On Dedekind-Kronecker-Kneser’s Reciprocity Theorem

August 15, 2006

Introduction

Dedekind, around 1855 gave lecture on Galois theory and proved the following result. Let p and
q be two irreducible polynomials of K[X], where K is any commutative field, and let m and n
be their respective degrees. Assume we have an extension of K which contains a root a of p
and a root b of ¢, and suppose p = ¢ - - - ¢5 is the decomposition of p in irreducible factors in
K (b)[X], ¢ = Y112 - - -1 the decomposition of ¢ in irreducible factors in K (a)[X]; then s = ¢,
and for a convenient ordering, the degrees m; and n; of ¢; and v; are such that m;/n; = m/n.
As explained in [3], this result was discovered independently by Kronecker and published first
by Kneser. This result appears also as an exercice in [2], as an application of Galois theory and
in [3], this result is proved directly, and plays then a key role in one possible development of
Galois theory.

We give a possible analysis of this theorem.

If up,...,u, are elements of a commutative ring we write [uy,...,u,| the ideal (“module”
in Kronecker’s terminology [3]) generated by uq, ..., uy.

1 Adjoint pairs and Dedekind-Kronecker-Kneser’s Theorem

Let K be a commutative field. We assume to have two irreducible monic polynomials f and
g of respective degrees m and n. Let L be K[X]/[f] and M be K[X]/[g]. Since f and g are
irreducible, L and M are two field extensions of K. In L the polynomial f has a root x, which
is X mod. f, and in M the polynomial g has a root y, which is X mod. g.

The point of this note is to present an algorithm which, given any decomposition

in pairwise relatively prime polynomials, not necessarily irreducible, build another decomposi-
tion

g(Y) =u(@,Y).. . Pn(z,Y)

such that, furthermore, we have nm; = mn; if m; is the degree of ¢;(X,y) and n; is the degree
of ¥;(z,Y).

The algorithm is simply to take for ¢;(z,Y") the monic g.c.d. of g(Y') and ¢;(z,Y). The rest
of this note justifies this algorithm.

Given two polynomials ¢1(X,Y) and ¢1(X,Y) in K[X,Y] we say that ¢1,v1 are adjoint or
that ¢1,11 is an adjoint pair w.r.t. f(X),g(Y) if and only if we have, in the ring K[X,Y]

[v1, F(X)] = [¥1,9(Y), F(X)] = [¢1,9(Y), F(X)] = [¢1,9(Y)]



Notice that if ¢1(X,Y),91(X,Y) is an adjoint pair then ¢;(X,y) is a g.c.d. of f(X) and
¥1(X,y) in M[X]. This follows from the fact that we have [f(X),¥1(X,Y)] = [¢1(X,Y)] mod.
g(Y). Similarly, ¢ (z,Y) is a g.c.d. of g(Y) and ¢1(x,Y) in L[X].

But these conditions are sufficient: if ¢1(X,y) is a g.c.d. of f(X) and ¢1(X,y) in M[X] and
Y1(x,Y) divides g(Y) in L[Y] we have

and so ¢1(X,Y),91(X,Y) is an adjoint pair.

Lemma 1.1 If ¢1(X,Y) € K[X,Y] is such that ¢1(X,y) divides f(X) in M[X] then there
exists 11 (X,Y') such that ¢1,11 are adjoint w.r.t. f(X),g(Y).

Proof. Since ¢1(X,y) divides f(X) in M[X] we have [¢1, f(X),g(Y)] = [¢1,9(Y)] in K[X,Y].
Let ¥1(X,Y) in K[X,Y] be such that ¢;(z,Y) is a g.c.d. of ¢1(z,Y) and ¢g(Y) in L[Y]. This
means that we have [¢1, f(X)] = [¢1, f(X),g(Y)]. Since ¢1(x,Y") divides ¢g(Y) in L[Y] we have
also [, f(X)] = [¥1,9(Y), f(X)] and ¢1,%; is an adjoint pair w.r.t. f(X),g(Y). O

We can always chose ¥1(X,Y) of the form Y™ + pi(X)Y™ ! 4 ..+ p,,, (X) and, if it is
on this form, the polynomial 11 (z,Y") is then uniquely determined.

Lemma 1.2 Assume that ¢;,1; and ¢;,1); are two adjoint pairs. If ¢;(X,y) and ¢;(X,y) are
relatively prime in L[X] then v;(z,Y") and v;(z,Y) are relatively prime in M[Y].

Proof. If ¢;(X,y) and ¢;(X,y) are relatively prime in L[X] we have 1 € [¢;, ¢;, g(Y)]. Also

06,05, 9(V)] = (¢4, @5, F(X), 9(YV)] = (i b5, F(X), (V)] = [hi, by, F(X), (V)] = [hi, by, f(X)]

and hence 1 € [¢4,¢;, f(X)] which shows that v¢;(z,Y’) and ¢;(x,Y) are relatively prime in
MIY]. O

Lemma 1.3 Assume that we have a family ¢;,v;, i = 1,..., s of adjoint pairs. If f(X) divides
d1(X,y) ... 0s(X,y) in L[X] then g(Y) divides Y1 (x,Y)...¢¥s(x,Y) in M[Y].

Proof. By assumption we have [f(X),g(Y)] = [¢1 ... ¢s, f(X), g(Y)]. But since [¢;, f(X),g(Y)] =

(i, F(X),9(Y)] we get [f1...ds, [(X),9(YV)] = [¢1...¢s, f(X),9(Y)] and so [f(X),g(Y)] =
[t ... s, f(X),g(Y)]. This means that g(Y') divides ¢1(z,Y)...¢s(x,Y) in M[Y]. O

We can then deduce the following variation on Dedekind-Kronecker-Kneser’s Theorem which
does not require a complete decomposition in irreducible polynomials. It results directly from
the previous Lemmas.

Proposition 1.4 Assume f(X) = ¢1(X,y)...¢s(X,y) is a decomposition of f(X) in pairwise
prime polynomials in M[X]. Let 1;(X,Y") be the adjoint of ¢;(X,Y’), monic as a polynomial in
Y. Then we have g(X) = ¢1(x,Y) ... ¥s(x,Y) and this is a decomposition of g(Y') in pairwise
relatively prime polynomials in L[Y].

Proof. Lemma 1.3 shows that ¢(Y) divides ¢1(z,Y) ... ¢s(z,Y). Lemma 1.2 shows that ¢;(z,Y)
and v;(z,Y) are relatively prime and, by construction, each ¢;(x,Y") divides g(Y"). O

Lemma 1.5 Assume that ¢1,v1 are adjoint. If ny is the degree of ¢1(X,y) in M[X]| and m;
the degree of 11 (x,Y) in L[Y]| then nmy; = mn;.



Proof. K[ X,Y]/[Yn, f(X)] = L[Y]/[¥1(z,Y)] is of dimension m; over L and L is of dimen-
sion n over K, so K[X,Y]/[1, f(X)] is of dimension nm; over K. Similarly the algebra
K[X,Y]/[¢p1,9(Y)] = M[X]/][¢1(X,y)] is of dimension mn; over K. Since ¢1,1); are adjoint we
have K[X,Y]/[¢1, f(X)] = K[X,Y]/[¢1,9(Y)] and hence nm; = mn;. O

Corollary 1.6 (Dedekind-Kronecker-Kneser’s Theorem) If f(X) = ¢1(X,y)...¢s(X,y) is a
decomposition of f(X) in irreducible polynomials in M [X] and g(Y) = ¢¥1(x,Y) ... (2, Y) is
a decomposition of g(Y') in irreducible polynomials in L[Y| then s = t and for a convenient
ordering ¢;(X,Y),v;(X,Y) are adjoint.
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