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A Cubical Type Theory

A Cubical Type Theory

(1) constructive mathematics and algebraic topology

(2) nominal extension of type theory, syntax and semantics

(3) internal logic
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A Cubical Type Theory

Algebraic topology and constructive mathematics

“Higher-order” structure

A set for Bishop is a collection A with an equivalence relation R(a, b)

This is the “equality” on the set

If we have two sets A,R and B,S an “operation” f : A → B may or not
preserve the given equality

If f preserves the equality, it defines a function
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A Cubical Type Theory

Algebraic topology and constructive mathematics

Propositions-as-Types: each R(a, b) should itself be considered as a collection
with an equality

We should have a relation R2(p, q) expressing when p q : R(a, b) are equal

And then a relation R3(s, t) on the proofs of these relations

and so on
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A Cubical Type Theory

Constructive mathematics

For expressing the notion of dependent set, one needs to conisder explicitely
the proofs of equality

Cf. Exercice 3.2 in Bishop’s book

In the first edition, only families over discrete sets are considered while the
Bishop-Bridges edition presents a more general definition, due to F. Richman

It is convenient to consider more generally a relation expressing when a square
of equality proofs “commutes”
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A Cubical Type Theory

Algebraic topology

Topology: study of continuity, “holding together”

Connected: two points are connected if there is a path between them

Algebraic topology: higher notion of connectedness
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A Cubical Type Theory

Algebraic topology

In the 50s, development of a “combinatorial” notion of higher connectedness

D. Kan: first with cubical sets (1955) then with simplicial sets

Moore (1955): these spaces form a cartesian closed category

However, these structures are not as such suitable for constructive mathematics

Proofs of even basic facts are intrinsically not effective

More precisely: if one expresses the definitions as they are in IZF then the
basic facts are not provable (j.w.w. M. Bezem and E. Parmann, TLCA 2015)
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A Cubical Type Theory

Univalent Foundations

Goal: to find an effective combinatorial notion of spaces with higher-order
notion of connectedness

How do we know if this notion is the right one?

Should form a model of dependent type theory with the axiom of univalence

8



A Cubical Type Theory

Type Theory

Dependent type theory: Π,Σ, U,N,W (A,B), N0, N1, N2 . . .

(x : A)→ B for dependent product

(x : A) (y : B)→ C for (x : A)→ (y : B)→ C

(x : A,B) for dependent sum

(x : A, y : B,C) for (x : A, (y : B,C))
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A Cubical Type Theory

Type Theory

First version (1972) presented without equality types

Non trivial: To have an effective model of dependent product with an higher-
order structure on equality

(Usual one-line argument not valid effectively)
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A Cubical Type Theory

Type Theory

The axiom of univalence can be seen as the expression of the axiom of
extensionality for dependent type theory

In HOL, two forms of extensionality (A. Church, 1940)

(1) Function extensionality

(2) Two equivalent propositions are equal
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A Cubical Type Theory

Univalent Foundation

1a : IdA a a

transp : C(a)→ Id A a x→ C(x)

Id C(a) (transp u 1a) u

Id (x : A, Id A a x) (a, 1a) (x, p) (“singleton are contractible”)

Axiom of Univalence
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A Cubical Type Theory

Singleton are contractible

In the setting of algebraic topology, this was the starting point of the PhD
work of Jean-Pierre Serre (1951)

“Indeed, to apply Leray’s theory I needed to construct fibre spaces which did
not exist if one used the standard definition. Namely, for every space X, I needed
a fibre space E with base X and with trivial homotopy (for instance contractible).
But how to get such a space? One night in 1950, on the train bringing me back
from our summer vacation, I saw it in a flash: just take for E the space of paths
on X (with fixed origin a), the projection E → X being the evaluation map:
path → extremity of the path. The fibre is then the loop space of (X, a). I had
no doubt: this was it! . . . It is strange that such a simple construction had so
many consequences.”

13



A Cubical Type Theory

Computational Interpretation

Our model does not justify all the rules of Martin-Löf type theory with
intensional equality

The computation rule for identity elimination is only justified as a propositional
equality

This is expected when equality is defined by induction on the type

The justification of the rules for equality is different

In Martin-Löf type theory equality is inductively defined (least reflexive relation)
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A Cubical Type Theory

Constructive models

For dependent type theory, the computations are done in λ-calculus

For univalence, nominal extension of λ-calculus

In particular, we get a justification of function extensionality without using
function extensionality in the metalogic

Reminiscent of the work on Observational Type Theory, but without proof
irrelevance
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A Cubical Type Theory

Nominal λ-calculus

Γ ::= () | Γ, x : A | Γ, i : I

t, A ::= x | λx : A.t | t t | 〈i〉t | t ϕ | (x : A)→ A

ϕ is a lattice formula on names

Intuitively, names represent in a formal way element in [0, 1]

max(i, j), min(i, j), 1− i

As for Kan cubical sets, use of a presheaf model
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A Cubical Type Theory

Nominal λ-calculus

Base category C cartesian category with a distinguished object [1]

A cubical set is a presheaf (contravariant functor) on C

The interval I is the presheaf represented by [1]

A line in X is an element of the set X([1])

XI defines the cubical set of paths in X

(XI)(I) = X(I × [1])

We can form the diagonal of any square in X([1]× [1])
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A Cubical Type Theory

Presheaf model

N is modelled as the constant functor

Any function I→ N is constant

In general any map from a representable to a constant functor is constant

Two natural numbers are connected by a path only if they are equal
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A Cubical Type Theory

Presheaf model

We write u 7−→ uf the restriction map X(I)→ X(J) if f : J → I

This notation is motivated by the fact that X(I) can be seen as I → X

A context Γ is interpreted as a presheaf

Γ ` A can be defined as a family of sets Aρ for ρ in Γ(I) with restriction
maps

Aρ→ Aρf, u 7−→ uf

satisfying u1I = u ∈ Aρ and (uf)g = u(fg) ∈ Aρfg if g : K → J
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A Cubical Type Theory

Presheaf model

If Γ ` A we define Γ, x : A

(ρ, x = u) ∈ (Γ, x : A)(I) if ρ ∈ Γ(I) and u ∈ Aρ

(ρ, x = u)f = (ρf, x = uf)

Γ ` a : A is given by a family of element aρ ∈ Aρ such that

(aρ)f = aρf ∈ Aρf if f : J → I
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A Cubical Type Theory

Function extensionality

Γ ` A Γ, i : I ` t : A

Γ ` 〈i〉t : Id A t(i0) t(i1)

Γ ` p : Id A a b

Γ ` p 0 = a : A

Γ ` p : Id A a b

Γ ` p 1 = b : A

Γ ` t : (x : A)→ B Γ ` u : (x : A)→ B Γ ` p : (x : A)→ Id B (t x) (u x)

Γ ` 〈i〉λx : A. p x i : Id ((x : A)→ B) t u

λx : A. p x 0 = λx : A. t x = t

λx : A. p x 1 = λx : A. u x = u
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A Cubical Type Theory

Function extensionality

funExt (A : U) (B : A -> U) (f g : (x : A) -> B x)

(p : (x : A) -> Id (B x) (f x) (g x)) :

Id ((y : A) -> B y) f g = <i> \(a : A) -> (p a) @ i
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A Cubical Type Theory

Example

mapOnPath (A B : U) (f : A -> B) (a b : A)

(p : Id A a b) : Id B (f a) (f b) = <i> f (p @ i)
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A Cubical Type Theory

Example

add (a : nat) : nat -> nat = split

zero -> a

suc n -> suc (add a n)

addZero : (n : nat) -> Id nat (add zero n) n = split

zero -> <i> zero

suc n -> <i> suc (addZero n @ i)
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A Cubical Type Theory

Singleton are contractible

We also can justify the fact that any element in (x : A, Id A a x) is equal to
(a, 1a)

Γ ` a : A Γ ` b : A Γ ` p : Id A a b

Γ ` 〈i〉(p i, 〈j〉p (i ∧ j)) : Id (x : A, Id A a x) (a, 1a) (b, p)

25



A Cubical Type Theory

Base category

Direct description of Cop

Objects: finite sets I, J, . . .

Maps: I → dM(J) where dM(J) is the free de Morgan algebra on J

de Morgan algebra: bounded distributive lattice with a reverse operation

Example: [0, 1] with max(i, j), min(i, j), 1− i

I + J is the product of I and J in C
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A Cubical Type Theory

Nominal sets

I(I) = dM(I)

We have a de Morgan algebra structure on I

27



A Cubical Type Theory

Subobject classifier

Ω(I) set of sieves on I

where a sieve L on I is a set of maps of codomain I such that

fg : K → I in L if f : J → I in L and g : K → J

Ω is the suboject classifier

Example: if I = i, j then we can consider the boundary of I which is the sieve
generated by all faces i = 0, i = 1, j = 0, j = 1 of I

A sieve on I can be seen as a subpresheaf of the presheaf represented by I
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A Cubical Type Theory

Shapes

We define S subpresheaf of Ω

S is the sublattice of Ω generated by i = 1 for i in I

i = 0 is defined as 1− i = 1

A shape is an element of S, thus defined as a special kind of truth-value
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A Cubical Type Theory

Shapes

For this base category, we have

[i = 0] ∧ [i = 1] =⊥

[max(i, j) = 1] = [i = 1] ∨ [j = 1] [min(i, j) = 1] = [i = 1] ∧ [j = 1]

This defines a de Morgan algebra map

I→ Ω× Ω

i 7−→ ([i = 0], [i = 1])
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A Cubical Type Theory

Internal logic

Any element L of S can be seen as a subobject of the terminal object

In particular for any presheaf X we can consider XL

If ~u in XL we can consider the presheaf X|~u

a is in X|~u if (λα : L)a and ~u coincides on L
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A Cubical Type Theory

External interpretation

(L : S, XL)

An element of (L : S, XL)(I) is a sieve L on I together with a family of
element uf ∈ X(J) for f : J → I in L such that (uf)g = ufg ∈ X(K) if
g : K → J

L : S, u : XL ` X|u

If we have L sieve on I and such a family ~u = (uf) then (X|u)(L = L, u = ~u)
is the set of elements a in X(I) such that af = uf for f : J → I in L

This gives a(n internal) notion of connectedness: such an element a is a
witness of the fact that the elements defined by the system ~u are connected
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A Cubical Type Theory

External interpretation

For instance if I = {i} an element of

(L : S, XL)(I)

is given by a sieve L in S({i}) and a family of elements uf ∈ X(J) for
f : J → I in L

If we take L = [i = 0]∨ [i = 1] such a family is completely characterized by a
system

(i = 0) 7→ u0, (i = 1) 7→ u1

with u0 in X() and u1 in X() are points of X

An element in (X|~u)(I) is a line connecting u0 and u1
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A Cubical Type Theory

System of elements

X 7−→ (L : S, XL)

is a polynomial functor on the category of cubical sets
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A Cubical Type Theory

Equality

If we have Γ ` a : A and Γ ` b : A and Γ ` L : S

Then Γ, α : L ` a = b : A means

aρ = bρ ∈ Aρ

whenever ρ ∈ Γ(I) such that 1I ∈ Lρ

Γ ` a = b : A means

aρ = bρ ∈ Aρ

for all ρ ∈ Γ(I)
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A Cubical Type Theory

Internal logic

We can now express internally when a presheaf (=cubical set) X is “fibrant”
by the fact that we have one constant

comp : (L : S) (~u : (XL)I)→ X|~u0→ X|~u1

~u : (XL)I is a path of system of elements in XL

If this system is connected at 0, it is connected at 1

A tuple in

(L : S, , ~u : (XL)I, X|~u)(I)

is an open box if L in S(I) is the boundary of I
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A Cubical Type Theory

Main Lemma (internally)

If X is fibrant we have

fill : (L : S) (~u : (XL)I)→ X|~u0→ (i : I)→ X|~ui

This refines the Kan filling condition (1955): any open box can be filled

~u : (XL)I is a path of element in XL

If it is connected at 0, it is always connected
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A Cubical Type Theory

Main Lemma (internally)

comp : (L : S) (~u : (XL)I)→ X|~u0→ X|~u1

fill : (L : S) (~u : (XL)I)→ X|~u0→ (i : I)→ X|~ui

We define

fill L ~u a0 i = comp (L ∨ [i = 0]) ~v a0

where ~v : (XL∨[i=0])I is defined by

−~v j α = ~u (i ∧ j) α if α in L

−~v j α = a0 if α in [i = 0]
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A Cubical Type Theory

Fibration

Γ ` A

comp : (ρ : ΓI) (L : S) (~u : (i : I)→ A(ρi)L)→ A(ρ0)|~u0→ A(ρ1)|~u1

fill : (ρ : ΓI) (L : S) (~u : (i : I)→ A(ρi)L)→ A(ρ0)|~u0→ (i : I)→ A(ρi)|~ui

We can derive fill from comp

39



A Cubical Type Theory

Universe

We have shown externally how to define a universe which is fibrant and
univalent

Is there an internal version of this proof?

Uses operations SI → S corresponding to natural transformations

S(I × [1])→ S(I)
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A Cubical Type Theory

Effective model

This model can be represented in Haskell essentially as it is

https://github.com/simhu/cubicaltt

Design choice: programming language with dependent types

Total fragment

In the total fragment conversion and type-checking are terminating
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A Cubical Type Theory

Effective model

We also have experimented with a simple form of higher inductive types

e.g. suspension, spheres, propositional truncation

the circle is equal to the suspension of the Boolean
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A Cubical Type Theory

Effective model

Most complex example so far: define multiplication on the circle

Show that it is an equivalence, using the fact that being an equivalence is a
proposition

Deduce that any element in the circle has an inverse for multiplication

Compute the winding number of this inverse applied to some loops

Transport this structure on the suspension of the Boolean

Library of test examples?
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A Cubical Type Theory

Effective model

In particular we get an extension of type theory with function extensionality
and with propositional truncation

We can introduce an existential quantification defined as the propositional
truncation of the sum types

This existential quantification satisfies unique choice

Suitable formal system for constructive mathematics?
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Some references

“A model of type theory in cubical sets”
M. Bezem, T.C. and S. Huber, proceeding of TYPES 2013

Names and Symmetry in Computer Science
A.M. Pitts

“An equivalent presentation of the Bezem-Coquand-Huber category of cubical
sets”
A. M. Pitts. Preprint arXiv, December 2013.
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Some references

The Univalent Foundation Program
Homotopy Type Theory: Univalent foundation of mathematics

V. Voevodsky Univalent foundation home page and
“Experimental library of univalent foundation of mathematics”
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