an injective map and n > 0, m > 0 we have also L0 = 0. It follows that
Li = 0 for all i 6 k iff H i(a; E) = 0 for all i < k.

4 Applications

Most applications are applications of Lemma 3.1. We start by Theorem 22, Chapter 5, which
is due to Peskine and Szpiro.

Theorem 4.1 If we have a complex C

0→ Cn
dn−−→ . . .

d2−−→ C1
d1−−→ C0

of R-modules such that Gr(a; Ck) > k and 〈a〉Hk(C) = 0 for k = 1, . . . , n then C is exact.

Proof. We write Bk = Im dk+1 and Ck = Ker dk, so that Hk = Zk/Bk, where we write Hk for
Hk(C).

Since Hn = Zn is a submodule of Cn and Gr(a; Cn) > 1 and 〈a〉Hn = 0 we have Hn = 0
and hence 0 → Cn → Cn−1 is exact. Furthermore, Bn−1 = Im dn is isomorphic to Hn and so
Gr(a; Bn−1) > n.

Assume n > 2. Since Zn−1 is a submodule of Cn−1 we have Gr(a; Zn−1) > n−1 > 1. Lemma
3.1 and the short exact sequence

0→ Bn−1 → Zn−1 → Hn−1 → 0

shows then that Gr(a; Hn−1) > 1 and hence Hn−1 = 0 since 〈a〉Hn−1 = 0. Using Lemma 3.1
again on the short exact sequence

0→ Bn−1 → Cn−1 → Bn−2 → 0

we have Gr(a; Bn−2) > n− 1. If n > 3 we then deduce similarly Hn−2 = 0 and Gr(a; Bn−3) >
n− 2, . . .
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We decompose Theorem 2, Chapter 6 (Auslander-Buchsbaum-Hochster’s Theorem) in two
parts.

Theorem 4.2 If we have a finite free resolution of a module E

0→ Fm → . . .→ F0 → E → 0

with Fi = Rni and Gr(a) > k + m then Gr(a; E) > k.

Proof. We have the exact sequences

0→ E1 → F0 → E → 0 0→ E2 → F1 → E1 → 0 . . . 0→ Fm → Fm−1 → Em−1 → 0

and so, using Lemma 3.1, we get successively Gr(a; Ei) > k + i for i = m − 1, m − 2, . . . until
we have Gr(a; E) > k.

The following Corollary corresponds to Theorem 4, Chapter 6, which is proved in Northcott
via localisation at a minimal prime ideal.

Corollary 4.3 If we have a finite free resolution of a module E

0→ Fm → . . .→ F0 → E → 0

with Fi = Rni and Gr(a) > m + 1 and 〈a〉E = 0 then E = 0.

Proof. We have Gr(a; E) > 1 by Theorem 4.2 and so 〈a〉E = 0 implies E = 0.

Another Corollary corresponds to the Exercise 7, Chapter 7.

Corollary 4.4 If we have a n× (n + 1) matrix A such that Gr(∆n(A)) > 3 then 1 = ∆n(A).

Proof. We use the fact that if Gr(∆n(A)) > 2 then we have an exact sequence

0→ Rn A−−→ Rn+1 → R→ R/∆n(A)→ 0

(this is proved in HilbertBurchPart2). The claim follows then from Corollary 4.3.

Yet another Corollary corresponds to one direction of Theorem 15, Chapter 6.

Corollary 4.5 We assume given a complex

(∗) 0→ Fm → . . .→ F0

with Fi = Rni . We define rm = nm and rk−1 = nk−1 − rk for k = m, . . . , 1 assuming that we
have rk 6 nk−1 at each step. Let the map Fl → Fl−1 be represented by the matrix Al and
Il = ∆rl

(Al). If Gr(Il) > l for l = m, . . . , 1 then the complex (∗) is exact.

Proof. The result is clear if m = 1 since Gr(∆n1(A1)) > 1 implies that the map represented
by A1 is injective. The proof is then by induction on m. By induction, we get a finite free
resolution of F1/Im A2

0→ Fm → . . . F1 → F1/Im A2 → 0

It follows then from Theorem 4.2 that we have Gr(Im; F1/Im A2) > 1. This implies that, for
showing that F2 → F1 → F0 is exact, it is enough to show it after localisation at each element
of Im: if x is in F1 and A1 x = 0, the x is 0 in F1/Im A2 if it is 0 after localisation at each
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element of Im since Gr(Im; F1/Im A2) > 1. But if we localize at an element of Im we can find
a finite free module Em−1 such that Fm−1 = Em−1 ⊕ Im Am, and the complex

Em−1 → . . .→ F1 → F0

is exact by induction.

When the complex (∗) is exact, one can show that we have also ∆rk+1(Ak) = 0. Thus the
matrix Ak is stable of rank rk: the ideal ∆rk

(Ak) is regular and ∆rk+1(Ak) is 0.
We finally come to the other direction for the Auslander-Buchsbaum-Hochster’s Theorem.

Theorem 4.6 If we have a finite free resolution of a module E

0→ Fm → . . .→ F0 → E → 0

with Fi = Rni and ni > 0 and the matrix Am representing the map Fm → Fm−1 has its
coefficients in 〈a〉 and Gr(a; E) > k then Gr(a) > k + m.

Proof. We have the exact sequences

0→ E1 → F0 → E → 0 0→ E2 → F1 → E1 → 0 . . . 0→ Fm → Fm−1 → Em−1 → 0

Since Am represents an injective map and has its coefficients in 〈a〉 we have Gr(a) > 1 and
hence Gr(a; Fi) > 1 for all i. It follows that we have Gr(a; Ei) > 1 for i = 1, . . . ,m− 1. Using
then Theorem 3.3, we deduce Gr(a) > 2. We can then use Lemma 3.2 to deduce Gr(a; Ei) > 2
for i = 2, . . . ,m − 1. We can then use Theorem 3.3 to deduce Gr(a) > 3, . . . until we get
Gr(a) > k + m.
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