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Introduction

Dedekind, around 1855 gave lecture on Galois theory and proved the following result. Let p and
q be two irreducible polynomials of K[X], where K is any commutative field, and let m and n
be their respective degrees. Assume we have an extension of K which contains a root a of p
and a root b of q, and suppose p = φ1 · · ·φs is the decomposition of p in irreducible factors in
K(b)[X], q = ψ1ψ2 · · ·ψt the decomposition of q in irreducible factors in K(a)[X]; then s = t,
and for a convenient ordering, the degrees mi and ni of φi and ψi are such that mi/ni = m/n.
As explained in [3], this result was discovered independently by Kronecker and published first
by Kneser. This result appears also as an exercice in [2], as an application of Galois theory and
in [3], this result is proved directly, and plays then a key role in one possible development of
Galois theory.

We give a possible analysis of this theorem.
If u1, . . . , un are elements of a commutative ring we write [u1, . . . , un] the ideal (“module”

in Kronecker’s terminology [3]) generated by u1, . . . , un.

1 Adjoint pairs and Dedekind-Kronecker-Kneser’s Theorem

Let K be a commutative field. We assume to have two irreducible monic polynomials f and
g of respective degrees m and n. Let L be K[X]/[f ] and M be K[X]/[g]. Since f and g are
irreducible, L and M are two field extensions of K. In L the polynomial f has a root x, which
is X mod. f , and in M the polynomial g has a root y, which is X mod. g.

The point of this note is to present an algorithm which, given any decomposition

f(X) = φ1(X, y) . . . φn(X, y)

in pairwise relatively prime polynomials, not necessarily irreducible, build another decomposi-
tion

g(Y ) = ψ1(x, Y ) . . . ψn(x, Y )

such that, furthermore, we have nmi = mni if mi is the degree of φi(X, y) and ni is the degree
of ψi(x, Y ).

The algorithm is simply to take for ψi(x, Y ) the monic g.c.d. of g(Y ) and φi(x, Y ). The rest
of this note justifies this algorithm.

Given two polynomials φ1(X,Y ) and ψ1(X,Y ) in K[X,Y ] we say that φ1, ψ1 are adjoint or
that φ1, ψ1 is an adjoint pair w.r.t. f(X), g(Y ) if and only if we have, in the ring K[X,Y ]

[ψ1, f(X)] = [ψ1, g(Y ), f(X)] = [φ1, g(Y ), f(X)] = [φ1, g(Y )]
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Notice that if φ1(X,Y ), ψ1(X,Y ) is an adjoint pair then φ1(X, y) is a g.c.d. of f(X) and
ψ1(X, y) in M [X]. This follows from the fact that we have [f(X), ψ1(X,Y )] = [φ1(X,Y )] mod.
g(Y ). Similarly, ψ1(x, Y ) is a g.c.d. of g(Y ) and φ1(x, Y ) in L[X].

But these conditions are sufficient: if φ1(X, y) is a g.c.d. of f(X) and ψ1(X, y) in M [X] and
ψ1(x, Y ) divides g(Y ) in L[Y ] we have

[φ1(X,Y ), g(Y )] = [ψ1(X,Y ), f(X), g(Y )] = [ψ1(X,Y ), f(X)]

and so φ1(X,Y ), ψ1(X,Y ) is an adjoint pair.

Lemma 1.1 If φ1(X,Y ) ∈ K[X,Y ] is such that φ1(X, y) divides f(X) in M [X] then there
exists ψ1(X,Y ) such that φ1, ψ1 are adjoint w.r.t. f(X), g(Y ).

Proof. Since φ1(X, y) divides f(X) in M [X] we have [φ1, f(X), g(Y )] = [φ1, g(Y )] in K[X,Y ].
Let ψ1(X,Y ) in K[X,Y ] be such that ψ1(x, Y ) is a g.c.d. of φ1(x, Y ) and g(Y ) in L[Y ]. This
means that we have [ψ1, f(X)] = [φ1, f(X), g(Y )]. Since ψ1(x, Y ) divides g(Y ) in L[Y ] we have
also [ψ1, f(X)] = [ψ1, g(Y ), f(X)] and φ1, ψ1 is an adjoint pair w.r.t. f(X), g(Y ).

We can always chose ψ1(X,Y ) of the form Y m1 + p1(X)Y m1−1 + . . .+ pm1(X) and, if it is
on this form, the polynomial ψ1(x, Y ) is then uniquely determined.

Lemma 1.2 Assume that φi, ψi and φj , ψj are two adjoint pairs. If φi(X, y) and φj(X, y) are
relatively prime in L[X] then ψi(x, Y ) and ψj(x, Y ) are relatively prime in M [Y ].

Proof. If φi(X, y) and φj(X, y) are relatively prime in L[X] we have 1 ∈ [φi, φj , g(Y )]. Also

[φi, φj , g(Y )] = [φi, φj , f(X), g(Y )] = [φi, ψj , f(X), g(Y )] = [ψi, ψj , f(X), g(Y )] = [ψi, ψj , f(X)]

and hence 1 ∈ [ψi, ψj , f(X)] which shows that ψi(x, Y ) and ψj(x, Y ) are relatively prime in
M [Y ].

Lemma 1.3 Assume that we have a family φi, ψi, i = 1, . . . , s of adjoint pairs. If f(X) divides
φ1(X, y) . . . φs(X, y) in L[X] then g(Y ) divides ψ1(x, Y ) . . . ψs(x, Y ) in M [Y ].

Proof. By assumption we have [f(X), g(Y )] = [φ1 . . . φs, f(X), g(Y )]. But since [φi, f(X), g(Y )] =
[ψi, f(X), g(Y )] we get [φ1 . . . φs, f(X), g(Y )] = [ψ1 . . . ψs, f(X), g(Y )] and so [f(X), g(Y )] =
[ψ1 . . . ψs, f(X), g(Y )]. This means that g(Y ) divides ψ1(x, Y ) . . . ψs(x, Y ) in M [Y ].

We can then deduce the following variation on Dedekind-Kronecker-Kneser’s Theorem which
does not require a complete decomposition in irreducible polynomials. It results directly from
the previous Lemmas.

Proposition 1.4 Assume f(X) = φ1(X, y) . . . φs(X, y) is a decomposition of f(X) in pairwise
prime polynomials in M [X]. Let ψi(X,Y ) be the adjoint of φi(X,Y ), monic as a polynomial in
Y . Then we have g(X) = ψ1(x, Y ) . . . ψs(x, Y ) and this is a decomposition of g(Y ) in pairwise
relatively prime polynomials in L[Y ].

Proof. Lemma 1.3 shows that g(Y ) divides ψ1(x, Y ) . . . ψs(x, Y ). Lemma 1.2 shows that ψi(x, Y )
and ψj(x, Y ) are relatively prime and, by construction, each φi(x, Y ) divides g(Y ).

Lemma 1.5 Assume that φ1, ψ1 are adjoint. If n1 is the degree of φ1(X, y) in M [X] and m1

the degree of ψ1(x, Y ) in L[Y ] then nm1 = mn1.
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Proof. K[X,Y ]/[ψ1, f(X)] = L[Y ]/[ψ1(x, Y )] is of dimension m1 over L and L is of dimen-
sion n over K, so K[X,Y ]/[ψ1, f(X)] is of dimension nm1 over K. Similarly the algebra
K[X,Y ]/[φ1, g(Y )] = M [X]/[φ1(X, y)] is of dimension mn1 over K. Since φ1, ψ1 are adjoint we
have K[X,Y ]/[ψ1, f(X)] = K[X,Y ]/[φ1, g(Y )] and hence nm1 = mn1.

Corollary 1.6 (Dedekind-Kronecker-Kneser’s Theorem) If f(X) = φ1(X, y) . . . φs(X, y) is a
decomposition of f(X) in irreducible polynomials in M [X] and g(Y ) = ψ1(x, Y ) . . . ψt(x, Y ) is
a decomposition of g(Y ) in irreducible polynomials in L[Y ] then s = t and for a convenient
ordering φi(X,Y ), ψi(X,Y ) are adjoint.
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