Cubical Type Theory

Free bounded distributive lattice

The free distributive lattice on a set J can be described as the set of finite antichains in the poset of finite subsets of J, for the order $L \leqslant M$ if, and only if, for all X in L there exists Y in M such that $Y \subseteq X$. We think of an element L as a formal representation of $\vee_{X \in L} \wedge_{u \in X} u$.

The free distributive lattice on J where we impose some relations of the form $\wedge_{u \in X} u=0$ for some given set C of finite subsets has a similar description: it is the set of finite antichains of finite subsets not containing any element of C.

In both cases the elements of the form $\wedge_{u \in X} u$ are exactly the join irreducible element of the lattice, and we call $\wedge_{u \in X} u$ a face of an element L for X in L (these are exactly the maximal join irreducible element below this given element of the lattice).

Interval and Face lattice

$$
r, s::=0|1| i|1-i| r \wedge s|r \vee s \quad \varphi, \psi::=0| 1|(r=0)|(r=1)|\varphi \wedge \psi| \varphi \vee \psi
$$

The equality on the inverval \mathbb{I} is the equality in the free bounded distributive lattice on generators $i, 1-i$. This lattice has a canonical involution, and hence a structure of de Morgan algebra. The equality in the face lattice \mathbb{F} is the one for the free distributive lattice on formal generators $(i=0),(i=1)$ with the relation $(i=0) \wedge(i=1)=0$. We have $[(r \vee s)=1]=(r=1) \vee(s=1)$ and $[(r \wedge s)=1]=(r=1) \wedge(s=1)$. An irreducible element of this lattice is a face, a conjunction of elements $(i=0)$ and $(j=1)$ and any element is a disjunction of irreducible elements (unique up to the absorption law).

The following observation will be useful for defining composition for glueing. Any formula φ has a decomposition $\delta \vee\left(\varphi_{0} \wedge(i=0)\right) \vee\left(\varphi_{1} \wedge(i=1)\right)$ where δ is the disjunction of all faces of φ not containing i, and φ_{0} (resp. φ_{1}) the disjunction of all faces α such that $\alpha \wedge(i=0)($ resp. $\alpha \wedge(i=1))$ is a face of φ. We can then define $\forall i . \varphi$ as being δ.

Contexts and Terms

$$
\begin{array}{ll}
\Delta, \Gamma & ::=()|\Gamma, x: A| \Gamma, i: \mathbb{I} \mid \Gamma, \varphi \\
t, u, A, B & ::=x|\lambda x: A . t| t t|t r|\langle i\rangle t|(x: A) \rightarrow B|(x: A, B)|t, t| t .1|t .2| p t \\
p t & ::=\psi_{1} u_{1} \vee \cdots \vee \psi_{k} u_{k}
\end{array}
$$

We define ordinary substitution $t(x=u)$ and name susbtitution $t(i=r)$ as meta-operations as usual. We may write $t(i 0)$ instead of $t(i=0)$ and $t(i 1)$ instead of $t(i=1)$.

Basic typing rules

$$
\begin{array}{ccccc}
\frac{\Gamma \vdash A}{\Gamma, x: A \vdash} & \frac{\Gamma \vdash}{\Gamma, i: \mathbb{I} \vdash} & \frac{\Gamma \vdash \varphi: \mathbb{F}}{\Gamma, \varphi \vdash} & \frac{\Gamma \vdash r: \mathbb{I}}{\Gamma \vdash(r=1): \mathbb{F}} & \frac{\Gamma \vdash r: \mathbb{I}}{\Gamma \vdash(r=0): \mathbb{F}} \\
& \frac{\Gamma \vdash}{\Gamma \vdash x: A}(x: A \text { in } \Gamma) & \frac{\Gamma \vdash}{\Gamma \vdash i: \mathbb{I}}(i: \mathbb{I} i n \Gamma) \\
\frac{\Gamma, x: A \vdash B}{\Gamma \vdash(x: A) \rightarrow B} & \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A \cdot t:(x: A) \rightarrow B} & \frac{\Gamma \vdash t:(x: A) \rightarrow B}{\Gamma \vdash t u: B(u)}
\end{array}
$$

Sigma types

$$
\frac{\Gamma, x: A \vdash B}{\Gamma \vdash(x: A, B)} \quad \frac{\Gamma \vdash a: A \quad \Gamma \vdash b: B(a)}{\Gamma \vdash(a, b):(x: A, B)} \quad \frac{\Gamma \vdash z:(x: A, B)}{\Gamma \vdash z .1: A} \quad \frac{\Gamma \vdash z:(x: A, B)}{\Gamma \vdash z .2: B(z .1)}
$$

Path types

$$
\begin{array}{ccc}
\frac{\Gamma \vdash A \quad \Gamma \vdash a_{0}: A \quad \Gamma \vdash a_{1}: A}{\Gamma \vdash \text { Path } A a_{0} a_{1}} & \frac{\Gamma \vdash A}{\Gamma \vdash\langle i\rangle t: \text { Path } A t(i 0) t(i 1)} \\
\frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1} \quad \Gamma \vdash r: \mathbb{I}}{\Gamma \vdash t r: A} & \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1}}{\Gamma \vdash t 0=a_{0}: A} & \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1}}{\Gamma \vdash t 1=a_{1}: A}
\end{array}
$$

We define 1_{a} : Path $A a a$ as $1_{a}=\langle i\rangle a$.
We add the usual β and η-conversion laws, as well as projection laws and surjective pairing.
With these rules we also can justify function extensionality

$$
\frac{\Gamma \vdash t:(x: A) \rightarrow B \quad}{} \frac{\Gamma \vdash u:(x: A) \rightarrow B \quad}{\Gamma \vdash\langle i\rangle \lambda x: A . p x i: \text { Path }((x: A) \rightarrow B) t u}
$$

We also can justify the fact that any element in ($x: A$, Path $A a x$) is equal to ($a, 1_{a}$)

$$
\frac{\Gamma \vdash a: A \quad \Gamma \vdash b: A \quad \Gamma \vdash p: \text { Path } A a b}{\Gamma \vdash\langle i\rangle(p i,\langle j\rangle p(i \wedge j)): \text { Path }(x: A, \text { Path } A a x)\left(a, 1_{a}\right)(b, p)}
$$

For justifying the transitivity of equality, we need A to have composition operations.

Partial elements

$$
\begin{aligned}
& \frac{\Gamma \vdash \varphi \leqslant \psi \quad \Gamma, \psi \vdash A}{\Gamma, \varphi \vdash A} \quad \frac{\Gamma \vdash \varphi \leqslant \psi}{\Gamma, \varphi \vdash u: A} \quad \Gamma, \psi \vdash u: A \\
& \frac{\Gamma, \psi_{1} \vdash A_{1} \ldots \quad \Gamma, \psi_{k} \vdash A_{k} \quad \Gamma, \psi_{i} \wedge \psi_{j} \vdash A_{i}=A_{j}}{\Gamma, \psi_{1} \vee \cdots \vee \psi_{k} \vdash \psi_{1} A_{1} \vee \cdots \vee \psi_{k} A_{k}} \\
& \frac{\Gamma, \psi_{1} \vdash u_{1}: A_{1}}{} \ldots \Gamma, \psi_{k} \vdash u_{k}: A_{k} \quad \Gamma, \psi_{i} \wedge \psi_{j} \vdash A_{i}=A_{j} \quad \Gamma, \psi_{i} \wedge \psi_{j} \vdash u_{i}=u_{j}: A_{i} \\
& \Gamma, \psi_{1} \vee \cdots \vee \psi_{k} \vdash \psi_{1} u_{1} \vee \cdots \vee \psi_{k} u_{k}: \psi_{1} A_{1} \vee \cdots \vee \psi_{k} A_{k}
\end{aligned}
$$

We can have $k=0$ in which case we get a dummy element of type A in the context $\Gamma, 0$.
We also have $\psi_{1} u_{1} \vee \cdots \vee \psi_{k} u_{k}=u_{i}: A$ if $\psi_{i}=1$ and $\psi_{1} \vee \cdots \vee \psi_{k} \vdash u=v: A$ if $\psi_{i} \vdash u=v: A$ for $i=1, \ldots, k$. Finally, we add that $\Gamma \vdash r=1$ if $\Gamma \vdash 1=(r=1)$.

If $\Gamma, \varphi \vdash u: A$ then $\Gamma \vdash a: A[\varphi \mapsto u]$ is an abreviation for $\Gamma \vdash a: A$ and $\Gamma, \varphi \vdash a=u: A$. In this case, we see this element a as a witness that the partial element u, defined on the extent φ, is connected.

For instance if $\Gamma, i: \mathbb{I} \vdash A$ and $\Gamma, i: \mathbb{I}, \varphi \vdash u: A$ where $\varphi=(i=0) \vee(i=1)$ then the element u is determined by two element $\Gamma \vdash a_{0}: A(i 0)$ and $\Gamma \vdash a_{1}: A(i 1)$ and an element $\Gamma, i: \mathbb{I} \vdash a: A[\varphi \mapsto u]$ gives a path connecting a_{0} and a_{1}.

We may write $\Gamma \vdash a: A\left[\psi_{1} \mapsto u_{1}, \ldots, \psi_{k} \mapsto u_{k}\right]$ for $\Gamma \vdash a: A\left[\psi_{1} \vee \cdots \vee \psi_{k} \mapsto \psi_{1} u_{1} \vee \cdots \vee \psi_{k} u_{k}\right]$. This means that $\Gamma \vdash a: A$ and $\Gamma, \psi_{i} \vdash a=u_{i}: A$ for $i=1, \ldots, k$.

Composition operation

$$
\frac{\Gamma \vdash \varphi \quad \Gamma, i: \mathbb{I} \vdash A \quad \Gamma, \varphi, i: \mathbb{I} \vdash u: A \quad \Gamma \vdash a_{0}: A(i 0)[\varphi \mapsto u(i 0)]}{\Gamma \vdash \operatorname{comp}^{i} A[\varphi \mapsto u] a_{0}: A(i 1)[\varphi \mapsto u(i 1)]}
$$

Kan filling operation

We recover Kan filling operation

$$
\Gamma, i: \mathbb{I} \vdash \text { fill }^{i} A[\varphi \mapsto u] a_{0}=\operatorname{comp}^{j} A(i \wedge j)\left[\varphi \mapsto u(i \wedge j),(i=0) \mapsto a_{0}\right] a_{0}: A
$$

The element $i: \mathbb{I} \vdash v=$ fill $^{i} A[\varphi \mapsto u] a_{0}: A$ satisfies

$$
\Gamma \vdash v(i 0)=a_{0}: A(i 0) \quad \Gamma \vdash v(i 1)=\operatorname{comp}^{i} A[\varphi \mapsto u] a_{0}: A(i 1) \quad \Gamma, \varphi, i: \mathbb{I} \vdash v=u: A
$$

Recursive definition of composition

The operation comp ${ }^{i} A[\varphi \mapsto u] a_{0}$ is defined by induction on A.

Product type

In the case of a product type $i: \mathbb{I} \vdash(x: A) \rightarrow B=C$, we have $i: \mathbb{I}, \varphi \vdash \mu: C$ with and $\vdash \lambda_{0}: C(i 0)[\varphi \mapsto$ $\mu(i 0)]$ and we define, for $\vdash u_{1}: A(i 1)$

$$
\left(\operatorname{comp}^{i} C[\varphi \mapsto \mu] \lambda_{0}\right) u_{1}=\operatorname{comp}^{i} B(x=v)[\varphi \mapsto \mu v]\left(\lambda_{0} u_{0}\right)
$$

where $i: \mathbb{I} \vdash v=w(1-i): A$ and $i: \mathbb{I} \vdash w=$ fill $^{i} A(1-i)[] u_{1}: A(1-i)$ and $u_{0}=v(i 0): A(i 0)$.

Path type

In the case of path type $i: \mathbb{I} \vdash$ Path $A u v=C$ we have $i: \mathbb{I}, \varphi \vdash \mu: C$ and $\vdash p_{0}: C(i 0)[\varphi \mapsto \mu(i 0)]$. We define

$$
\operatorname{comp}^{i} C[\varphi \mapsto \mu] p_{0}=\langle j\rangle \operatorname{comp}^{i} A[\varphi \mapsto \mu j,(j=0) \mapsto u,(j=1) \mapsto v]\left(p_{0} j\right)
$$

Sum type

In the case of a sigma type $i: \mathbb{I} \vdash(x: A, B)=C$ given $i: \mathbb{I}, \varphi \vdash w: C$ and $\vdash w_{0}: C(i 0)[\varphi \mapsto w(i 0)]$ we define

$$
\operatorname{comp}^{i} C[\varphi \mapsto w] w_{0}=\left(\operatorname{comp}^{i} A[\varphi \mapsto w .1] w_{0} .1, \operatorname{comp}^{i} B(x=a)[\varphi \mapsto w .2] w_{0} .2\right)
$$

where $i: \mathbb{I} \vdash a=$ fill $^{i} A[\varphi \mapsto w .1] w_{0} .1: A$.

Example

If $i: \mathbb{I} \vdash A$, composition for $\varphi=0$ corresponds to a transport function $A(i 0) \rightarrow A(i 1)$.
If I is an object of \mathcal{C} the lattice $\mathbb{F}(I)$ has a greatest element <1 which is the disjunction of all $(i=0) \vee(i=1)$ for i in I. This element can be called the boundary of I. Composition w.r.t. this boundary gives the usual operation of Kan composition, which witnesses the existence of a lid for any open box.

Two derived operations

The first derived operation states that the image of a composition is path equal to the composition of the respective images.

Lemma 0.1 If we have $\Delta, i: \mathbb{I} \vdash \sigma: T \rightarrow A, \Delta \vdash \psi$ and $\Delta, \psi, i: \mathbb{I} \vdash t: T$ with $\Delta \vdash t_{0}: T(i 0)[\psi \mapsto t(i 0)]$ then we can build

$$
\Delta \vdash \operatorname{pres}\left(\sigma,[\psi \mapsto t], t_{0}\right): \text { Path } A(i 1)\left(\operatorname{comp}^{i} A[\psi \mapsto a] a_{0}\right) \sigma(i 1)\left(\operatorname{comp}^{i} T[\psi \mapsto t] t_{0}\right)
$$

where $\Delta \vdash a_{0}=\sigma(i 0) t_{0}: A(i 0)$ and $\Delta, i: \mathbb{I}, \psi \vdash a=\sigma t: A$. Furthermore, we have

$$
\Delta, \psi \vdash \operatorname{pres}\left(\sigma,[\psi \mapsto t], t_{0}\right)=\langle j\rangle a(i 1)
$$

We define isContr $A=(x: A,(y: A) \rightarrow$ Path $A x y)$ and isEquiv $A B f=(y: B) \rightarrow$ isContr $(x:$ A, Path $A y(f x))$ and $\operatorname{Equiv}(T, A)=(f: T \rightarrow A$, isEquiv $T A f)$.

The second operation corresponds to a reformulation of the notion of being contractible.
Lemma 0.2 We have an operation

$$
\frac{\Gamma \vdash p: \text { isContr } A \quad \Gamma, \varphi \vdash u: A}{\Gamma \vdash \operatorname{ext} p[\varphi \mapsto u]: A[\varphi \mapsto u]}
$$

and it follows that we have an operation equiv $(\sigma,[\delta \mapsto t], a)=\operatorname{ext}(\sigma .2 a)[\delta \mapsto(t,\langle j\rangle a)]$

$$
\frac{\Delta \vdash \sigma: \operatorname{Equiv}(T, A) \quad \Delta, \delta \vdash t: T \quad \Delta \vdash a: A[\delta \mapsto \sigma t]}{\Delta \vdash \operatorname{equiv}(\sigma,[\delta \mapsto t], a):(x: T, \operatorname{Path} A a(\sigma x))[\delta \mapsto(t,\langle j\rangle a)]}
$$

A definition of ext

We assume given $\Gamma \vdash p$: isContr A and $\Gamma, \varphi \vdash u: A$. We define ext $p[\varphi \mapsto u]=\operatorname{comp}^{i} A[\varphi \mapsto p .2 u i] p .1$ so that $\Gamma \vdash \operatorname{ext} p[\varphi \mapsto u]: A[\varphi \mapsto u]$.

A definition of pres

We assume given $\Delta, i: \mathbb{I} \vdash \sigma: T \rightarrow A, \Delta \vdash \psi$ and $\Delta, \psi, i: \mathbb{I} \vdash t: T$ with $\Delta \vdash t_{0}: T(i 0)[\psi \mapsto t(i 0)]$. We define $\Delta \vdash a_{0}=\sigma(i 0) t_{0}: A(i 0)$ and $\Delta, i: \mathbb{I}, \psi \vdash a=\sigma t: A$, and

$$
\Delta, i: \mathbb{I} \vdash u=\text { fill }^{i} A[\psi \mapsto a] a_{0}: A \quad \Delta, i: \mathbb{I} \vdash v=\text { fill }^{i} T[\psi \mapsto t] t_{0}: T
$$

We define then $\operatorname{pres}\left(\sigma,[\psi \mapsto t], t_{0}\right)=\langle j\rangle \operatorname{comp}^{i} A[\psi \mapsto \sigma t,(j=0) \mapsto \sigma v,(j=1) \mapsto u] a_{0}$

Glueing

$$
\begin{gathered}
\frac{\Gamma \vdash A \quad \Gamma, \varphi \vdash T \quad \Gamma, \varphi \vdash \sigma: \operatorname{Equiv}(T, A)}{\Gamma \vdash \operatorname{Glue}(A,[\varphi \mapsto(T, \sigma)])} \varphi \neq 1 \\
\frac{\Gamma, \varphi \vdash \sigma: \operatorname{Equiv}(T, A) \quad \Gamma, \varphi \vdash t: T \quad \Gamma \vdash a: A[\varphi \mapsto \sigma t]}{\Gamma \vdash \operatorname{Glue}(a,[\varphi \mapsto t]): \operatorname{Glue}(A,[\varphi \mapsto(T, \sigma)])} \varphi \neq 1
\end{gathered}
$$

We define glue $(A,[\varphi \mapsto(T, \sigma)])=\operatorname{Glue}(A,[\varphi \mapsto(T, \sigma)])$ if $\varphi \neq 1$ and $\operatorname{glue}(A,[\varphi \mapsto(T, \sigma)])=T$ if $\varphi=1$. Similarly we define glue $(a,[\varphi \mapsto t])=\operatorname{Glue}(a,[\varphi \mapsto t])$ if $\varphi \neq 1$ and glue $(a,[\varphi \mapsto t])=t$ if $\varphi=1$.

Any element of the type glue $(A,[\varphi \mapsto(T, \sigma)])$ can be written in an unique way of the form glue $(a,[\varphi \mapsto$ $t]$) with $\varphi \vdash t: T$ and $a: A[\varphi \mapsto \sigma t]$.

We define the substitution $\operatorname{Glue}(A,[\varphi \mapsto(T, \sigma)]) f=\operatorname{glue}(A f,[\varphi f \mapsto(T f, \sigma f)])$ and $\operatorname{Glue}(a,[\varphi \mapsto$ $t]) f=\operatorname{glue}(a f,[\varphi f \mapsto t f])$.

Composition for glueing

Assume $\Gamma, i: \mathbb{I} \vdash A$ and $\Gamma, i: \mathbb{I} \vdash \varphi$ and $\Gamma, i: \mathbb{I}, \varphi \vdash \sigma: \operatorname{Equiv}(T, A)$. We write $B=\operatorname{glue}(A,[\varphi \mapsto(T, \sigma)])$. Assume also $\Gamma \vdash \psi$ and $\Gamma, i: \mathbb{I}, \psi \vdash b=\operatorname{glue}(a,[\varphi \mapsto t]): B$ and $\Gamma \vdash b_{0}=\operatorname{glue}\left(a_{0},\left[\varphi(i 0) \mapsto t_{0}\right]\right):$ $B(i 0)[\psi \mapsto b(i 0)]$.

The goal is to build $\Gamma \vdash b_{1}: B(i 1)[\psi \mapsto b(i 1)]$. Furthermore, we should have $b_{1}=\operatorname{comp}^{i} T[\psi \mapsto t] t_{0}$ if $\Gamma, i: \mathbb{I} \vdash \varphi=1$.

We have $\Gamma, \psi \vdash a(i 0)=a_{0}: A(i 0)$ and $\Gamma, \psi \wedge \varphi(i 0) \vdash t(i 0)=t_{0}: T(i 0)$. Furthermore $\Gamma, \varphi(i 0) \vdash a_{0}=$ $\sigma(i 0) t_{0}: A(i 0)$ and $\Gamma, i: \mathbb{I}, \varphi \wedge \psi \vdash a=\sigma t: A$.

We define $a_{1}^{\prime}=\operatorname{comp}^{i} A[\psi \mapsto a] a_{0}$ so that $\Gamma \vdash a_{1}^{\prime}: A(i 1)$ and $\Gamma, \psi \vdash a_{1}^{\prime}=a(i 1): A(i 1)$.
Take $\delta=\forall i . \varphi$. We have $\Gamma, \delta, \psi, i: \mathbb{I} \vdash a=\sigma t$ and $\Gamma, \delta \vdash a_{0}=\sigma(i 0) t_{0}$. Hence, using Lemma 0.1

$$
\Gamma, \delta \vdash \omega=\operatorname{pres} \sigma[\psi \mapsto t] t_{0}: \text { Path } A(i 1) a_{1}^{\prime}\left(\sigma(i 1) t_{1}^{\prime}\right)
$$

where $t_{1}^{\prime}=\operatorname{comp}^{i} T[\psi \mapsto t] t_{0}$. We can then define $a_{1}^{\prime \prime}=\operatorname{comp}^{j} A(i 1)[\delta \mapsto \omega j, \psi \mapsto a(i 1)] a_{1}^{\prime}$ so that $\Gamma \vdash a_{1}^{\prime \prime}: A(i 1)$ and $\Gamma, \psi \vdash a_{1}^{\prime \prime}=a(i 1): A(i 1)$ and $\Gamma, \delta \vdash a_{1}^{\prime \prime}=\sigma(i 1) t_{1}^{\prime}: A(i 1)$.

We have $\Gamma, \varphi(i 1) \vdash \sigma(i 1): T(i 1) \rightarrow A(i 1)$ and $\Gamma \vdash a_{1}^{\prime \prime}: A(i 1)$ and $\Gamma, \delta \vdash a_{1}^{\prime \prime}=\sigma(i 1) t_{1}^{\prime}$ and $\Gamma, \psi \wedge \varphi(i 1) \vdash a_{1}^{\prime \prime}=a(i 1)=\sigma(i 1) t(i 1)$. Using Lemma 0.2 we get

$$
t_{1}=\operatorname{equiv}\left(\sigma(i 1),\left[\delta \mapsto t_{1}^{\prime}, \psi \mapsto t(i 1)\right], a_{1}^{\prime \prime}\right) \cdot 1 \quad \alpha=\operatorname{equiv}\left(\sigma(i 1),\left[\delta \mapsto t_{1}^{\prime}, \psi \mapsto t(i 1)\right], a_{1}^{\prime \prime}\right) \cdot 2
$$

so that $\Gamma, \varphi(i 1) \vdash t_{1}: T(i 1)$ and $\Gamma, \varphi(i 1) \vdash \alpha$: Path $A(i 1) a_{1}^{\prime \prime}\left(\sigma(i 1) t_{1}\right)$. We then define

$$
a_{1}=\operatorname{comp}^{j} A(i 1)[\varphi(i 1) \mapsto \alpha j, \psi \mapsto a(i 1)] a_{1}^{\prime \prime} \quad b_{1}=\operatorname{glue}\left(a_{1},\left[\varphi(i 1) \mapsto t_{1}\right]\right)
$$

We have $\Gamma \vdash b_{1}: B(i 1)[\psi \mapsto b(i 1)]$ as required and, if $\Gamma, i: \mathbb{I} \vdash \varphi=1$ we have $b_{1}=\operatorname{comp}^{i} T[\psi \mapsto t] t_{0}$.

Identity types

We explain how to define an identity type with the required computation rule, following an idea due to Andrew Swan.

We define a new type Id $A a_{0} a_{1}$ with the introduction rule

$$
\frac{\Gamma \vdash \omega: \text { Path } A a_{0} a_{1}\left[\varphi \mapsto\langle i\rangle a_{0}\right]}{\Gamma \vdash(\omega, \varphi): \operatorname{Id} A a_{0} a_{1}}
$$

We can now define $\mathrm{r}(a)=(\langle j\rangle a, 1)$: Id $A a a$.
Given $\Gamma \vdash \alpha=(\omega, \varphi): \operatorname{Id} A a x$ we define $\Gamma, i: \mathbb{I} \vdash \alpha^{*}(i): \operatorname{ld} A a(\alpha i)$

$$
\alpha^{*}(i)=(\langle j\rangle \omega(i \wedge j), \varphi \vee(i=0))
$$

This is well defined since $\Gamma, i: \mathbb{I},(i=0) \vdash\langle j\rangle \omega(i \wedge j)=\langle j\rangle a$ and $\Gamma, i: \mathbb{I}, \varphi \vdash\langle j\rangle \omega(i \wedge j)=\langle j\rangle a$.
If we have $\Gamma, x: A, \alpha:$ Id $A a x \vdash C$ and $\Gamma \vdash b: A$ and $\Gamma \vdash \beta: \operatorname{ld} A a b$ and $\Gamma \vdash d: C(a, \mathrm{r}(a))$ we take, for $\beta=(\omega, \varphi)$

$$
J b \beta d=\operatorname{comp}^{i} C\left(\omega i, \beta^{*}(i)\right)[\varphi \mapsto d] d: C(b, \beta)
$$

and we have J ar $(a) d=d$ as desired.
If $i: \mathbb{I} \vdash \operatorname{Id} A a b$ and $p_{0}=\left(\omega_{0}, \psi_{0}\right): \operatorname{Id} A(i 0) a(i 0) b(i 0)$ and $\varphi, i: \mathbb{I} \vdash q=(\omega, \psi): \operatorname{ld} A a b$ such that $\varphi \vdash q(i 0)=p_{0}$ we define comp i (Id $\left.A a b\right)[\varphi \mapsto q] p_{0}$ to be $(\gamma, \varphi \wedge \psi(i 1))$ where

$$
\gamma=\langle j\rangle \operatorname{comp}^{i} A[\varphi \mapsto \omega j,(j=0) \mapsto a,(j=1) \mapsto b]\left(\omega_{0} j\right)
$$

Factorization

The same idea of Andrew Swan can be used to factorize a map

$$
\frac{\Gamma \vdash f: A \rightarrow B}{\Gamma \vdash \mathrm{G}(f)} \quad \frac{\Gamma \vdash f: A \rightarrow B \quad \Gamma, \varphi \vdash a: A \quad \Gamma \vdash b: B[\varphi \mapsto f a]}{\Gamma \vdash(b,[\varphi \mapsto a]): \mathrm{G}(f)}
$$

We define $p_{G}: \mathrm{G}(f) \rightarrow B$ by $p_{G}(b,[\varphi \mapsto a])=b$ and $\mathrm{c}(a)=(f a,[1 \mapsto a])$ and we have a factorization of the map $f=p_{G} \circ \mathrm{c}$.

The composition for $G(f)$ is defined by

$$
\operatorname{comp}^{i} G(f)[\varphi \mapsto(b,[\psi \mapsto a])]\left(b_{0},\left[\psi_{0} \mapsto a_{0}\right]\right)=\left(\operatorname{comp}^{i} B[\varphi \mapsto b] b_{0},[\varphi \wedge \psi(i 1) \mapsto a(i 1)]\right)
$$

Here is one application of the type $G(f)$. Suppose that we have a dependent type $D(v)(v: B)$ with a section $g(v): C(v)(v: B)$ and $h(a): C(f a)(a: A)$ with $\omega(a)$: Path $C(f a) g(f a) h(a)(a: A)$. We can define a new section $\tilde{g}(u): C\left(p_{G} u\right)(u: \mathrm{G}(f))$ such that $\tilde{g}(c a)=h(a)(a: A)$. The definition is

$$
\tilde{g}(b,[\varphi \mapsto a])=\operatorname{comp}^{i} C(b) g(b)[\varphi \mapsto \omega(a) i]
$$

It can be checked that c has the lifting property w.r.t. any trivial fibrations. Also p_{G} is a trivial fibration, since $G(f)$ can be defined as the sigma type $\left(b: B, T_{f}(b)\right)$ where $T_{f}(b)$ is the contractible type of element $\varphi \mapsto a$ with $\Gamma, \varphi \vdash a: A$ and $\Gamma, \varphi \vdash f a=b: B$.

Appendix 1: self-contained operational semantics

We use $\alpha, \beta, \gamma, \ldots$ for the "faces", irreducible elements of the distributive lattice \mathbb{F}. If we restrict context as follows

$$
\Gamma::=()|\Gamma, x: A| \Gamma, i: \mathbb{I} \mid \Gamma, \alpha
$$

then any partial element in such a context is equal to a total element. This follows from the fact that faces are irreducible element. To test a judgement in a context Γ, φ is then reduced to test the judgement in the context Γ, α for all irreducible component α of φ.

$$
\begin{aligned}
& \frac{\Gamma \vdash A}{\Gamma, x: A \vdash} \quad \frac{\Gamma \vdash}{\Gamma, i: \mathbb{I} \vdash} \quad \frac{\Gamma \vdash \varphi: \mathbb{F}}{\Gamma, \varphi \vdash} \quad \frac{\Gamma \vdash}{\Gamma \vdash x: A}(x: A \text { in } \Gamma) \quad \frac{\Gamma \vdash}{\Gamma \vdash i: \mathbb{I}}(i: \mathbb{I} \text { in } \Gamma) \\
& \frac{\Gamma, x: A \vdash B}{\Gamma \vdash(x: A) \rightarrow B} \quad \frac{\Gamma, x: A \vdash t: B}{\Gamma \vdash \lambda x: A \cdot t:(x: A) \rightarrow B} \quad \frac{\Gamma \vdash t:(x: A) \rightarrow B \quad \Gamma \vdash u: A}{\Gamma \vdash t u: B(u)} \\
& \frac{\Gamma, x: A \vdash B}{\Gamma \vdash(x: A, B)} \quad \frac{\Gamma \vdash a: A \quad \Gamma \vdash b: B(a)}{\Gamma \vdash(a, b):(x: A, B)} \quad \frac{\Gamma \vdash z:(x: A, B)}{\Gamma \vdash z .1: A} \quad \frac{\Gamma \vdash z:(x: A, B)}{\Gamma \vdash z .2: B(z .1)} \\
& \begin{array}{ccc}
\Gamma \vdash A \quad \Gamma \vdash a_{0}: A \quad \Gamma \vdash a_{1}: A \\
\Gamma \vdash \text { Path } A a_{0} a_{1} & \frac{\Gamma \vdash A \quad \Gamma, i: \mathbb{I} \vdash t: A}{\Gamma \vdash\langle i\rangle t: \text { Path } A t(i 0) t(i 1)}
\end{array} \\
& \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1} \quad \Gamma \vdash r: \mathbb{I}}{\Gamma \vdash t r: A} \quad \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1}}{\Gamma \vdash t 0=a_{0}: A} \quad \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1}}{\Gamma \vdash t 1=a_{1}: A} \\
& \frac{\Gamma \vdash \varphi \quad \Gamma, i: \mathbb{I} \vdash A \quad \Gamma, i: \mathbb{I}, \varphi \vdash u: A \quad \Gamma \vdash a_{0}: A(i 0)[\varphi \mapsto u(i 0)]}{\Gamma \vdash \operatorname{comp}^{i} A[\varphi \mapsto u] a_{0}: A(i 1)[\varphi \mapsto u(i 1)]} \\
& \Gamma, i: \mathbb{I} \vdash \text { fill }^{i} A[\varphi \mapsto u] a_{0}=\operatorname{comp}^{j} A(i \wedge j)\left[\varphi \mapsto u(i \wedge j),(i=0) \mapsto a_{0}\right] a_{0}: A
\end{aligned}
$$

For $i: \mathbb{I} \vdash C=(x: A) \rightarrow B$

$$
\left(\operatorname{comp}^{i} C[\varphi \mapsto \mu] \lambda_{0}\right) u_{1}=\operatorname{comp}^{i} B(x=v)[\varphi \mapsto \mu v]\left(\lambda_{0} u_{0}\right)
$$

where $i: \mathbb{I} \vdash v=$ fill $^{i} A(1-i)[] u_{1}: A$ and $u_{0}=v(i 0): A(i 0)$.
For $i: \mathbb{I} \vdash C=$ Path $A u v$

$$
\operatorname{comp}^{i} C[\varphi \mapsto \mu] p_{0}=\langle j\rangle \operatorname{comp}^{i} A[\varphi \mapsto \mu j,(j=0) \mapsto u,(j=1) \mapsto v]\left(p_{0} j\right)
$$

For $i: \mathbb{I} \vdash C=(x: A, B)$

$$
\operatorname{comp}^{i} C[\varphi \mapsto w] w_{0}=\left(\operatorname{comp}^{i} A[\varphi \mapsto w .1] w_{0} .1, \operatorname{comp}^{i} B(x=a)[\varphi \mapsto w .2] w_{0} .2\right)
$$

where $i: \mathbb{I} \vdash a=$ fill $^{i} A[\varphi \mapsto w .1] w_{0} .1: A$.
We define isContr $A=(x: A,(y: A) \rightarrow$ Path $A x y)$ and isEquiv $A B f=(y: B) \rightarrow$ isContr $(x:$ A, Path $A y(f x))$ and $\operatorname{Equiv}(T, A)=(f: T \rightarrow A$, isEquiv $T A f)$.

$$
\begin{gathered}
\Gamma \vdash A \quad \Gamma, \varphi \vdash T \\
\hline \Gamma \vdash \operatorname{glue}(A,[\varphi \mapsto(T, \sigma)]) \\
\Gamma, \varphi \vdash \operatorname{l}, \mathrm{glue}(A,[\varphi \mapsto(T, \sigma)])=T \\
\frac{\Gamma, \varphi \vdash \sigma: \operatorname{Equiv}(T, A)}{\Gamma \vdash \operatorname{glue}(a,[\varphi \mapsto t]): \operatorname{glue}(A,[\varphi \mapsto(T, \sigma)])[\varphi \mapsto t]}
\end{gathered}
$$

For $\Gamma, i: \mathbb{I} \vdash B=\operatorname{glue}(A,[\varphi \mapsto(T, \sigma)])$ we define

$$
\operatorname{comp}^{i} B[\psi \mapsto \operatorname{glue}(a,[\varphi \mapsto t])] \operatorname{glue}\left(a_{0},\left[\varphi(i 0) \mapsto t_{0}\right]\right)=\operatorname{glue}\left(a_{1},\left[\varphi(i 1) \mapsto t_{1}\right]\right)
$$

where

$$
\begin{array}{rlr}
a_{1} & =\operatorname{comp}^{j} A(i 1)[\varphi(i 1) \mapsto \alpha j, \psi \mapsto a(i 1)] a_{1}^{\prime \prime} & \Gamma \\
t_{1} & =\operatorname{equiv}\left(\sigma(i 1),\left[\delta \mapsto t_{1}^{\prime}, \psi \mapsto t(i 1)\right], a_{1}^{\prime \prime}\right) \cdot 1 & \Gamma, \varphi(i 1) \\
\alpha & \left.=\operatorname{equiv}^{\prime} \sigma(i 1),\left[\delta \mapsto t_{1}^{\prime}, \psi \mapsto t(i 1)\right], a_{1}^{\prime \prime}\right) \cdot 2 & \Gamma, \varphi(i 1) \\
a_{1}^{\prime \prime} & =\operatorname{comp}^{j} A(i 1)[\delta \mapsto \omega j, \psi \mapsto a(i 1)] a_{1}^{\prime} & \Gamma \\
\omega & =\operatorname{pres}^{\sigma}[\psi \mapsto t] t_{0} & \Gamma, \delta \\
t_{1}^{\prime} & =\operatorname{comp}^{i} T[\psi \mapsto t] t_{0} & \Gamma, \delta \\
a_{1}^{\prime} & =\operatorname{comp}^{i} A[\psi \mapsto a] a_{0} & \Gamma \\
\delta & =\forall i . \varphi & \Gamma
\end{array}
$$

Name-free presentation

$$
\begin{aligned}
& \Gamma, \Delta \quad::=\quad()|\Gamma . A| \Gamma . \mathbb{I} \mid \Gamma, \varphi \\
& \varphi, \psi \quad::=0|1|(r=0)|(r=1)| \varphi \wedge \psi|\varphi \vee \psi| \varphi f \\
& r, s \quad::=0|1| \mathrm{q}|1-r| r \wedge s|r \vee s| r f \\
& t, u, A, B \quad:=\quad \mathrm{q}|\lambda t| \operatorname{app}(t, t)|t r|\langle \rangle t|\Pi A B| \Sigma A B|t, t| t .1 \mid t .2 \\
& ::=t f|\operatorname{comp} A[\varphi \mapsto u] t| \operatorname{Glue}(A,[\varphi \mapsto(T, u)])|\operatorname{Glue}(a,[\varphi \mapsto u])| p t \\
& p t \quad::=\quad \psi_{1} u_{1} \vee \cdots \vee \psi_{k} u_{k} \\
& f, g \quad::=\mathrm{p}|g f| 1|(f, u)|(f, r) \\
& \frac{\Gamma \vdash A}{\Gamma . A \vdash} \quad \frac{\Gamma \vdash}{\Gamma \cdot \mathbb{I} \vdash} \quad \frac{\Gamma \vdash \varphi: \mathbb{F}}{\Gamma, \varphi \vdash} \quad \frac{\Gamma \vdash A}{\Gamma . A \vdash \mathrm{q}: A \mathrm{p}} \quad \frac{\Gamma \vdash}{\Gamma \cdot \mathbb{I} \vdash \mathrm{q}: \mathbb{I}} \\
& \frac{\Gamma . A \vdash B}{\Gamma \vdash \Pi A B} \quad \frac{\Gamma \cdot A \vdash t: B}{\Gamma \vdash \lambda t: \Pi A B} \quad \frac{\Gamma \vdash t: \Pi A B \quad \Gamma \vdash u: A}{\Gamma \vdash \operatorname{app}(t, u): B[u]} \\
& \frac{\Gamma . A \vdash B}{\Gamma \vdash \Sigma A B} \quad \frac{\Gamma \vdash a: A}{\Gamma \vdash(a, b): \Sigma A B} \quad \frac{\Gamma \vdash z: \Sigma A B}{\Gamma \vdash z .1: A} \quad \frac{\Gamma \vdash z: \Sigma A B}{\Gamma \vdash z .2: B[z .1]} \\
& \begin{array}{lcc}
\Gamma \vdash A \quad \Gamma \vdash a_{0}: A \quad \Gamma \vdash a_{1}: A \\
\Gamma \vdash \text { Path } A a_{0} a_{1} & \frac{\Gamma \vdash A \quad \Gamma . \mathbb{I} \vdash t: A}{\Gamma \vdash\rangle t: \text { Path } A t[0] t[1]}
\end{array} \\
& \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1} \quad \Gamma \vdash r: \mathbb{I}}{\Gamma \vdash t r: A} \quad \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1}}{\Gamma \vdash t 0=a_{0}: A} \quad \frac{\Gamma \vdash t: \text { Path } A a_{0} a_{1}}{\Gamma \vdash t 1=a_{1}: A} \\
& \frac{\Gamma \vdash \varphi \quad \Gamma . \mathbb{I} \vdash A \quad \Gamma . \mathbb{I}, \varphi \mathrm{p} \vdash u: A \quad \Gamma \vdash a_{0}: A[0][\varphi \mapsto u[0]]}{\Gamma \vdash \operatorname{comp} A[\varphi \mapsto u] a_{0}: A[1][\varphi \mapsto u[1]]} \\
& \frac{\Gamma \vdash}{1: \Gamma \rightarrow \Gamma} \quad \frac{f: \Delta \rightarrow \Gamma \quad g: \Theta \rightarrow \Delta}{f g: \Theta \rightarrow \Gamma} \quad \frac{\Gamma \vdash A \quad f: \Delta \rightarrow \Gamma}{\Delta \vdash A f} \quad \frac{\Gamma \vdash t: A f: \Delta \rightarrow \Gamma}{\Delta \vdash t f: A f} \\
& \frac{f: \Delta \rightarrow \Gamma \quad \Gamma \vdash A \quad \Delta \vdash u: A \sigma}{(f, u): \Delta \rightarrow \Gamma . A} \quad \frac{f: \Delta \rightarrow \Gamma \quad \Delta \vdash r: \mathbb{I}}{(f, r): \Delta \rightarrow \Gamma . \mathbb{I}} \\
& \begin{array}{c}
f: \Delta \rightarrow \Gamma \quad \Delta \vdash \psi: \mathbb{F} \\
f: \Delta, \psi \rightarrow \Gamma
\end{array} \quad \begin{array}{lll}
f: \Delta \rightarrow \Gamma \quad \Gamma \vdash \varphi: \mathbb{F} & \Delta \vdash 1=\varphi f \\
f: \Delta \rightarrow \Gamma, \varphi
\end{array} \\
& 1 f=f 1=f \quad(f g) h=f(g h) \quad A 1=A \quad(A f) g=A(f g) \quad u 1=u \quad(u f) g=u(f g) \\
& (f, u) g=(f g, u g) \quad \mathrm{p}(f, u)=f \quad \mathrm{q}(f, u)=u \quad(f, r) g=(f g, r g) \quad \mathrm{p}(f, r)=f \quad \mathrm{q}(f, r)=r \\
& (\Pi A B) f=\Pi(A f)(B(f \mathrm{p}, \mathrm{q})) \quad(\Sigma A B) f=\Sigma(A f)(B(f \mathrm{p}, \mathrm{q})) \\
& \operatorname{app}(w, u) f=\operatorname{app}(w f, u f) \\
& \operatorname{app}(\lambda b, u)=b[u] \\
& w=\lambda(\operatorname{app}(w \mathrm{p}, \mathrm{q})) \\
& (\lambda b) f=\lambda(b(f \mathbf{p}, \mathbf{q})) \\
& (t r) f=t f r f \\
& (\rangle b) r=b[r] \\
& w=\langle \rangle(w \mathrm{p} q) \\
& (\rangle b) f=\langle \rangle b(f \mathrm{p}, \mathrm{q}) \\
& \left(t_{0}, t_{1}\right) f=\left(t_{0} f, t_{1} f\right) \quad(u, v) \cdot 1=u \\
& (u, v) \cdot 2=v \\
& (\mathrm{p}, \mathrm{q})=1 \\
& (t .1) f=t f .1 \\
& (t .2) f=t f .2
\end{aligned}
$$

We have used the defined operation $[u]=(1, u)$

Appendix 2: spheres

We define S^{1} by the rules.

$$
\begin{gathered}
\overline{\Gamma \vdash \mathrm{S}^{1}} \quad \overline{\Gamma \vdash \text { base }: \mathrm{S}^{1}} \quad \frac{\Gamma \vdash r: \mathbb{I}}{\Gamma \vdash \operatorname{loop}(r): \mathrm{S}^{1}} r \neq 0,1 \\
\frac{\Gamma, \varphi, i: \mathbb{I} \vdash u: \mathrm{S}^{1} \quad \Gamma \vdash u_{0}: \mathrm{S}^{1}[\varphi \mapsto u(i 0)]}{\Gamma \vdash \text { hcomp }^{i}[\varphi \mapsto u] u_{0}: \mathrm{S}^{1}} \varphi \neq 1
\end{gathered}
$$

We define the substitution base $f=$ base and $\operatorname{loop}(r) f=\operatorname{loop}(r f)$ if $r f \neq 0,1$ and $\operatorname{loop}(r) f=$ base if $r f=0$ or 1 .

Similarly we define (hcomp $\left.{ }^{i}[\varphi \mapsto u] u_{0}\right) f=\operatorname{hcomp}^{j}[\varphi f \mapsto u(f, i=j)] u_{0} f$ if $\varphi f \neq 1$ and (hcomp $\left.^{i}[\varphi \mapsto u] u_{0}\right) f=u(f, i=1)$ if $\varphi f=1$.

Using these operations, we can define

$$
\frac{\Gamma, \varphi, i: \mathbb{I} \vdash u: \mathrm{S}^{1} \quad \Gamma \vdash u_{0}: \mathrm{S}^{1}[\varphi \mapsto u(i 0)]}{\Gamma \vdash \operatorname{comp}^{i}[\varphi \mapsto u] u_{0}: \mathrm{S}^{1}[\varphi \mapsto u(i 1)]}
$$

by comp ${ }^{i}[\varphi \mapsto u] u_{0}=\operatorname{hcomp}^{i}[\varphi \mapsto u] u_{0}$ if $\varphi \neq 1$ and $\operatorname{comp}^{i}[\varphi \mapsto u] u_{0}=u(i 1)$ if $\varphi=1$.
We have a similar definition for S^{n} taking as constructors base and loop $\left(r_{1}, \ldots, r_{n}\right)$, all $r_{i} \neq 0,1$, with the substitution $\operatorname{loop}\left(r_{1}, \ldots, r_{n}\right) f=\operatorname{loop}\left(r_{1} f, \ldots, r_{n} f\right)$ if all $r_{i} f$ are $\neq 0,1$ and $\operatorname{loop}\left(r_{1}, \ldots, r_{n}\right) f=$ base if some $r_{i} f$ is 0 or 1 .

Appendix 3: propositional truncation

$$
\begin{array}{lll}
\frac{\Gamma \vdash A}{\Gamma \vdash \operatorname{inh} A} & \frac{\Gamma \vdash a: A}{\Gamma \vdash \operatorname{inc} a: \operatorname{inh} A} \quad & \frac{\Gamma \vdash u_{0}: \operatorname{inh} A \quad \Gamma \vdash u_{1}: \operatorname{inh} A \quad \Gamma \vdash r: \mathbb{I}}{\Gamma \vdash \operatorname{squash}\left(u_{0}, u_{1}, r\right): \operatorname{inh} A} r \neq 0,1 \\
& \frac{\Gamma, \varphi, i: \mathbb{I} \vdash u: \operatorname{inh} A}{\Gamma \vdash \operatorname{hcomp}^{i}[\varphi \mapsto u] u_{0}: \operatorname{inh} A} & \Gamma \vdash u_{0}: \operatorname{inh} A[\varphi \mapsto u(i 0)]
\end{array} \neq 1
$$

The substitution is then $\operatorname{squash}\left(u_{0}, u_{1}, r\right) f=\operatorname{squash}\left(u_{0} f, u_{1} f, r f\right)$ if $r f \neq 0,1$ and $\operatorname{squash}\left(u_{0}, u_{1}, r\right) f=$ $u_{0} f$ if $r f=0$ and squash $\left(u_{0}, u_{1}, r\right) f=u_{1} f$ if $r f=1$. Similarly we deifne (hcomp $\left.{ }^{i}[\varphi \mapsto u] u_{0}\right) f=$ $\operatorname{comp}^{j}[\varphi f \mapsto u(f, i=j)] u_{0} f$ if $\varphi f \neq 1$ and ($\left.\mathrm{hcomp}^{i}[\varphi \mapsto u] u_{0}\right) f=u(f, i=1)$ if $\varphi f=1$.

We can then define two operations

$$
\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma \vdash u_{0}: \operatorname{inh} A(i 0)}{\Gamma \vdash \operatorname{transp} u_{0}: \operatorname{inh} A(i 1)} \quad \frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, i: \mathbb{I} \vdash u: \operatorname{inh} A}{\Gamma, i: \mathbb{I} \vdash \text { squeeze } u: \operatorname{inh} A(i 1)}
$$

satisfying

$$
\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, i: \mathbb{I} \vdash u: \operatorname{inh} A}{\Gamma \vdash(\text { squeeze } u)(i 0)=\operatorname{transp} u(i 0): \operatorname{inh} A(i 1)} \quad \frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, i: \mathbb{I} \vdash u: \operatorname{inh} A}{\Gamma \vdash(\text { squeeze } u)(i 1)=u(i 1): \operatorname{inh} A(i 1)}
$$

by the equations

$$
\begin{array}{ll}
\operatorname{transp}(\operatorname{inc} a) & =\operatorname{inc}\left(\operatorname{comp}^{i} A[] a\right) \\
\operatorname{transp}\left(\operatorname{squash}\left(u_{0}, u_{1}, r\right)\right) & \left.=\operatorname{squash}^{j} \operatorname{transp} u_{0}, \operatorname{transp} u_{1}, r\right) \\
\operatorname{transp}\left(\operatorname{hcomp}^{j}[\varphi \mapsto u] u_{0}\right) & =\operatorname{hcomp}^{j}[\varphi \mapsto \operatorname{transp} u]\left(\operatorname{transp} u_{0}\right) \\
& =\operatorname{inc}\left(\operatorname{comp}^{j} A(i \vee j)[(i=1) \mapsto a(i 1)] a\right) \\
\text { squeeze (inc } a) & =\operatorname{squash}\left(\operatorname{squeeze}_{0}, \text { squeeze } u_{1}, r\right)
\end{array}
$$

and we define squeeze $\left(\mathrm{hcomp}^{j}\left[\delta \mapsto u, \varphi_{0} \wedge(i=0) \mapsto u_{0}, \varphi_{1} \wedge(i=1) \mapsto u_{1}\right] v\right)$ as

$$
\text { hcomp }^{j}\left[\delta \mapsto \text { squeeze } u, \varphi_{0} \wedge(i=0) \mapsto \operatorname{transp} u_{0}, \varphi_{1} \wedge(i=1) \mapsto u_{1}\right] \text { (squeeze } v \text {) }
$$

using the fact that any formula φ has a decomposition $\delta \vee\left(\varphi_{0} \wedge(i=0)\right) \vee\left(\varphi_{1} \wedge(i=1)\right)$ where δ is the disjunction of all faces of φ not containing i, and φ_{0} (resp. φ_{1}) the disjunction of all faces α such that $\alpha \wedge(i=0)($ resp. $\alpha \wedge(i=1))$ is a face of φ.

Using these operations, we can define

$$
\frac{\Gamma, i: \mathbb{I} \vdash A \quad \Gamma, \varphi, i: \mathbb{I} \vdash u: \operatorname{inh} A \quad \Gamma \vdash u_{0}: \operatorname{inh} A(i 0)[\varphi \mapsto u(i 0)]}{\Gamma \vdash \operatorname{comp}^{i}[\varphi \mapsto u] u_{0}: \operatorname{inh} A(i 1)[\varphi \mapsto u(i 1)]}
$$

by $\Gamma \vdash \operatorname{comp}^{i}[\varphi \mapsto u] u_{0}=\operatorname{hcomp}^{i}[\varphi \mapsto$ squeeze $u]\left(\right.$ transp $\left.u_{0}\right): \operatorname{inh} A(i 1)$ if $\varphi \neq 1$ and $\Gamma \vdash \operatorname{comp}^{i}[\varphi \mapsto$ u] $u_{0}=u(i 1): \operatorname{inh} A(i 1)$ if $\varphi=1$.

Given $\Gamma \vdash B$ and $\Gamma \vdash q:(x y: B) \rightarrow$ Path $B x y$ and $f: A \rightarrow B$ we define $g:$ inh $A \rightarrow B$ by the equations

$$
\begin{array}{ll}
g(\text { inc } a) & =f a \\
g\left(\operatorname{squash}\left(u_{0}, u_{1}, r\right)\right) & =q\left(g u_{0}\right)\left(g u_{1}\right) r \\
g\left(\text { hcomp }^{j}[\varphi \mapsto u] u_{0}\right) & =\operatorname{comp}^{j} B[\varphi \mapsto g u]\left(g u_{0}\right)
\end{array}
$$

Appendix 4: How to build a path from an equivalence

Given $\Gamma \vdash \sigma: \operatorname{Equiv}(A, B)$ we define

$$
\Gamma, i: \mathbb{I} \vdash E=\operatorname{glue}\left(B,\left[(i=0) \mapsto \sigma,(i=1) \mapsto \operatorname{id}_{B}\right]\right)
$$

where $\operatorname{id}_{B}: \operatorname{Equiv}(B, B)$ is defined as

$$
\operatorname{id}_{B}=\left(\lambda x: B \cdot x, \lambda x: B \cdot\left(\left(x, 1_{x}\right), \lambda u:(y: B, \text { Path } B x y) \cdot\langle i\rangle(u \cdot 2 i,\langle j\rangle u \cdot 2(i \wedge j))\right)\right.
$$

We have then $\Gamma, i: \mathbb{I},(i=0) \vdash E=A$ and $\Gamma, i: \mathbb{I},(i=1) \vdash E=B$, so that $E(i 0)=A$ and $E(i 1)=B$.
If we now introduce an universe U by reflecting all typing rules and

$$
\overline{\Gamma \vdash U} \quad \frac{\Gamma \vdash A: U}{\Gamma \vdash A}
$$

we can define Equiv $(A, B) \rightarrow \operatorname{Path} U A B$ by $\lambda u: \operatorname{Equiv}(A, B) .\langle i\rangle \operatorname{glue}\left(B,\left[(i=0) \mapsto \sigma,(i=1) \mapsto \mathrm{id}_{B}\right]\right)$.

Appendix 5: Semantics

Let \mathcal{C} the following category. The objects are finite sets I, J, \ldots A morphism $\operatorname{Hom}(J, I)$ is a map $I \rightarrow \mathrm{dM}(J)$ where $\mathrm{dM}(J)$ is the free de Morgan algebra on J. The presheaf \mathbb{I} is defined by $\mathbb{I}(J)=\mathrm{dM}(J)$. The presheaf \mathbb{F} is defined by taking $\mathbb{F}(J)$ to be the free distributive lattice generated by formal elements $(j=0),(j=1)$ for j in J, with the relations $(j=0) \wedge(j=1)=0$.

We interpret context as presheaves over the category \mathcal{C}. A dependent type $\Gamma \vdash A$, non necessarily "fibrant", is interpreted as a family of sets $A \rho$ for each I and $\rho \in \Gamma(I)$ together with restriction maps $A \rho \rightarrow A \rho f, u \longmapsto u f$ for $f: J \rightarrow I$, satisfying $u 1_{I}=u$ and $(u f) g=u(f g) \in \Gamma(K)$ if $g: K \rightarrow J$. An element $\Gamma \vdash a: A$ is interpreted by a family $a \rho \in A \rho$ for I and $\rho \in \Gamma(I)$, such that $(a \rho) f=a(\rho f) \in A \rho f$ if $f: J \rightarrow I$.

If $\Gamma \vdash A$, we interpret $\Gamma . A$ as the cubical set defined by taking $(\Gamma . A)(I)$ to be the set of element ρ, u such that $\rho \in \Gamma(I)$ and $u \in A \rho$. If $f: J \rightarrow I$ the restriction map is defined by $(\rho, u) f=\rho f, u f$.

If $\Gamma . A \vdash B$ and $\Gamma \vdash a: A$ we define $\Gamma \vdash B[a]$ by taking $B[a] \rho$ to be the set $B(\rho, a \rho)$.
If $\Gamma \vdash \varphi: \mathbb{F}$ then $\varphi \rho \in \mathbb{F}(I)$ for each $\rho \in \Gamma(I)$. We define $(\Gamma, \varphi)(I)$ to be the set $\rho \in \Gamma(I)$ such that $\varphi \rho=1$. (In particular $(\Gamma, 0)(I)$ is empty.)

If $\Gamma \vdash A$ and ρ is in $\Gamma(I)$ and φ is in $\mathbb{F}(I)$, we define a partial element of $A \rho$ of extent φ to be a family of elements u_{f} in $A \rho f$ for $f: J \rightarrow I$ such that $\varphi f=1$, satisfying $u_{f} g=u_{f g}$ if $g: K \rightarrow J$.

We define next when $\Gamma \vdash A$ has a composition structure. This is given by a family of operations comp $^{i} A \rho[\varphi \mapsto u] a_{0}$ in for ρ in $\Gamma(I, i), \varphi$ in $\mathbb{F}(I)$ and u a partial element of $A \rho$ of extent φ and a_{0} in $A \rho(i 0)$ such that $a_{0} f=u_{f}(i 0)$ if $\varphi f=1$. This element should satisfy (comp $\left.{ }^{i} A \rho[\varphi \mapsto u] a_{0}\right) f=u_{f}(i 1)$ if $\varphi f=1$. Furthermore, we have the uniformity condition

$$
\left(\operatorname{comp}^{i} A \rho[\varphi \mapsto u] a_{0}\right) g=\operatorname{comp}^{j}(A \rho(g, i=j))[\varphi g \mapsto u(g, i=j)] a_{0} g
$$

if $g: J \rightarrow I$ and j not in J.
It is then possible to give the semantics of the composition operations. If $\Gamma . \mathbb{I} \vdash A$ and $\Gamma \vdash \varphi$ and $\Gamma . \mathbb{I}, \varphi \mathrm{p} \vdash u: A$ and $\Gamma \vdash a_{0}: A[0][\varphi \mapsto u[0]]$ and ρ is in $\Gamma(J)$ we define

$$
\left(\operatorname{comp} A[\varphi \mapsto u] a_{0}\right) \rho=\operatorname{comp}^{j} A(\rho, j)[\varphi \rho \mapsto u(\rho, j)] a_{0} \rho
$$

for j not in J.

Appendix 6: Universes have a composition operation

Given $\Gamma \vdash A, \Gamma \vdash B$ and $\Gamma, i: \mathbb{I} \vdash E$ such that $E(i 0)=A$ and $E(i 1)=B$ we explain first how to buid $\Gamma \vdash$ equiv $^{i} E: \operatorname{Equiv}(A, B)$.

We define

$$
\Gamma \vdash f: A \rightarrow B \quad \Gamma \vdash g: B \rightarrow A \quad \Gamma, i: \mathbb{I} \vdash u: A \rightarrow E \quad \Gamma, i: \mathbb{I} \vdash v: B \rightarrow E
$$

such that $u(i 1)=f$ and $u(i 0)=\lambda x: A . x$ and $v(i 0)=g$ and $v(i 1)=\lambda y: B . y$. The definitions are

$$
\begin{aligned}
f & =\lambda x: A . . c o m p^{i} E[] x \\
g & =\lambda y: B . \operatorname{comp}^{i} E(1-i)[] y \\
u & =\lambda x: A . \text { fill }^{i} E[] x \\
v & =\lambda y: B \cdot \text { fill }^{i} E(1-i)[] y
\end{aligned}
$$

We then show that two elements $\left(x_{0}, \beta_{0}\right)$ and $\left(x_{1}, \beta_{1}\right)$ in $(x: A$, Path $B y(f x))$ are path-connected. This is obtained by the definitions

$$
\begin{aligned}
\omega_{0} & =\text { comp }^{i} E(1-i)\left[(j=0) \mapsto v y,(j=1) \mapsto u x_{0}\right]\left(\beta_{0} j\right) \\
\omega_{1} & =\text { comp }^{i} E(1-i)\left[(j=0) \mapsto v y,(j=1) \mapsto u x_{1}\right]\left(\beta_{1} j\right) \\
\theta_{0} & =\text { fill }^{i} E(1-i)\left[(j=0) \mapsto v y,(j=1) \mapsto u x_{0}\right]\left(\beta_{0} j\right) \\
\theta_{1} & =\text { fill }^{i} E(1-i)\left[(j=0) \mapsto v y,(j=1) \mapsto u x_{1}\right]\left(\beta_{1} j\right) \\
\omega & =\operatorname{comp}^{j} A\left[(k=0) \mapsto \omega_{0},(k=1) \mapsto \omega_{1}\right](g y) \\
\theta & =\text { fill }^{j} A\left[(k=0) \mapsto \omega_{0},(k=1) \mapsto \omega_{1}\right](g y)
\end{aligned}
$$

so that we have $\Gamma, j: \mathbb{I}, i: \mathbb{I} \vdash \theta_{0}: E$ and $\Gamma, j: \mathbb{I}, i: \mathbb{I} \vdash \theta_{1}: E$ and $\Gamma, j: \mathbb{I}, k: \mathbb{I} \vdash \theta: A$. If we define

$$
\delta=\operatorname{comp}^{i} E\left[(j=0) \mapsto v y,(j=1) \mapsto u \alpha,(k=0) \mapsto \theta_{0},(k=1) \mapsto \theta_{1}\right] \theta
$$

we then have $\langle k\rangle(\alpha,\langle j\rangle \theta)$: Path $(x: A$, Path $B y(f x))\left(x_{0}, \beta_{0}\right)\left(x_{1}, \beta_{1}\right)$ as desired.
Since (x : A, Path $B y(f x)$) is inhabited, since it contains the element $(g y, \gamma)$ where $\gamma=$ $\langle k\rangle$ comp $^{i} E[(k=0) \mapsto v y,(k=1) \mapsto u(g y)]\left(\begin{array}{ll}g & y\end{array}\right)$, we have shown that the fiber of f at y is contractible. Hence f is an equivalence and we have built equiv ${ }^{i} E$: Equiv (A, B).

If we now introduce an universe U by reflecting all typing rules and

$$
\overline{\Gamma \vdash U} \quad \frac{\Gamma \vdash A: U}{\Gamma \vdash A}
$$

then we can define comp ${ }^{i} U[\varphi \mapsto E] A_{0}=\operatorname{glue}\left(A_{0}, \varphi \mapsto\left(E(i 1)\right.\right.$, equiv $\left.\left.^{i} E(1-i)\right)\right)$.

Appendix 7: Univalence

We have shown how to build maps Path $U A B \rightarrow \operatorname{Equiv}(A, B)$ and $\operatorname{Equiv}(A, B) \rightarrow$ Path $U A B$. Using only the glueing operation, it has been shown formally by Simon Huber and Anders Mörtberg that these two maps are homotopy inverse.

Since one can prove formally that a map with a homotopy inverse is an equivalence and that the map Path $U A B \rightarrow \operatorname{Equiv}(A, B)$ is equal to the one we get by path elimination and the canonical proof of Equiv (A, A), we get univalence for Path.

It can then be shown formally that univalence for Id $U A B$ holds as well.
Another approach is to show that the type $(X: U$, Equiv $(X, A))$ is contractible. (This is one possible way to state the univalence axiom.) For this it is enough to show that any partial element of this type $\varphi \vdash(T, \sigma)$ can be extended to a total element. And for this, it is enough to show that the map unglue : $B \rightarrow A$, where $B=\operatorname{glue}([\varphi \mapsto(T, \sigma)], A)$ is an equivalence.

For showing this, we give $\psi \vdash b=\operatorname{glue}([\varphi \mapsto b], a): B$ and $u: A[\psi \mapsto a]$ and we explain how to build

$$
\tilde{b}: B[\psi \mapsto b] \quad \alpha: \text { Path } A u \text { (unglue } \tilde{b})[\psi \mapsto\langle i\rangle u]
$$

Since $\varphi \vdash \sigma: T \rightarrow A$ is an equivalence and we have $\psi, \varphi \vdash b: T$ and $\psi, \varphi \mapsto \sigma b=a: A$ we can find $\varphi \mapsto t: T[\psi \mapsto b]$ and $\varphi \vdash \beta$: Path $A u(\sigma t)\left[\psi \mapsto\langle i\rangle u\right.$. We then define $\tilde{a}=\operatorname{comp}^{i} A[\varphi \mapsto \beta i, \psi \mapsto u] u$ and $\alpha=$ fill $^{i} A[\varphi \mapsto \beta i, \psi \mapsto u] u$. We then conclude by taking $\tilde{b}=\operatorname{glue}([\varphi \mapsto t], \tilde{a})$.

