
HOW TO MEASURE BOREL SETS

THIERRY COQUAND

Abstrat. The goal of this note is to desribe Borel's de�nition of measure [2℄. This

de�nition is not faithfully desribed in most of the historial aount of measure theory.

With this de�nition the uniity of measure is no problem, while the existene an be ex-

pressed as a oherene problem. This was learly reognised by Lusin [6℄, who formulated

this problem as \Borel measure's problem". Lebesgue's de�nition of measure solves in-

diretly this problem, but it may be interesting, as suggested by Lusin, to searh for a

diret solution. We give an example of suh a solution.

1. Borel's measure funtion

This de�nition appears in \Le�ons sur la Th�eorie des Fontions", 1898. It is an early

example of a generalised indutive de�nition and of a generalised reursive de�nition. We

onsider only subsets of (0; 1). The starting point is the measure of open subsets. It was

known then that any open an be written as a ountable union of disjoint open intervals

(onneted omponents). It is lear that the measure �(r; s) of an open interval should

be s � r. We take then in a natural way the measure of an open set to be the sum of

the measure of all its onneted omponents. It was the �rst satisfatory de�nition of

measure of arbitrary open subsets. Starting from this idea, Borel de�nes �rst when a

subset is measurable (alled well-de�ned) and seond what is its measure. The de�nition

is as follows.

(1) (r; s) is well-de�ned and �(r; s) is s� r

(2) If A

n

disjoint family of well-de�ned sets A =

S

A

n

is well-de�ned, and �A = ��A

n

:

(3) If A � B are well-de�ned, B � A is well-de�ned, and �(B � A) = �B � �A:

For instane, the measure of a singleton is 0. Indeed, if x 2 (0; 1) we have �(0; x) = x and

�(x; 1) = 1�x and hene �(0; x)[(x; 1) = x+1�x = 1. Sine fxg is (0; 1)�((0; x)[(x; 1)

it follows that �fxg = 1 � 1 = 0. It follows that the measure of any ountable subset is

also 0. We have

�(0; 1=2℄ = 1=2; �(1=2; 3=4℄ = 1=4;

�(3=4; 7=8℄ = 1=8; �(7=8; 15=16℄ = 1=16; : : :

and hene

�((0; 1=2℄ [ (1=2; 3=4℄ [ (3=4; 7=8℄ [ : : : )) = 1

This de�nition ontains as a speial ase the measure of an open set

�((0; 1=2) [ (1=2; 3=4) [ (3=4; 7=8) [ : : : )) = 1
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Notie the ruial di�erene with the usual de�nition of Borel subsets: the union has

to be disjoint. In this way, we get a learly motivated de�nition With the usual de�nition

(any ountable union), this lear motivation is lost.

Of ourse, it is then not diÆult to show the equivalene with the usual de�nition (with

arbitrary ountable union) by a simple indution. The usual de�nition may read as follow

(1) (r; s) is a Borel set

(2) If A

n

family of Borel sets A =

S

A

n

is a Borel set

(3) If A is a Borel set so is (0; 1)� A

It is lear that any well-de�ned set is Borel. Conversely, it is possible to show by

indution that if A and B are well-de�ned then so is A \ B. If follows that an arbitrary

union A

1

[ A

2

[ A

3

: : : an be written as a disjoint union A

1

[ (A

2

� (A

1

\ A

2

)) [ : : : of

well-de�ned sets.

We see then that it is misleading to say the Borel did not prove the uniity of the

measure, though it is stated in some aount of early measure theory that a problem with

Borel's de�nition is that he did not prove uniity nor existene of his notion of measure.

With Borel's approah the uniity is diret: the lauses (1), (2) and (3) in the de�nition of

well-de�ned sets spei�es in a unique way the measure funtion.

This is losely onneted to the fat that usual presentation of Borel's de�nition does not

stress the point that Borel was using only disjoint unions in his de�nition. If we start from

the seond de�nition of Borel sets, it is indeed not at all lear how to de�ne the measure

and why it may be unique. This makes the disovery of Borel less lear and less beautiful

than it was.

It is interesting to ompare with Jordan-Peano's de�nition of measure. This de�nition

started �rst with the measure of �nite union of intervals, and then de�ned the outer and

inner measure, but with �nite union: the outer measure �

�

A is the g.l.b. of all measure of

�nite union of intervals that ontain A. The inner measure is then de�ned as

�

�

A = 1� �

�

((0; 1)� A)

and a set A is measurable i� �

�

A = �

�

A. A problem with this de�nition is that the set R

of rationals in (0; 1) is not measurable: indeed we have �

�

R = 1 but �

�

R = 0, beause the

outer measure of a dense subset has to be 1 and both R and its omplement are dense. This

problem is solved in a satisfatory and elegant way by Borel. As Bourbaki said, Borel's

de�nition \opens a new era in Analysis".

2. Coherene problem

There is however an important problem with Borel's approah. Lusin [6℄ listed three

problems

(1) Does the sum ��A

n

onverge in the lause (2) of Borel's de�nition

(2) Can �B � �A be negative in the lause (3) of Borel's de�nition

(3) Is the de�nition oherent

To give a simple example of the oherene problem we have

(0; 1=2℄ [ (1=2; 3=4℄ [ (3=4; 7=8℄ [ � � � = (0; 1)
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and there are a priori two ways of omputing the measure of the set (0; 1). As an open

interval it has the measure 1 � 0 = 1. As a disjoint union, we expet also it to have the

measure

1=2� 0 + 3=4� 1=2 + � � � = 1=2 + 1=4 + : : :

Fortunately, in this ase, these two ways are ompatible and give the same answer 1. But

are we sure that this will always be the ase? This is a typial oherene problem.

This problem was reognized learly by Borel. Atually it is part of the general philos-

ophy behind this de�nition, whih originates from Drah. We write \axiomatially" the

essential properties that the measure should have This de�nes a theory of a new objet In

order to justify the introdution of this new objet, it has to be shown that this theory is

not inonsistent. Borel ites Drah's exposition of Galois theory as a motivation of suh an

approah and the importane of the point of view is stressed by Borel . This is remarkably

similar (but in 1898!) to Hilbert's notion of ideal elements in proof theory. We shall later

on analyse what logial priniple is needed to ensure the onsisteny of this de�nition.

Did Borel solve this oherene problem? Not quite. He limits himself to a proof of Heine-

Borel overing theorem and said later that a omplete proof of oherene would have been

\long and tedious".

3. Lebesgue solution

The oherene problem was solved indiretly by Lebesgue 1902. The solution is similar

to Jordan-Cantor's de�nition, but uses in a ruial way the orret de�nition of measure of

open set that we have seen above. The outer measure is now the g.l.b. of open supersets,

�

�

A =

^

U open; A�U

�(U)

while the inner measure an be de�ned as

�

�

A = 1� �

�

((0; 1)� A)

Lebesgue says then that A is measurable i� �

�

(A) = �

�

(A) and then the measure of A is

the ommon value

�A = �

�

A = �

�

A

In this approah, by de�nition, if A is measurable

�A =

^

U open; A�U

�(U)

Suh a measure is alled regular. All urrent approah to measure theory, starting from

Young (1911), Daniell, Stone, Bourbaki are based on this fundamental idea. One replaes

open subsets by lower semi-ontinuous funtions, but the essential idea stays the same.

The extension theorem attributed to Caratheodory [4℄ is also based on the idea of using

outer measure with ountable union of basi sets.

It is quite interesting thus that it has been observed by J.D.M. Wright [?℄ that in some

ases of vetor-valued measure, the measure is not regular. We shall give suh an example

below over Cantor spae. The measure still has the weaker property that a measure of an
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open is the supremum of the measure of its ompat subsets, but there is a subset whih is

measurable of measure 0 and dense, and so of outer measure 0. This indiates a weakness

of the outer measure approah, whih annot thus be used in the ase of vetor-valued

measure. The indutive de�nition of measure that we present below, following Borel, does

not have this problem.

Lebesgue showed that these notions have the required properties of the axiomati def-

inition of Borel. In partiular, this solves the oherene problem of Borel. Furthermore,

it an be shown that if A is measurable then one an �nd well-de�ned subsets B

1

and B

2

suh that

B

1

� A � B

2

and then �A = �B

1

= �B

2

. Lebesgue hanged then the \measurable" of Borel to \B

measurable" and Borel hanged later on the B-measurable to \well-de�ned". This stresses

the fat that, aording to the intuition of Borel, the olletion of all Lebesgue measurable

sets is a little vague. This intuition was on�rmed by work on set theory: it is independent

of the usual axiom of set theory whether or not all projetive sets (a lass of subsets of

(0; 1) that may seem quite reasonable) are Lebesgue measurable or not.

4. Borel's measure problem

Lusin [6℄ notied that there is a di�erene between Borel's purely indutive de�nition,

and Lebesgue's solution. Cannot we have a diret indutive justi�ation of an indutive

de�nition of measure of Borel sets?? This is Borel's measure problem

We present a solution whih is indutive and use only onstrutive logi.

5. A possible indutive solution

First we reformulate slightly the problem. Instead of working with (0; 1) we shall work

with Cantor spae 
, the spae of all in�nite sequene of 0 and 1, spae whih is important

in probability theory. The basi open sets (losed and open subsets) play the role of open

intervals. They are �nite disjoint union of simple subsets of the form U

�

whih is the

set of all sequenes extending a given �nite sequene �. For instane U

00

is the set of all

sequenes starting by 00. We take the measure of U

�

to be 2

�n

where n is the length of �

and this de�nes uniquely the measure of all basi open sets. Furthermore the measure of


 is 1.

It may be interesting to note that this spae 
 an be desribed in purely syntatial

term. The olletion of basi open sets form a Boolean algebra B that an be desribed

purely syntatially without referenes to in�nite sequenes. The measure � is then a fun-

tion B ! [0; 1℄ satisfying the fundamental equality, whih expresses that � is a valuation

�(A \ B) + �(A [ B) = �A+ �B

The Boolean algebra B is the Lindenbaum-Tarski algebra of propositional logi.

We an now de�ne in a formal/syntatial way Borel subsets of 
: it is a symboli

in�nitary expression built from simple sets by repeated formal union and intersetion

4



Inlusion an be de�ned via an in�nitary sequent alulus following Novikov,Lorenzen,Shutte.

What we get is the Lindenbaum-Tarski algebra of propositional !-logi (Sott-Tarski). This

is the approah taken in Martin-L�of \Notes on Construtive Mathematis" for de�ning

Borel sets.

To take an example, we onsider the set of normal sequenes, whih is a Borel subset of


. De�ne r

i

(!) = 2!

i

� 1 and s

n

= �

i�n

r

i

and then

b

n;k

= f! 2 
 j j

s

n

(!)

n

j �

1

k

g

whih is a simple set b

n;k

2 B The Borel subset

N =

^

k

_

m

^

n�m

b

n;k

is the set of normal sequenes. We see that it is de�ned, not as a set of sequenes, but as

a in�nitary symboli expression. This approah �ts with the terminlogy of \well-de�ned"

set, used by Borel.

If k

n

is stritly inreasing sequene of integers, then

N

0

�

_

n�m

b

0

n;k

n

^

n�m

b

n;k

n

� N

An essential property of the olletion of Borel sets is the following initiality property.

This property is known in logi as Rasiowa-Sikorski lemma, or ompletness of propositional

!-logi. Let B

1

be the �-algebra of Borel subsets of 


Theorem: B

1

is the free �-algebra on B

B

?

B

1

-

A

f

i

�

�

�

�

�

�

�

�

��

9!

�

f

We an de�ne de�ne the algebra of Borel sets as the free �-algebra on B. This de�nition

has the following suggestive interpretation: we introdue in�nitary symboli expressions

and use freely the law of �-omplete Boolean algebras.

We have to show that this does not introdue inonsisteny. In \Notes on Construtive

Mathematis" this is justi�ed via a ut-elimination theorem, similar to Gentzen's ut-

elimination theorem.

This expresses well Borel's intuition. Futhermore it points out towards a way to solve

the oherene problem: we should try to de�ne the measure of Borel sets following the
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initiality property. This would solve the oherene problem in an elegant way. Before

showing how to do this, we shall express the initiality property in another way, looking at

the olletion of bounded Baire funtions over Cantor spae 
 instead of the olletion of

Borel subsets. These subsets an be reovered as the bounded Baire funtions taking only

values 0 or 1.

6. Measures on Boolean algebras

Already Tarski (1929) showed that it is onvenient to \linearize" the problem of measure

We replae the Boolean algebra of basi event by the spae of basi random variables

V (B)

The elements of V (B) an be seen as �nite formal sums �q

i

b

i

B ! V (B) is the universal valuation!

The measure � on B an be seen as a positive linear funtional E : V (B) ! Q (expe-

tation)

Riesz spae

V (B) is an example of a Riesz spae

C(X) is another example

Ordered vetor spae

Any two elements have a sup

One an onsider also ommutative ordered monoid that are latties

7. Riesz spae

Very basi struture, due to Frederik Riesz (1928)

Rih properties: for instane, any Riesz spae is a distributive lattie

Cover very di�erent lass of examples: monoid of natural numbers for multipliation

and divibility as ordering, and C(X)

The basi property

x _ y + x ^ y = x + y

naturally onnets with the de�nition of measure on Boolean algebras

�(x _ y) + �(x ^ y) = �(x) + �(y)

On a monoid, we de�ne x ? y i� x ^ y = 0

Eulides' lemma: if x � y + z and x ? z then x � y

This holds for numbers and for ontinuous funtions!

8. Bounded Baire funtions

Strong unit: element 1 suh that for any x

�n � 1 � x � n � 1

for some n

Dedekind �-omplete: any bounded inreasing sequene has a sup

Theorem: the spae B(
) of bounded Baire funtions on 
 is the �-ompletion of V (B).
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Baire funtions: �rst ontinuous funtions, then we lose by (bounded) pointwise limits

The theorem is quite lose to Rasiowa-Sikorski lemma; also very lose to ompletness of

propositional !-logi, and lose to Loomis-Sikorski representation of �-omplete algebras

9. How to define measure indutively

We let M

I

be the spae of funtionals l on V (B)

�nI(f) � l(f) � nI(f)

for f � 0

We de�ne I

f

2 M

I

I

f

(g) = I(fg)

Main remark: I

f

1

_f

2

is I

f

1

_ I

f

2

By initiality f 7�! I

f

extends to B(
)

So if f Baire funtions and g 2 B(V ) we an onsider I

f

(g)

In partiular I

f

(1) is the integral of f

Notie that the initiality states exatly the monotone onvergene theorem!

10. Construtive Probability Theory

b

n;k

= f! 2 
 j j

s

n

(!)

n

j �

1

k

g

N =

^

k

_

m

^

n�m

b

n;k

If k

n

stritly inreasing

N

0

�

_

n�m

b

0

n;k

n

Lemma: We an �nd k

n

suh that ��(b

0

n;k

n

) onverges

Theorem: (Borel) �

1

(N) = 1
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