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We prove that in the theory of local rings it is not possible to show that to be invertible is
decidable. This is a simple example of the technique of using the “classifying topos” to show
non derivability of a formula by checking that this formula is not valid in this model.

1 Theory of local rings

The theory of local rings extends the equational theory of rings by the axiom

∀x. (∃y. xy = 1) ∨ (∃y. (1− x)y = 1)

If we introduce the notation inv(x) for ∃y. xy = 1 this can be written simply as inv(x)∨inv(1−
x). Since we have inv(1) a formula which seems a priori more general would be

inv(x+ y) → (inv(x) ∨ inv(y))

Actually both formulations are equivalent. Indeed if we assume inv(u) ∨ inv(1 − u) for all u
and inv(x + y), let v be an inverse of x + y. We have then vx + vy = 1 and hence inv(vx) or
inv(vy). Since we clearly have

inv(rs) ↔ (inv(r) ∧ inv(s))

for all r, s we deduce inv(x) or inv(y) as desired.
Classically, a local ring is a ring with only one maximal ideal. It is possible to define this

ideal without using negation by introducing J(x) to be ∀y. inv(1− xy). In general this defines
the Jacobson radical of the ring. If the ring has only one maximal ideal, this should be the
Jacobson radical. Notice that we have

∀y. inv(xy) ∨ inv(1− xy)

and hence
∀y. inv(x) ∨ inv(1− xy)

Classically, it is possible to deduce inv(x) ∨ J(x).
The main goal of this note is to show that this is not valid intuitionistically. Intuitively, if

you give an algorithm to decide inv(x) or inv(1− x) (and to give the corresponding inverse in
each case) then it is not possible, using this algorithm as an oracle, to decide inv(x) or J(x).

The fact that we have inv(x) or J(x) is used classically in the following proof that any
finitely generated projective module M over a local ring A is free. We have a basis of the vector
space M/JM over the field A/J . Hence by Nakayama’s Lemma, this basis gives a generating
set of the module M over A, which is clearly also free, and so is a basis of M over A.
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2 Generic local rings

For proving the non derivability of inv(x) ∨ J(x) we show that this formula does not hold in
the generic model. This means that this formula is not forced for the forcing relation defined in
[Coquand 2005].

We recall a possible presentation of this forcing relation. It is of the form R  φ where R is
a finitely presented ring. The inductive clauses are

R  t = u if t = u in R
R  φ1 ∧ φ2 if R  φ1 and R  φ2

R  φ1 ∨ φ2 if R  φ1 or R  φ2

R  φ1 → φ2 if for all finitely presented extension R→ S we have S  φ2 whenever S  φ1

R  ∀x.ψ if for all finitely presented extension R→ S we have S  ψ(s) for all s in S
R  ∃x.ψ if there exists u in R such that R  ψ(u)
R  φ if R[x−1]  φ and R[(1− x)−1]  φ
It can be shown that we have R  t1 = t2 iff t1 = t2 in R.
Similarly, it can be shown that we have R  ∀x.ψ iff S  ψ(s) for all finitely presented

extension S of R and all s in R.
Also R  ∃x.ψ iff there exists u1, . . . , un in R and ti in R[u−1

i ] such that <u1, . . . , un> = 1
and R[u−1

i ]  φ(ti).
Similarly R  ψ0 ∨ ψ1 iff there exists u0, u1 in R such that <u0, u1> = 1 and R[u−1

i ]  ψi.

Lemma 2.1 We have R  inv(x) iff x is invertible in R

Proof. We have u1, . . . , un in R and ti in R[u−1
i ] such that <u1, . . . , un> = 1 and R[u−1

i ] 
tix = 1. We have then si in R and k such that six = uk

i . There exists αi in R such that
1 = Σuk

i αi and then x(Σαiti) = 1.

Lemma 2.2 We have R  J(x) iff x is nilpotent in R

Proof. If x is nilpotent we have n such that xn = 0. Then for all y we have Σi<n(xy)i which is
an inverse of 1−xy. So we have S  inv(1−xy) for all finitely presented extension R→ S and
all y in S.

Conversely assume R  J(x). We consider the finite extension R → R[x−1]. Since we have
R  ∀y.inv(1−xy) we should have R[x−1]  inv(1−xy)(x−1/x) and so R[x−1]  inv(0) which
implies R[x−1]  1 = 0 by Lemma 2.1. Hence we have 1 = 0 in R[x−1] and so x is nilpotent in
R.

Proposition 2.3 If R is an integral domain and x non zero in R we have R  inv(x) ∨ J(x)
iff x is invertible in R

Proof. Assume R  inv(x) ∨ J(x). By Lemmas 2.1 and 2.2 we then have 1 = u0 + u1 with x
invertible in R[u−1

0 ] and x nilpotent in R[u−1
1 ]. Since x is non zero, this implies u1 = 0 and

hence x is invertible in R.

Corollary 2.4 We do not have  ∀x. inv(x) ∨ J(x).

Proof. We take R = Z and x = 2. Since x is non zero but not invertible in R we cannot have
Z  inv(x) ∨ J(x) by Proposition 2.3.
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3 Topological model

The last result suggests a simpler counter-model in a sheaf model over X = Zar(Z). For an
open U = D(m1, . . . ,mk) we define

O(U) = Z[1/m1] ∩ . . . ∩ Z[1/mk].

Then O is a sheaf of rings over X. This is a local ring.
We have D(m)  J(2) only if m = 0. Indeed this implies D(m2)  inv(0) and hence

m2 = m = 0. So the interpretation of J(2) is the empty open.
On the other have the interpretation of inv(2) is the open D(2). Since X 6= D(2) we don’t

have X  inv(2) ∨ J(2).
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