On Dedekind-Kronecker-Kneser's Reciprocity Theorem

August 15, 2006

Introduction

Dedekind, around 1855 gave lecture on Galois theory and proved the following result. Let p and q be two irreducible polynomials of $K[X]$, where K is any commutative field, and let m and n be their respective degrees. Assume we have an extension of K which contains a root a of p and a root b of q, and suppose $p=\phi_{1} \cdots \phi_{s}$ is the decomposition of p in irreducible factors in $K(b)[X], q=\psi_{1} \psi_{2} \cdots \psi_{t}$ the decomposition of q in irreducible factors in $K(a)[X]$; then $s=t$, and for a convenient ordering, the degrees m_{i} and n_{i} of ϕ_{i} and ψ_{i} are such that $m_{i} / n_{i}=m / n$. As explained in [3], this result was discovered independently by Kronecker and published first by Kneser. This result appears also as an exercice in [2], as an application of Galois theory and in [3], this result is proved directly, and plays then a key role in one possible development of Galois theory.

We give a possible analysis of this theorem.
If u_{1}, \ldots, u_{n} are elements of a commutative ring we write $\left[u_{1}, \ldots, u_{n}\right]$ the ideal ("module" in Kronecker's terminology [3]) generated by u_{1}, \ldots, u_{n}.

1 Adjoint pairs and Dedekind-Kronecker-Kneser's Theorem

Let K be a commutative field. We assume to have two irreducible monic polynomials f and g of respective degrees m and n. Let L be $K[X] /[f]$ and M be $K[X] /[g]$. Since f and g are irreducible, L and M are two field extensions of K. In L the polynomial f has a root x, which is X mod. f, and in M the polynomial g has a root y, which is X mod. g.

The point of this note is to present an algorithm which, given any decomposition

$$
f(X)=\phi_{1}(X, y) \ldots \phi_{n}(X, y)
$$

in pairwise relatively prime polynomials, not necessarily irreducible, build another decomposition

$$
g(Y)=\psi_{1}(x, Y) \ldots \psi_{n}(x, Y)
$$

such that, furthermore, we have $n m_{i}=m n_{i}$ if m_{i} is the degree of $\phi_{i}(X, y)$ and n_{i} is the degree of $\psi_{i}(x, Y)$.

The algorithm is simply to take for $\psi_{i}(x, Y)$ the monic g.c.d. of $g(Y)$ and $\phi_{i}(x, Y)$. The rest of this note justifies this algorithm.

Given two polynomials $\phi_{1}(X, Y)$ and $\psi_{1}(X, Y)$ in $K[X, Y]$ we say that ϕ_{1}, ψ_{1} are adjoint or that ϕ_{1}, ψ_{1} is an adjoint pair w.r.t. $f(X), g(Y)$ if and only if we have, in the ring $K[X, Y]$

$$
\left[\psi_{1}, f(X)\right]=\left[\psi_{1}, g(Y), f(X)\right]=\left[\phi_{1}, g(Y), f(X)\right]=\left[\phi_{1}, g(Y)\right]
$$

Notice that if $\phi_{1}(X, Y), \psi_{1}(X, Y)$ is an adjoint pair then $\phi_{1}(X, y)$ is a g.c.d. of $f(X)$ and $\psi_{1}(X, y)$ in $M[X]$. This follows from the fact that we have $\left[f(X), \psi_{1}(X, Y)\right]=\left[\phi_{1}(X, Y)\right] \bmod$. $g(Y)$. Similarly, $\psi_{1}(x, Y)$ is a g.c.d. of $g(Y)$ and $\phi_{1}(x, Y)$ in $L[X]$.

But these conditions are sufficient: if $\phi_{1}(X, y)$ is a g.c.d. of $f(X)$ and $\psi_{1}(X, y)$ in $M[X]$ and $\psi_{1}(x, Y)$ divides $g(Y)$ in $L[Y]$ we have

$$
\left[\phi_{1}(X, Y), g(Y)\right]=\left[\psi_{1}(X, Y), f(X), g(Y)\right]=\left[\psi_{1}(X, Y), f(X)\right]
$$

and so $\phi_{1}(X, Y), \psi_{1}(X, Y)$ is an adjoint pair.
Lemma 1.1 If $\phi_{1}(X, Y) \in K[X, Y]$ is such that $\phi_{1}(X, y)$ divides $f(X)$ in $M[X]$ then there exists $\psi_{1}(X, Y)$ such that ϕ_{1}, ψ_{1} are adjoint w.r.t. $f(X), g(Y)$.

Proof. Since $\phi_{1}(X, y)$ divides $f(X)$ in $M[X]$ we have $\left[\phi_{1}, f(X), g(Y)\right]=\left[\phi_{1}, g(Y)\right]$ in $K[X, Y]$. Let $\psi_{1}(X, Y)$ in $K[X, Y]$ be such that $\psi_{1}(x, Y)$ is a g.c.d. of $\phi_{1}(x, Y)$ and $g(Y)$ in $L[Y]$. This means that we have $\left[\psi_{1}, f(X)\right]=\left[\phi_{1}, f(X), g(Y)\right]$. Since $\psi_{1}(x, Y)$ divides $g(Y)$ in $L[Y]$ we have also $\left[\psi_{1}, f(X)\right]=\left[\psi_{1}, g(Y), f(X)\right]$ and ϕ_{1}, ψ_{1} is an adjoint pair w.r.t. $f(X), g(Y)$.

We can always chose $\psi_{1}(X, Y)$ of the form $Y^{m_{1}}+p_{1}(X) Y^{m_{1}-1}+\ldots+p_{m_{1}}(X)$ and, if it is on this form, the polynomial $\psi_{1}(x, Y)$ is then uniquely determined.

Lemma 1.2 Assume that ϕ_{i}, ψ_{i} and ϕ_{j}, ψ_{j} are two adjoint pairs. If $\phi_{i}(X, y)$ and $\phi_{j}(X, y)$ are relatively prime in $L[X]$ then $\psi_{i}(x, Y)$ and $\psi_{j}(x, Y)$ are relatively prime in $M[Y]$.

Proof. If $\phi_{i}(X, y)$ and $\phi_{j}(X, y)$ are relatively prime in $L[X]$ we have $1 \in\left[\phi_{i}, \phi_{j}, g(Y)\right]$. Also $\left[\phi_{i}, \phi_{j}, g(Y)\right]=\left[\phi_{i}, \phi_{j}, f(X), g(Y)\right]=\left[\phi_{i}, \psi_{j}, f(X), g(Y)\right]=\left[\psi_{i}, \psi_{j}, f(X), g(Y)\right]=\left[\psi_{i}, \psi_{j}, f(X)\right]$
and hence $1 \in\left[\psi_{i}, \psi_{j}, f(X)\right]$ which shows that $\psi_{i}(x, Y)$ and $\psi_{j}(x, Y)$ are relatively prime in $M[Y]$.

Lemma 1.3 Assume that we have a family $\phi_{i}, \psi_{i}, i=1, \ldots, s$ of adjoint pairs. If $f(X)$ divides $\phi_{1}(X, y) \ldots \phi_{s}(X, y)$ in $L[X]$ then $g(Y)$ divides $\psi_{1}(x, Y) \ldots \psi_{s}(x, Y)$ in $M[Y]$.

Proof. By assumption we have $[f(X), g(Y)]=\left[\phi_{1} \ldots \phi_{s}, f(X), g(Y)\right]$. But since $\left[\phi_{i}, f(X), g(Y)\right]=$ $\left[\psi_{i}, f(X), g(Y)\right]$ we get $\left[\phi_{1} \ldots \phi_{s}, f(X), g(Y)\right]=\left[\psi_{1} \ldots \psi_{s}, f(X), g(Y)\right]$ and so $[f(X), g(Y)]=$ $\left[\psi_{1} \ldots \psi_{s}, f(X), g(Y)\right]$. This means that $g(Y)$ divides $\psi_{1}(x, Y) \ldots \psi_{s}(x, Y)$ in $M[Y]$.

We can then deduce the following variation on Dedekind-Kronecker-Kneser's Theorem which does not require a complete decomposition in irreducible polynomials. It results directly from the previous Lemmas.

Proposition 1.4 Assume $f(X)=\phi_{1}(X, y) \ldots \phi_{s}(X, y)$ is a decomposition of $f(X)$ in pairwise prime polynomials in $M[X]$. Let $\psi_{i}(X, Y)$ be the adjoint of $\phi_{i}(X, Y)$, monic as a polynomial in Y. Then we have $g(X)=\psi_{1}(x, Y) \ldots \psi_{s}(x, Y)$ and this is a decomposition of $g(Y)$ in pairwise relatively prime polynomials in $L[Y]$.

Proof. Lemma 1.3 shows that $g(Y)$ divides $\psi_{1}(x, Y) \ldots \psi_{s}(x, Y)$. Lemma 1.2 shows that $\psi_{i}(x, Y)$ and $\psi_{j}(x, Y)$ are relatively prime and, by construction, each $\phi_{i}(x, Y)$ divides $g(Y)$.

Lemma 1.5 Assume that ϕ_{1}, ψ_{1} are adjoint. If n_{1} is the degree of $\phi_{1}(X, y)$ in $M[X]$ and m_{1} the degree of $\psi_{1}(x, Y)$ in $L[Y]$ then $n m_{1}=m n_{1}$.

Proof. $K[X, Y] /\left[\psi_{1}, f(X)\right]=L[Y] /\left[\psi_{1}(x, Y)\right]$ is of dimension m_{1} over L and L is of dimension n over K, so $K[X, Y] /\left[\psi_{1}, f(X)\right]$ is of dimension $n m_{1}$ over K. Similarly the algebra $K[X, Y] /\left[\phi_{1}, g(Y)\right]=M[X] /\left[\phi_{1}(X, y)\right]$ is of dimension $m n_{1}$ over K. Since ϕ_{1}, ψ_{1} are adjoint we have $K[X, Y] /\left[\psi_{1}, f(X)\right]=K[X, Y] /\left[\phi_{1}, g(Y)\right]$ and hence $n m_{1}=m n_{1}$.

Corollary 1.6 (Dedekind-Kronecker-Kneser's Theorem) If $f(X)=\phi_{1}(X, y) \ldots \phi_{s}(X, y)$ is a decomposition of $f(X)$ in irreducible polynomials in $M[X]$ and $g(Y)=\psi_{1}(x, Y) \ldots \psi_{t}(x, Y)$ is a decomposition of $g(Y)$ in irreducible polynomials in $L[Y]$ then $s=t$ and for a convenient ordering $\phi_{i}(X, Y), \psi_{i}(X, Y)$ are adjoint.

References

[1] Scharlau, W. Unveröffentlichte algebraische Arbeiten Richard Dedekinds aus seiner Göttinger Zeit 1855-1858. Arch. Hist. Exact Sci. 27 (1982), no. 4, 335-367.
Dedekind, R. Über einen arithmetischen Satz von Gauss. Werke, Vol.2, 28-38, 1892.
[2] Edwards, H. Galois Theory. Birkhäuser Boston, Inc., Boston, MA, 1990.
[3] Edwards, H. Essays on Constructive Mathematics. Springer-Verlag, New York, 2005.

