
Higher Inductive Types as cubical sets

February 11, 2015

Introduction

We explain how to interpret propositional truncation as an operation on cubical sets. While it is reason-
ably clear how to do it for “closed” types (and the idea was presented in [1]), there is a subtle issue for
this intepretation over a context.

1 Cubical sets

Let C be the following category. The objects are finite sets I, J,K, . . . thought of as finite sets of
symbols/names/directions. A morphism I → J is a map I → dM(J), where J is the free de Morgan
algebra on J . If f : I → J and g : J → K we write fg : I → K the composition of f and g. We write
1 : I → I the identity map. A cubical set is a presheaf on Copp.

A cubical set X is thus given by a family of sets X(I) together with a restriction map

X(I)→ X(J)

u 7−→ uf

such that u1 = u and (uf)g = u(fg). We think of the elements of X(I) for I = i1, . . . , in as element
u = u(i1, . . . , in) depending on i1, . . . , in and the restriction operation uf as a substitution. For instance
an element u = u(i, j) in X(i, j) represents a square, and if (i0) : i, j → j is the map sending i to 0, then
u(i0) is the face u(0, j) of this square. If (i = j) : i, j → j is the map sending i to j then u(i = j) is the
diagonal u(j, j).

Any topological space X defines a cubical set, by taking X(I) to be the set of continuous maps
[0, 1]I → X.

If f : I → J and A is any de Morgan algebra, then there is a map AJ → AI since we have a canonical
map AJ → AdM(J). In particular we can define a functor Copp → Top, I 7−→ [0, 1]I .

The interval I is the cubical set defined by I(J) = dM(J). This defines a functor since any map
I → dM(J) corresponds exactly to one map of de Morgan algebra dM(I) → dM(J). We can think of I
as an abstract representation of the unit real interval [0, 1], and we have operations i∧ j, i∨ j, 1− i that
are abstract representations of the operations min(i, j), max(i, j), 1− i.

We write `I A if A is a preshaf on the slice category Copp/I. If I is empty, we get back a cubical
set. If I = i then A = A(i) represents a “line” connecting the cubical sets A(0) and A(1). In general,
if I = i1, . . . , in then A represents a hypercube. Concretely, A is given by a family of sets Af indexed
by f : I → J together with a family of restriction maps u 7−→ ug, Af → Afg for g : J → K such that
u1 = u and (ug)h = u(gh) if h : K → L. If `I A and f : I → J we can consider `J Af which is defined
by (Af)g = A(fg) for g : J → K.

We write `I a : A to mean that a is an element in the set A1. It then defines a family of elements
af in Af .

If f : I → J is an inclusion then this map has a retraction in C and hence the corresponding map
A(I)→ A(J), u 7−→ uf is an injection for any cubical set I. We adopt the convention of writing simply
u for uf in this case, if u is in A(I).

1



2 Composition

If we have `I A, we say that A has composition if there exists a family of composition operations
compj~u(u0) in Af(j1) for u0 in Af(j0) and uα in Afα, which satisfies the uniformity condition

compj~u(u0)g = compk~u(g,j=k)(u0g)

if g : J − j → K and k is not in K. We also require the regularity condition compj~u(u0) = u0 if Af and
~u are independent of j, i.e. Af(j0)ιj = Af and ~u(j0)ιj = ~u.

In the case where ~u is empty we have a transport function Af(j0)→ Af(j1).

3 Circle

We describe S1 as a higher inductive type.
We need to define a set S1(I) for each finite set of symbols I. An element of this set is

1. either base

2. or loop ϕ where ϕ is an element of dM(I) different from 0, 1

3. or of the form compi(~u, u0) where i not in I and u0 is in S1(I) and uα is in S1(Iα, i), and such that
uα(i0) = u0α

Thus the element of S1(I) are defined by these generators together with the relation that we have
compi(~u, u0) = u0 if all uα are independent of i.

We define recursively on u in S1(I) at the same time the element uf in S1(J) if f : I → J . In this way
we interpret ` S1 with ` base : S1 and `i loop i : S1. For the cubical set S1 it is decidable if u ∈ S1(I) is
independent or not of some element i in I.

Given S1 ` F it is also possible to define a section ` s : (Πx : S1)F (x) if we give ` b : F base and
`i l : F (loop i). Furthermore, we have ` s base = b : F base and `i s (loop i) = l : F (loop i).

4 Propositional truncation

We describe now the propositional truncation as an element of type U → U . We define U(I) to be
the set of small A such that `I A. Concretely A is a family of small sets Af with restriction maps
Af → Afg, u 7−→ uf satistying u1 = u and (uf)g = u(fg). Given such a structure A, we have to define
a family of sets inh(A)f . An element of inh(A)f is defined inductively as before, it is

1. either inc u with u in the set Af

2. or squash ϕ u0 u1 with ϕ in dM(J) and u0, u1 in inh(A)f

3. or of the form compj(~u, u0) where j not in J and u0 is in inh(A)f and uα is in inh(A)fιjα where
ιj is the injection J → J, j

It is then possible to define ug in inh(A)fg for g : J → K by induction on u in inh(A)f . We also have
inh(Af)g = inh(A)fg and hence we have defined a natural transformation inh : U → U .

What is subtle is the third clause, since we do not require directly inh(A) to have a composition
operation.

Instead we have to show that the three conditions imply that inh(A) has composition operation if A
has composition operation. The issue here seems to be closely connected to Lemmas 6.2.3 and 6.2.4 in
[2].

We first show that inh(A) has transport, that is, we can define compj(v0) in inh(A)f(j1) if v0 is
in inh(A)f(j0). Let tr be the transport function v 7−→ compj(v0). The definition of tr(v0) is done by
induction on v0:

1. in the case where v0 is in the form inc(a0) we only need that A has transport

2



2. in the case where v0 is of the form squash ϕ u0 u1 then tr(v0) is squash ϕ tr(u0) tr(u1)

3. in the case of v0 is of the form compj(~u, u0) where j not in J then tr(v0) is compj(tr(~u), tr(u0))

In the general case where we have to define compj~u(u0), we take v0 = compj(u0) in inh(A)f(j1) and
vα = compk(uα) for inh(A)fα(j = j ∨ k) with k not in J . We define then

compj~u(u0) = compj(~v, v0)

which is in inh(A)f(j1).

The definition of the suspension operation is similar. The definition of the push-out operation involves
new complications for defining the transport function.

References

[1] M.Bezem, Th. Coquand and S. Huber. A model of type theory in cubical sets. Types proceeding,
2013.

[2] B. van der Berg and R. Garner. Topological and simplicial models of identity types. ACM Transactions
on Computational Logic (TOCL), Volume 13, Number 1 (2012).

3


