On Dedekind-Kronecker-Kneser's Reciprocity Theorem

August 15, 2006

Introduction

Dedekind, around 1855 gave lecture on Galois theory and proved the following result. Let p and q be two irreducible polynomials of K[X], where K is any commutative field, and let m and n be their respective degrees. Assume we have an extension of K which contains a root a of p and a root b of q, and suppose $p = \phi_1 \cdots \phi_s$ is the decomposition of p in irreducible factors in $K(b)[X], q = \psi_1 \psi_2 \cdots \psi_t$ the decomposition of q in irreducible factors in K(a)[X]; then s = t, and for a convenient ordering, the degrees m_i and n_i of ϕ_i and ψ_i are such that $m_i/n_i = m/n$. As explained in [3], this result was discovered independently by Kronecker and published first by Kneser. This result appears also as an exercise in [2], as an application of Galois theory and in [3], this result is proved directly, and plays then a key role in one possible development of Galois theory.

We give a possible analysis of this theorem.

If u_1, \ldots, u_n are elements of a commutative ring we write $[u_1, \ldots, u_n]$ the ideal ("module" in Kronecker's terminology [3]) generated by u_1, \ldots, u_n .

1 Adjoint pairs and Dedekind-Kronecker-Kneser's Theorem

Let K be a commutative field. We assume to have two irreducible monic polynomials f and g of respective degrees m and n. Let L be K[X]/[f] and M be K[X]/[g]. Since f and g are irreducible, L and M are two field extensions of K. In L the polynomial f has a root x, which is X mod. f, and in M the polynomial g has a root y, which is X mod. g.

The point of this note is to present an algorithm which, given any decomposition

$$f(X) = \phi_1(X, y) \dots \phi_n(X, y)$$

in pairwise relatively prime polynomials, *not necessarily irreducible*, build another decomposition

$$g(Y) = \psi_1(x, Y) \dots \psi_n(x, Y)$$

such that, furthermore, we have $nm_i = mn_i$ if m_i is the degree of $\phi_i(X, y)$ and n_i is the degree of $\psi_i(x, Y)$.

The algorithm is simply to take for $\psi_i(x, Y)$ the monic g.c.d. of g(Y) and $\phi_i(x, Y)$. The rest of this note justifies this algorithm.

Given two polynomials $\phi_1(X, Y)$ and $\psi_1(X, Y)$ in K[X, Y] we say that ϕ_1, ψ_1 are *adjoint* or that ϕ_1, ψ_1 is an *adjoint pair* w.r.t. f(X), g(Y) if and only if we have, in the ring K[X, Y]

$$[\psi_1, f(X)] = [\psi_1, g(Y), f(X)] = [\phi_1, g(Y), f(X)] = [\phi_1, g(Y)]$$

Notice that if $\phi_1(X, Y), \psi_1(X, Y)$ is an adjoint pair then $\phi_1(X, y)$ is a g.c.d. of f(X) and $\psi_1(X, y)$ in M[X]. This follows from the fact that we have $[f(X), \psi_1(X, Y)] = [\phi_1(X, Y)] \mod g(Y)$. Similarly, $\psi_1(x, Y)$ is a g.c.d. of g(Y) and $\phi_1(x, Y)$ in L[X].

But these conditions are sufficient: if $\phi_1(X, y)$ is a g.c.d. of f(X) and $\psi_1(X, y)$ in M[X] and $\psi_1(x, Y)$ divides g(Y) in L[Y] we have

$$[\phi_1(X,Y),g(Y)] = [\psi_1(X,Y),f(X),g(Y)] = [\psi_1(X,Y),f(X)]$$

and so $\phi_1(X, Y), \psi_1(X, Y)$ is an adjoint pair.

Lemma 1.1 If $\phi_1(X,Y) \in K[X,Y]$ is such that $\phi_1(X,y)$ divides f(X) in M[X] then there exists $\psi_1(X,Y)$ such that ϕ_1,ψ_1 are adjoint w.r.t. f(X),g(Y).

Proof. Since $\phi_1(X, y)$ divides f(X) in M[X] we have $[\phi_1, f(X), g(Y)] = [\phi_1, g(Y)]$ in K[X, Y]. Let $\psi_1(X, Y)$ in K[X, Y] be such that $\psi_1(x, Y)$ is a g.c.d. of $\phi_1(x, Y)$ and g(Y) in L[Y]. This means that we have $[\psi_1, f(X)] = [\phi_1, f(X), g(Y)]$. Since $\psi_1(x, Y)$ divides g(Y) in L[Y] we have also $[\psi_1, f(X)] = [\psi_1, g(Y), f(X)]$ and ϕ_1, ψ_1 is an adjoint pair w.r.t. f(X), g(Y).

We can always chose $\psi_1(X, Y)$ of the form $Y^{m_1} + p_1(X)Y^{m_1-1} + \ldots + p_{m_1}(X)$ and, if it is on this form, the polynomial $\psi_1(x, Y)$ is then uniquely determined.

Lemma 1.2 Assume that ϕ_i, ψ_i and ϕ_j, ψ_j are two adjoint pairs. If $\phi_i(X, y)$ and $\phi_j(X, y)$ are relatively prime in L[X] then $\psi_i(x, Y)$ and $\psi_j(x, Y)$ are relatively prime in M[Y].

Proof. If $\phi_i(X, y)$ and $\phi_j(X, y)$ are relatively prime in L[X] we have $1 \in [\phi_i, \phi_j, g(Y)]$. Also

 $[\phi_i, \phi_j, g(Y)] = [\phi_i, \phi_j, f(X), g(Y)] = [\phi_i, \psi_j, f(X), g(Y)] = [\psi_i, \psi_j, f(X), g(Y)] = [\psi_i, \psi_j, f(X)]$

and hence $1 \in [\psi_i, \psi_j, f(X)]$ which shows that $\psi_i(x, Y)$ and $\psi_j(x, Y)$ are relatively prime in M[Y].

Lemma 1.3 Assume that we have a family $\phi_i, \psi_i, i = 1, ..., s$ of adjoint pairs. If f(X) divides $\phi_1(X, y) \dots \phi_s(X, y)$ in L[X] then g(Y) divides $\psi_1(x, Y) \dots \psi_s(x, Y)$ in M[Y].

Proof. By assumption we have $[f(X), g(Y)] = [\phi_1 \dots \phi_s, f(X), g(Y)]$. But since $[\phi_i, f(X), g(Y)] = [\psi_i, f(X), g(Y)]$ we get $[\phi_1 \dots \phi_s, f(X), g(Y)] = [\psi_1 \dots \psi_s, f(X), g(Y)]$ and so $[f(X), g(Y)] = [\psi_1 \dots \psi_s, f(X), g(Y)]$. This means that g(Y) divides $\psi_1(x, Y) \dots \psi_s(x, Y)$ in M[Y]. \Box

We can then deduce the following variation on Dedekind-Kronecker-Kneser's Theorem which does not require a complete decomposition in irreducible polynomials. It results directly from the previous Lemmas.

Proposition 1.4 Assume $f(X) = \phi_1(X, y) \dots \phi_s(X, y)$ is a decomposition of f(X) in pairwise prime polynomials in M[X]. Let $\psi_i(X, Y)$ be the adjoint of $\phi_i(X, Y)$, monic as a polynomial in Y. Then we have $g(X) = \psi_1(x, Y) \dots \psi_s(x, Y)$ and this is a decomposition of g(Y) in pairwise relatively prime polynomials in L[Y].

Proof. Lemma 1.3 shows that g(Y) divides $\psi_1(x, Y) \dots \psi_s(x, Y)$. Lemma 1.2 shows that $\psi_i(x, Y)$ and $\psi_i(x, Y)$ are relatively prime and, by construction, each $\phi_i(x, Y)$ divides g(Y).

Lemma 1.5 Assume that ϕ_1, ψ_1 are adjoint. If n_1 is the degree of $\phi_1(X, y)$ in M[X] and m_1 the degree of $\psi_1(x, Y)$ in L[Y] then $nm_1 = mn_1$.

Proof. $K[X,Y]/[\psi_1, f(X)] = L[Y]/[\psi_1(x,Y)]$ is of dimension m_1 over L and L is of dimension n over K, so $K[X,Y]/[\psi_1, f(X)]$ is of dimension nm_1 over K. Similarly the algebra $K[X,Y]/[\phi_1,g(Y)] = M[X]/[\phi_1(X,y)]$ is of dimension mn_1 over K. Since ϕ_1, ψ_1 are adjoint we have $K[X,Y]/[\psi_1, f(X)] = K[X,Y]/[\phi_1, g(Y)]$ and hence $nm_1 = mn_1$.

Corollary 1.6 (Dedekind-Kronecker-Kneser's Theorem) If $f(X) = \phi_1(X, y) \dots \phi_s(X, y)$ is a decomposition of f(X) in irreducible polynomials in M[X] and $g(Y) = \psi_1(x, Y) \dots \psi_t(x, Y)$ is a decomposition of g(Y) in irreducible polynomials in L[Y] then s = t and for a convenient ordering $\phi_i(X, Y), \psi_i(X, Y)$ are adjoint.

References

- Scharlau, W. Unveröffentlichte algebraische Arbeiten Richard Dedekinds aus seiner Göttinger Zeit 1855–1858. Arch. Hist. Exact Sci. 27 (1982), no. 4, 335–367.
 - Dedekind, R. Über einen arithmetischen Satz von Gauss. Werke, Vol.2, 28-38, 1892.
- [2] Edwards, H. Galois Theory. Birkhäuser Boston, Inc., Boston, MA, 1990.
- [3] Edwards, H. Essays on Constructive Mathematics. Springer-Verlag, New York, 2005.