Homotopy limits in cubical sets

Homotopy limits

We consider a semisimplicial diagram of cubical sets $s_{k}^{n+1}: A_{n} \rightarrow A_{n+1}$ and we want to take the homotopy limit of this diagram.

The point of this note is to describe a possible coding of this limit L.
An object u of L consists of a sequence of elements $u\left(i_{0}, \ldots, i_{n}\right)$ in A_{n} for $i_{0}=1 \vee \cdots \vee i_{n}=1$ satisfying the compatibility conditions

$$
u\left(i_{0}, \ldots, i_{k-1}, 0, i_{k}, \ldots, i_{n}\right)=s_{k}^{n} u\left(i_{0}, \ldots, i_{k-1}, i_{k+1}, \ldots, i_{n}\right)
$$

So we have one element $u(1)$ in A_{0} then two lines $u(1, i)$ and $u(i, 1)$ in A_{1} with $u(1,0)=s_{0}^{1} u(1)$ and $u(0,1)=s_{1}^{1} u(1)$ and so on.

We have a map $L \rightarrow A_{n}$ defined by $u \mapsto u(1, \ldots, 1)$.

Special case

We consider a (strict) pointed endofunctor E which commutes strictly with such limit.
Each such functor defines a semisimplicial diagram for any object A by taking $A_{n}=E^{n+1} A$
The homotopy limit of this diagram $D A$ defines then a new (strict) pointed endofunctor with a map $\eta_{A}: A \rightarrow D A$ and which satisfies that there is a path between $D\left(\eta_{A}\right)$ and $\eta_{D A}$.

Acknowledgement

References

