
A model structure on some presheaf categories

Introduction

The goal of this note is to present a general class of model structures on some presheaf categories. This
is due to Christian Sattler relying on the 〈〈glueing 〉〉 operation of the cubical set model.

1 Base category

We write I, J,K, . . . the objects of a given small category C with finite product. We assume given a
special object I with two maps 0, 1 : T → I where T is the terminal object. This defines a cylinder
functor: if we write J+ = J × I, we have natural transformations p : J+ → J , and e0, e1 : J → J+ such
that pe0 = pe1 = 1J . 1

A (generalized) cubical set is a presheaf on C.
If Γ is a cubical set, and f : J → I we write

u 7−→ uf Γ(I)→ Γ(J)

the corresponding restriction map, and we have u1I = u and (uf)g = u(fg) if f : J → I and g : K → J .
We identify an object I and the cubical set it represents.
We have the cubical set Ω, where Ω(I) is the set of sieves on I.
We assume given a sublattice F of Ω, with the only condition that we have a natural map c0 : I+ → F

(resp. c1 : I+ → F) which classifies e0 (resp. e1). If we want the model to be effective, we also require
that it is decidable whether a sieve in F(I) is equal to the total sieve or not.

If Γ is a cubical set, any map ψ : Γ → Ω defines a subobject Γ, ψ of Γ with a canonical mono
ιψ : Γ, ψ → Γ.

2 Model structure

We define first the notion of (generalized) open boxes. Given a cubical set A and ψ : A → F we define
i0(A,ψ) : b0(A,ψ)→ A+ to be the mono classified by ψp ∨ c0 (and similarly i1(A,ψ) : b1(A,ψ)→ A+).

Definition 2.1 We define 4 classes of maps.

1. A map is a cofibration iff it is classified by F

2. a map is a trivial fibration iff it has the right lifting property w.r.t. any cofibration

3. a map is a fibration iff it has the right lifting property w.r.t. any maps i0(A,ψ) and i1(A,ψ) for
any A and ψ : A→ F

4. a map is a trivial cofibration iff it has the left lifting property w.r.t. any fibration

1We also need to assume connection operations that are natural transformations m, j : I × I → I such that j(x, 0) =
j(0, x) = x and m(x, 1) = m(1, x) = x, and, for the glueing operation, we also need to assume an operation ∀ : P (F) → F
with P (A)(I) = A(I+) and ψ 6 ∀δ iff ψp 6 δ. Because of the need of connections, this class of model does not contain
Grothendieck’s 〈〈 smallest 〉〉 test category, since there any map In → I has to be constant or a projection.
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Notice that both fibration properties are purely existential. They also are defined by right lifting
properties, and a priori, may not be stable by addition of new Grothendieck universes. As we will see,
these properties are actually equivalent to the existence of corresponding structures of a fixed size, which
also imply that the two notions of fibrations are 〈〈absolute 〉〉, i.e. stays the same even if we add new
universes,

If f : A → B we define C and if : A → C and pf : C → B by taking C(I) to be the set of tuples
(b, ψ, u) with b in B(I) and ψ in F(I) and u : I, ψ → A such that fu = bιψ. We define if a = (f a, 1, a)
and pf (b, ψ, u) = b.

Proposition 2.2 We have f = pf if and if is a cofibration (it is classified by g : C → F defined by
g(b, ψ, u) = ψ) and pf is a trivial fibration

We define f to be a weak equivalence iff the map if : A→ C is a trivial cofibration.

Theorem 2.3 (Christian Sattler) The three classes of maps cofibration, fibration, weak equivalence
define a model structure on cubical sets.

His argument is an application of the model of type theory with universe and univalence we present
below.

It also follows from his argument that the notion of weak equivalence is absolute and hence that the
notion of trivial cofibration is absolute as well (this is not obvious a priori since it is defined by having
a left lifting property w.r.t. a class a maps which changes when one adds universes).

3 Dependent type

If Γ is a cubical set, we can consider its category of elements
∫

Γ: an object is of the form (I, ρ) with ρ
in Γ(I) and a map f : (J, ν)→ (I, ρ) is a map f : J → I such that ν = ρf in Γ(J).

A dependent type on Γ, notation Γ ` A, is a presheaf on the category of elements of Γ.
If σ : ∆→ Γ then σ determines a functor

∫
∆→

∫
Γ sending (I, ν) to (I, σν) and Γ ` A determines

by composition a dependent type ∆ ` Aσ.
If we have Γ ` A we can define a new cubical set Γ.A by taking (Γ.A)(I) to be the set of elements

ρ, u with ρ in Γ(I) and u in A(I, ρ) and (ρ, u)f = (ρf, uf). We have a canonical map pA : Γ.A → Γ
defined by pA(ρ, u) = ρ.

We define Γ ` u : A to mean that u : Γ→ Γ.A is a section of pA.
Though the presheaf category on

∫
Γ and the slice category over Γ are equivalent, it is important to

distinguish them to be able to state results with strict equality (which is crucial to get a model of type
theory in a simple way without coherence issues).

4 Contractible structure

We first define what is a contractible structure on a given cubical set A.
If ψ : I → F we recall that we write ιψ : I, ψ → I the associated mono it classifies. If f : J → I we

can pull-back this map along ιψ, getting a map ψ∗f : J, ψf → I, ψ.
A contractible strucure is given by an extension operation ext(I, ψ, u) : I → A where ψ is an element

of F(I) and u : I, ψ → A, which satisfies ext(I, ψ, u)ι = u and the uniformity condition

ext(I, ψ, u)f = ext(J, ψf, uψ∗f)

To have such an extension operation is actually equivalent to the fact that given any cubical set B
and any map ψ : B → F, a map u : B,ψ → A can be extended to a map u : B → A (such that uιψ = u).
More precisely, to give an extension operation is the same as giving a retraction of the canonical map
A→ Ã where Ã(I) is the set of elements I, ψ, u with ψ in F(I) and u : I, ψ → A.

2



5 Acyclic Kan structure

An acyclic Kan structure on a dependent type Γ ` A is an extension operator I ` ext(ρ, ψ, u) : Aρ
such that ext(ρ, ψ, u)f = ext(ρf, ψf, uψ∗f) and ext(ρ, ψ, u)ιψ = u given ρ in Γ(I) and ψ : I → F and
I, ψ ` u : Aριψ and f : J → I.

To have such a structure is logically equivalent to the fact that pA has the right lifting property w.r.t.
any mono classified by F.

6 Kan structure

If σ : B → A and ψ : A→ F we have maps

b0(σ) : b0(B,ψσ)→ b0(A,ψ) b1(σ) : b1(B,ψσ)→ b1(A,ψ)

We define what is a fibration structure on a dependent type Γ ` A. It is given by two 〈〈filling 〉〉

operations, giving the uniform lifting properties w.r.t. the inclusions i0(J, ψ) and i1(J, ψ) for ψ : J → F.
Thus we have J+ ` fill0(J, ψ, ρ, u) : Aρ given ψ : J → F and ρ : J+ → Γ and b0(J, ψ) ` u : Aρi0(J, ψ)
satisfying fill0(J, ψ, ρ, u)i0(J, ψ) = u together with the uniformity condition: if g : K → J then

fill0(J, ψ, ρ, u)g = fill0(K,ψg, ρg+, ub0(g))

(and similarly changing 0 to 1).

Proposition 6.1 To have a fibration structure on Γ ` A is logically equivalent to the fact that the map
pA : Γ.A → Γ have the right lifting property w.r.t. any maps i0(∆, ψ) and i1(∆, ψ) for ψ : ∆ → F and
for any cubical set ∆ (not necessarily representable).

If cA is a fibration structure on Γ ` A and σ : ∆ → Γ then we define a fibration structure cAσ on
∆ ` Aσ by composition.

7 Equivalence structure

If ∆ ` T and ∆ ` A we write ∆ ` w : T → A to mean that w is a natural transformation between the
two presheafs T and A on

∫
∆. We define the homotopy fiber ∆.A ` Fw by taking Fw(I, ρ, u) for ρ in

∆(I) and u in A(I, ρ) to be the set of elements (t, ω) where t is in T (I, ρ) and ω an element of A(I+, ρp)
such that ωe0 = w t and ωe1 = u. If f : J → I we define (t, ω)f = (tf, ωf+).

An equivalence structure cw for the map w is then an acyclic Kan structure for ∆.A ` Fw (this
expresses that each fiber of w is contractible).

8 Glueing operation

Theorem 8.1 Given

• a dependent type Γ ` A

• a mono σ : ∆→ Γ classified by F

• a dependent type ∆ ` T and a natural transformation ∆ ` w : T → Aσ

then we can find

1. Γ ` G such that Gσ = T (strict equality)

2. a natural transformation Γ ` e : G→ A such that eσ = w

3. if furthermore T has a Kan structure cT and A has a Kan structure and w has an equivalence
structure cw, then we can find a Kan structure cG for Γ ` G such that cGσ = cT and an equivalence
structure ce such that ceσ = cw.
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9 Universe

We suppose given a Grothendieck universe U and we assume that the base category is in U .
We define a corresponding cubical set U by taking U(I) to be the set of all pairs (A, cA) where A is

a U-dependent type I ` A and cA is a fibration structure on I ` A. If f : J → I we define (A, cA)f to
be Af, cAf .

We can define U ` El by taking El(I, A, cA) to be the set of all sections I ` u : A.

Theorem 9.1 U ` El has a canonical fibration structure cE such that if Γ ` A is a U-dependent type
with a fibration structure cA, there exists a unique map |A| : Γ→ U such that El|A| = A and cE |A| = cA.

10 The universe is fibrant

It follows from Theorem 8.1 that the cubical set U is fibrant, i.e. the map U → 1 has a fibration structure.
Christian Sattler has shown that this implies that a map is a trivial cofibration iff it is a cofibration which
is a weak equivalence.

To provide a simple example, the fact that fibrations can be extended along trivial cofibrations can
be refined in the following way.

Theorem 10.1 If σ : ∆ → Γ is a trivial cofibration and ∆ ` B is a U-dependent type with a fibration
structure cB there exists a U-dependent type Γ ` A with a fibration structure cA such that Aσ = B and
cAσ = cB .

Indeed, we have B = El|B| and since U is fibrant and ∆ → Γ is a trivial cofibration there exists
a map |A| : Γ → U such that |A|σ = |B|. We define then A = El|A| and cA = cE |A| and we have
Aσ = El|A|σ = El|B| = B and cAσ = cE |A|σ = cE |B| = cB .

All the results of Sections 3 to 8 have been checked formally in NuPrl by Mark Bickford for a special
case of the base category (where a morphism J → I is given by a set theoretic map from I to the free
de Morgan algebra on J).
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