# A direct proof of the Dedekind-Mertens Lemma 

April 5, 2006

Let $P=f_{0}+\ldots+f_{n} X^{n}, Q=g_{0}+\ldots+g_{m} X^{m}$ and $R=P Q=h_{0}+\ldots+h_{n+m} X^{n+m}$. Dedekind-Mertens lemma states that we have $c(P)^{m+1} c(Q)=c(P)^{m} c(R)$ where $c(S)$ denotes the content of a polynomial $S$, i.e. the ideal generated by the coefficients of $S$. We assume $P, Q$ polynomials in $A[X]$ where $A$ is an arbitrary commutative ring. In particular, $A$ can be $\mathbb{Z}\left[f_{0}, \ldots, f_{n}, g_{0}, \ldots, g_{m}\right]$ where $f_{0}, \ldots, f_{n}, g_{0}, \ldots, g_{m}$ are indeterminates. Only the inclusion $c(P)^{m+1} c(Q) \subseteq c(P)^{m} c(R)$ is nontrivial. This is a beautiful generalisation of "Gauss's lemma" which states $c(P) c(Q)=c(R)$ in the case of integer coefficients. The general statement appears for instance in [4] with a proof attributed to Artin. Another proof using Gröbner bases can be found in [1]. The purpose of this note is to present a simple direct proof of the Dedekind-Mertens lemma, which follows actually the same structure as the proof of Gauss's lemma.

Let $F$ (resp. $G$, resp. $H$ ) be the additive subgroup of $A$ ( $\mathbb{Z}$-module) generated by the set of coefficients of the polynomial $P$ (resp. $Q$, resp. $R$ ). If $X, Y$ are two additive subgroups of $A$, we write $X Y$ for the additive subgroup generated by all products $u v$, with $u \in X, v \in Y$.

Theorem 0.1 $F^{m+1} G \subseteq F^{m} H$
Proof. By induction on $m$, which is the formal degree of $Q$. This is clear if $m=0$. We write $f_{l}=0$ if $l<0$ or $l>n$. We let $G_{m}$ be the additive subgroup generated by the coefficients $g_{l}$ for $l<m$. Since $\Sigma_{j<m} f_{k-j} g_{j}=h_{k}-f_{k-m} g_{m}$ is in $H+g_{m} F$ we have by induction on $m$

$$
F^{m} G_{m} \subseteq F^{m-1}\left(H+g_{m} F\right) \subseteq F^{m-1} H+F^{m} g_{m}
$$

and so, for all $i$

$$
f_{i} F^{m} G_{m} \subseteq F^{m} H+F^{m} f_{i} g_{m}
$$

Notice that $f_{i} g_{m} \in H+f_{i+1} G_{m}+\ldots+f_{n} G_{m}$. It follows that we have

$$
f_{i} F^{m} G_{m} \subseteq F^{m} H+f_{i+1} F^{m} G_{m}+\ldots+f_{n} F^{m} G_{m}
$$

and so $f_{i} F^{m} G_{m} \subseteq F^{m} H$ for $i=n, n-1, \ldots$ as desired.
A direct application of this result is the celebrated "Dedekind's Prague theorem" [3], which states that each product $f_{i} g_{j}$ is integral over the coefficients of the product polynomial $R$. Another direct application is the equality $c(P) c(Q)=c(R)$ if $A$ is a Prüfer domain, that is an integral domain such that all finitely generated non zero ideals of $A$ are invertible.

Our argument is actually reminiscent of, but formally simpler than, Dedekind's original proof [2], who noticed that another generating system for the $\mathbb{Z}$-module $F^{m+1}$ is given by the determinants

$$
\left|\begin{array}{cccc}
f_{i_{0}} & f_{i_{0}-1} & \ldots & f_{i_{0}-m} \\
f_{i_{1}} & f_{i_{1}-1} & \ldots & f_{i_{1}-m} \\
\ldots & \ldots & \ldots & \ldots \\
f_{i_{m}} & f_{i_{m}-1} & \ldots & f_{i_{m}-m}
\end{array}\right|
$$

where $0 \leq i_{0}<\ldots<i_{m} \leq n+m$. The inclusion $F^{m+1} G \subseteq F^{m} H$ follows easily from this remark.

## Acknowledgement

Thanks to Harold Edwards for his comment on this note.

## References

[1] Bruns, W. and Guerrieri, A. The Dedekind-Mertens formula and determinantal rings. Proc. Amer. Math. Soc. 127 (1999), no. 3, 657-663.
[2] Dedekind, R. Über einen arithmetischen Satz von Gauss. Werke, Vol.2, 28-38, 1892.
[3] Edwards, H. Divisor Theory. Birkhäuser Boston, Inc., Boston, MA, 1990.
[4] Northcott, D. G. A generalization of a theorem on the content of polynomials. Proc. Cambridge Philos. Soc. 551959 282-288.

