
Constructive semantics of Univalence

Dependent type theory

Γ,∆ ::= () | Γ, x : A Contexts

t, u,A,B ::= x
| λx. t | t u | (x : A)→ B Π-types
| (t, u) | t.1 | t.2 | (x : A)×B Σ-types

We write

A→ B for the non-dependent product type and

A×B for the non-dependent sum type
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Constructive semantics of Univalence

Identity types

Inductive family with one constructor refl a : Id A a a

In general (n : N)→ Id N (f n) (g n) does not imply Id (N→ N) f g

We can then have f, g of type N→ N

-(n : N)→ Id N (f n) (g n) has a proof, i.e. f and g are pointwise equal

-P (f) has a proof

-P (g) does not have a proof

Example: P (h) = Id (N→ N) f h
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Constructive semantics of Univalence

Identity types

In the 1989 Programming Methodology Group meeting (Båstad), D. Turner
suggested an extension of type theory with function extensionality, adding a new
constant of type

((x : A)→ Id B (f x) (g x)) → Id ((x : A)→ B) f g

that’s one appeal of functional programming, that you can code a function in
two different ways and know that they are interchangeable in all contexts

New axiom, how to make sense of it?
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Constructive semantics of Univalence

Identity types

you can make perfectly good sense of these axioms, but you will do that
in a way which is analogous to what I think Gandy was the first to give: an
interpretation of extensional simple type theory into the intensional version of
simple type theory . . . You can formulate an extensional version of type theory
and make sense of it by giving a formal interpretation into the intensional version

P. Martin-Löf, from a recorded discussion after D. Turner’s talk

R. Gandy’s 1953 PhD thesis
On Axiomatic Systems in Mathematics and Theories in Physics
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Constructive semantics of Univalence

Identity types

Elimination rule x : A, p : Id A a x

C(a, refl a) → C(x, p)

Special case

C(a)→ C(x)

For getting the general elimination rule from the special case, we need

Id ((x : A)× Id A a x) (a, refl a) (x, p)
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Constructive semantics of Univalence

Singleton types are contractible

a arefl a

pa x

prefl a

Any element x, p in the type (x : A)× Id A a x is equal to a, refl a
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Constructive semantics of Univalence

Loop space

“Indeed, to apply Leray’s theory I needed to construct fibre spaces which did
not exist if one used the standard definition. Namely, for every space X, I needed
a fibre space E with base X and with trivial homotopy (for instance contractible).
But how to get such a space? One night in 1950, on the train bringing me back
from our summer vacation, I saw it in a flash: just take for E the space of paths
on X (with fixed origin a), the projection E → X being the evaluation map:
path → extremity of the path. The fibre is then the loop space of (X, a). I had
no doubt: this was it! . . . It is strange that such a simple construction had so
many consequences.”

J.-P. Serre, describing the loop space method from his 1951 thesis
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Constructive semantics of Univalence

Problems for making sense of extensionality

-The equality type can be iterated Id (Id A a b) p q

-Internalisation: the constant for extensionality should satisfy extensionality

-How to express extensionality for universes?

We remark, however, on the possibility of introducing the additional axiom
of extensionality, p ≡ q ⊃ p = q, which has the effect of imposing so broad
a criterion of identity between propositions that they are in consequence only
two propositions, and which, in conjunction with 10αβ, makes possible the
identification of classes with propositional functions (A. Church, 1940)
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Constructive semantics of Univalence

Equivalence

Remarquable refinement of the notion of logical equivalence (Voevodsky 2009)

isContr B = (b : B)× ((y : B)→ Id B b y)

isEquiv T A w = (a : A)→ isContr((t : T )× Id A (w t) a)

Equiv T A = (w : T → A)× isEquiv T A w

Generalizes in an uniform way notions of

-logical equivalence between propositions

-bijection between sets

-(categorical) equivalence between groupoids
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Constructive semantics of Univalence

Equivalence

The proof of

isEquiv A A (λx.x)

is exactly the proof that “singleton” types are contractible

So we have a proof of

Equiv A A
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Constructive semantics of Univalence

Stratification

proposition (x : A)→ (y : A)→ Id A x y

set (x : A)→ (y : A)→ isProp (Id A x y)

groupoid (x : A)→ (y : A)→ isSet (Id A x y)

Hedberg’s Theorem: A type with a decidable equality is a set

One of the first result in the formal proof of the 4 color Theorem
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Constructive semantics of Univalence

univalence axiom

the canonical map Id U A B → isEquiv A B is an equivalence

This generalizes A. Church’s formulation of “propositional” extensionality

two logically equivalent propositions are equal

This is provably equivalent to

isContr ((X : U)× isEquiv X A)
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Constructive semantics of Univalence

Gandy’s interpretation

“setoid” interpretation

A type with an equivalence relation

To each type we associate a relation, and show by induction on the type that
the associated relation is an equivalence relation
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Constructive semantics of Univalence

Gandy’s interpretation

This can be seen as an “internal version” of Bishop’s notion of sets

A set is defined when we describe how to construct its members and describe
what it means for two members to be equal

The equality relation on a set is conventional: something to be determined
when the set is defined, subject only to the requirement that it be an equivalence
relation

Mines, Richman and Ruitenburg A Course is Constructive algebra
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Constructive semantics of Univalence

Gandy’s interpretation for type theory

Actually we have to use a more complex notion than Bishop’s notion of sets

Propositions-as-types:

each R(a, b) should itself be a type, with its own notion of equality

So, what we need to represent is the following “higher-dimensional” notion:

a collection, an equivalence relation on it, a relation between these relations,
and so on

And we need a corresponding “higher-order” version of equivalence relations

15



Constructive semantics of Univalence

Cubical sets

A cubical set is a “higher-order” version of a binary relation

Representation using the notion of presheaf

Idea originating from Eilenberg and Zilber 1950 (for simplicial sets)

We are going to consider a presheaf extension of type theory
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Constructive semantics of Univalence

Cubical sets as presheafs

The idea is to allow elements and types to depend on “names”

u(i1, . . . , in)

Purely formal objects which represent elements of the unit interval [0, 1]
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Constructive semantics of Univalence

Cubical sets as presheafs

At any point we can do a “re-parametrisation”

i1 = f1(j1, . . . , jm)

. . .

in = fn(j1, . . . , jm)

We then have

a(i1, . . . , in) = a(f1(j1, . . . , jm), . . . , fn(j1, . . . , jm))
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Constructive semantics of Univalence

Cubical sets, reformulated

i, j, k, . . . formal symbols/names representing abstract directions

New context extension Γ, i : I

If ` A then i : I ` t : A represents a line

t(i/0)
t

−−−−−−−−−−→i t(i/1)

in the direction i

i : I, j : I ` t : A represents a square, and so on
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Constructive semantics of Univalence

Cubical sets

Extension of ordinary type theory e.g. the rules for introduction and elimination
of function is the same as in ordinary type theory

Γ ` w : (x : A)→ B Γ ` u : A

Γ ` w u : B(x/u)

Γ, x : A ` v : B

Γ ` λx.v : (x : A)→ B

Simpler than in set theory

Compare with definition of exponential of two presheafs: an element t in
GF (I) is a a family of functions tf : F (J)→ G(J) such that (tf u)g = tfg (ug)
for f : J → I and g : K → J in the base category
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Constructive semantics of Univalence

Cubical types

We can introduce a new type, the type of paths Path A a0 a1

New operations: name abstraction and application
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Constructive semantics of Univalence

Cubical types

Γ ` A Γ, i : I ` t : A

Γ ` 〈i〉t : Path A t(i/0) t(i/1)

Γ ` p : Path A a0 a1

Γ, i : I ` p i : A

Γ ` p : Path A a0 a1

Γ ` p 0 = a0 : A

Γ ` p : Path A a0 a1

Γ ` p 1 = a1 : A
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Constructive semantics of Univalence

Cubical types

t(0)
t(i)

−−−−−−−−−−→i t(1)

A line in the direction i

t(0)
〈i〉t(i)

−−−−−−−−−−→ t(1)

A line where the direction is abstracted away
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Constructive semantics of Univalence

Cubical types

Reflexivity is provable

(x : A)→ Path A x x

λx.〈i〉x

If f : A→ B we have

Path A a0 a1 → Path B (f a0) (f a1)

λp.〈i〉f (p i)
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Constructive semantics of Univalence

Cubical types

Function extensionality is provable

((x : A)→ Path B (f0 x) (f1 x)) → Path ((x : A)→ B) f0 f1

λp.〈i〉λx. p x i
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Constructive semantics of Univalence

Cubical types

We can in this way formulate a presheaf extension of type theory

In this extension, each type has a cubical structure: points, lines, squares, . . .

Recall Gandy’s extensionality model

To each type we associate a relation, and show by induction on the type that
the associated relation is an equivalence relation

Can we do the same here, e.g. can we show transitivity of the relation
corresponding to the type Path A a0 a1 by induction on A?
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Constructive semantics of Univalence

Cubical types

We can actually prove it, but we need to prove by induction a stronger
property

Box principle: any open box has a lid

This generalizes the notion of equivalence relation

First formulated by D. Kan Abstract homotopy I (1955)

Suggested by algebraic topology (Alexandroff and Hopf 1935, Eilenberg 1939)

if X is a subpolyhedron of a bottom lid C = [0, 1]n then (X×[0, 1])∪(C×{0})
is a retract of C × [0, 1]
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Constructive semantics of Univalence

Cubical types

For formulating the box principle, we add a new restriction operation

Γ, ψ where ψ is a “face” formula

If Γ ` A and Γ, ψ ` u : A then u is a partial element of A of extent ψ

If Γ, ψ ` T then T is a partial type of extent ψ
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Constructive semantics of Univalence

Face lattice

i : I, j : I, (i = 0) ∨ (i = 1) ∨ (j = 0) ` A
A(i/0)(j/1) A(i/1)(j/1)

A(i/0)(j/0) A(i/1)(j/0)
A(j/0)

A(i/0) A(i/1)

Distributive lattice generated by the formal elements (i = 0), (i = 1) with
the relation 0F = (i = 0) ∧ (i = 1)
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Constructive semantics of Univalence

Face lattice

Any judgement valid in Γ is also valid in a restriction Γ, ψ

E.g. if we have Γ ` A we also have Γ, ψ ` A

This is similar to the following property

Any judgement valid in Γ is also valid in an extension Γ, x : A

The restriction operation is a type-theoretic formulation of the notion of
cofibration

The extension operation Γ, x : A of a context Γ is a type-theoretic formulation
of the notion of fibration
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Constructive semantics of Univalence

Face lattice

We say that the partial element Γ, ψ ` u : A is connected

iff we have Γ ` a : A such that Γ, ψ ` a = u : A

We write Γ ` a : A[ψ 7→ u]

a witnesses the fact that u is connected

This generalizes the notion of being path-connected

Take ψ to be (i = 0) ∨ (i = 1)

A partial element u of extent ψ is determined by 2 points

An element a : A[ψ 7→ u] is a line connecting these 2 points
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Constructive semantics of Univalence

Contractible types

The type isContr A is inhabited iff we have an operation

Γ ` ψ Γ, ψ ` u : A

Γ ` ext [ψ 7→ u] : A[ψ 7→ u]

i.e. any partial element is connected
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Constructive semantics of Univalence

Box principle

By induction on A we build a “lid” operation

Γ ` ϕ Γ, i : I ` A Γ, ϕ, i : I ` u : A Γ ` a0 : A(i/0)[ϕ 7→ u(i/0)]

Γ ` compi A [ϕ 7→ u] a0 : A(i/1)[ϕ 7→ u(i/1)]

We consider a partial path u (of extent ϕ) in the direction i

If u(i/0), partial element of extend ϕ, is connected then so is u(i/1)

This is a type theoretic formulation of the box principle
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Constructive semantics of Univalence

Main operation and univalence axiom

Given Γ ` A, a partial type Γ, ψ ` T and map Γ, ψ ` w : T → A we can find

a total type Γ ` T̃ and map Γ ` w̃ : T̃ → A

such that T̃ , w̃ is an extension of T,w i.e.

Γ, ψ ` T = T̃ Γ, ψ ` w = w̃ : T → A

From this operation follows that

(X : U)× Equiv X A is contractible

which is a way to state the univalence axiom
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Constructive semantics of Univalence

Main operation and univalence axiom

T0 T1

A(i/0) A(i/1)

w(i/0) ∼ w(i/1)∼

A

ψ = (i = 0) ∨ (i = 1)
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Constructive semantics of Univalence

Main operation and univalence axiom

We define T̃ = Glue [ψ 7→ (T,w)] A with

If ψ = 1F then Glue [ψ 7→ (T,w)] A = T

If ψ 6= 1F then

Γ, ψ ` t : T Γ ` a : A[ψ 7→ w t]

Γ ` glue [ψ 7→ t] a : Glue [ψ 7→ (T,w)] A
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Constructive semantics of Univalence

Cubical set model

This model actually suggests some simplifications of Voevodsky’s model

Cf. work of Nicola Gambino and Christian Sattler (Leeds)

E.g. in both framework, to be contractible can be defined as

any partial element can be extended to a total element
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Constructive semantics of Univalence

Cubical type theory

Suggested by the cubical set model but now independent of any set theory

We can define an evaluation relation of terms, e.g.

(〈i〉t) 0 → t(i/0)

Theorem: (S. Huber) Any term of type N reduces to a numeral in a context
of the form i1 : I, . . . , im : I

Only constant lines, squares, . . . in the cubical type of natural numbers

A prototype implementation (j.w.w. C. Cohen, S. Huber and A. Mörtberg)
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Constructive semantics of Univalence

Dependent type theory

We obtain a formulation of dependent type theory with extensional equality

In this formal system we can prove univalence

The extensionality problem is solved by ideas coming from algebraic topology
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Constructive semantics of Univalence

Dependent type theory

As stated above, we can prove (as a special case of univalence axiom) that

two equivalent propositions are path equal

We can represent basic set theory in an interesting way

Unification of HOL with type theory (original motivation of Voevodsky)
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Constructive semantics of Univalence

Dependent type theory, new operations

Propositional truncation and existential quantification (which is a proposition)

Unique choice is provable

Representation of the notion of category

a category is the next level analog of a partially ordered set (Voevodsky, 2006)

Simpler than previous developments (e.g. G. Huet and A. Säıbi) since any
type comes with its one notion of equality

Unique choice “up to isomorphism”, e.g. the fact that a functor which is
fully faithful and essentially surjective is an equivalence becomes provable in a
constructive framework (in set theory we need the axiom of choice)
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